Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
elpa
elpa
Commits
072206dc
Commit
072206dc
authored
Feb 03, 2015
by
Lorenz Huedepohl
Browse files
Remove old and obsolete files
parent
70eedfc6
Changes
5
Hide whitespace changes
Inline
Side-by-side
Makefile.am
View file @
072206dc
...
...
@@ -91,19 +91,16 @@ nobase_elpa_include_HEADERS = $(wildcard modules/*)
filesdir
=
$(docdir)
/examples
dist_files_DATA
=
\
test
/read_real.F90
\
test
/read_real_gen.F90
\
test
/test_complex2.F90
\
test
/test_complex2_default_kernel.F90
\
test
/test_complex2_choose_kernel_with_api.F90
\
test
/test_complex.F90
\
test
/test_complex_gen.F90
\
test
/test_real2.F90
\
test
/test_real2_default_kernel.F90
\
test
/test_real2_default_kernel_qr_decomposition.F90
\
test
/test_real2_choose_kernel_with_api.F90
\
src/print_available_elpa2_kernels.F90
\
test
/test_real.F90
\
test
/test_real_gen
.F90
src/print_available_elpa2_kernels
.F90
dist_doc_DATA
=
README COPYING/COPYING COPYING/gpl.txt COPYING/lgpl.txt
...
...
Makefile.in
View file @
072206dc
...
...
@@ -819,19 +819,16 @@ nobase_elpa_include_HEADERS = $(wildcard modules/*)
filesdir
=
$(docdir)
/examples
dist_files_DATA
=
\
test
/read_real.F90
\
test
/read_real_gen.F90
\
test
/test_complex2.F90
\
test
/test_complex2_default_kernel.F90
\
test
/test_complex2_choose_kernel_with_api.F90
\
test
/test_complex.F90
\
test
/test_complex_gen.F90
\
test
/test_real2.F90
\
test
/test_real2_default_kernel.F90
\
test
/test_real2_default_kernel_qr_decomposition.F90
\
test
/test_real2_choose_kernel_with_api.F90
\
src/print_available_elpa2_kernels.F90
\
test
/test_real.F90
\
test
/test_real_gen
.F90
src/print_available_elpa2_kernels
.F90
dist_doc_DATA
=
README COPYING/COPYING COPYING/gpl.txt COPYING/lgpl.txt
...
...
test/read_real_gen.F90
deleted
100644 → 0
View file @
70eedfc6
! This file is part of ELPA.
!
! The ELPA library was originally created by the ELPA consortium,
! consisting of the following organizations:
!
! - Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
! - Bergische Universität Wuppertal, Lehrstuhl für angewandte
! Informatik,
! - Technische Universität München, Lehrstuhl für Informatik mit
! Schwerpunkt Wissenschaftliches Rechnen ,
! - Fritz-Haber-Institut, Berlin, Abt. Theorie,
! - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
! Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
! and
! - IBM Deutschland GmbH
!
!
! More information can be found here:
! http://elpa.rzg.mpg.de/
!
! ELPA is free software: you can redistribute it and/or modify
! it under the terms of the version 3 of the license of the
! GNU Lesser General Public License as published by the Free
! Software Foundation.
!
! ELPA is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Lesser General Public License for more details.
!
! You should have received a copy of the GNU Lesser General Public License
! along with ELPA. If not, see <http://www.gnu.org/licenses/>
!
! ELPA reflects a substantial effort on the part of the original
! ELPA consortium, and we ask you to respect the spirit of the
! license that we chose: i.e., please contribute any changes you
! may have back to the original ELPA library distribution, and keep
! any derivatives of ELPA under the same license that we chose for
! the original distribution, the GNU Lesser General Public License.
!
!
#include "config-f90.h"
!>
!> Fortran test programm to demonstrates the use of
!> ELPA 1 real case library.
!> This program can read a matrix from an ascii
!> file and computes then the Eigenvectors.
!> If "HAVE_REDIRECT" was defined at build time
!> the stdout and stderr output of each MPI task
!> can be redirected to files if the environment
!> variable "REDIRECT_ELPA_TEST_OUTPUT" is set
!> to "true".
!>
program
read_real_gen
!-------------------------------------------------------------------------------
! Generalized eigenvalue problem - REAL version
!
! This program demonstrates the use of the ELPA module
! together with standard scalapack routines
!-------------------------------------------------------------------------------
use
ELPA1
#ifdef WITH_OPENMP
use
test_util
#endif
#ifdef HAVE_ISO_FORTRAN_ENV
use
iso_fortran_env
,
only
:
error_unit
#endif
#ifdef HAVE_REDIRECT
use
redirect
#endif
#ifdef HAVE_DETAILED_TIMINGS
use
timings
#endif
implicit
none
include
'mpif.h'
!-------------------------------------------------------------------------------
! Please set system size parameters below!
! nblk: Blocking factor in block cyclic distribution
!-------------------------------------------------------------------------------
integer
,
parameter
::
nblk
=
16
!-------------------------------------------------------------------------------
! Local Variables
integer
na
,
nb
,
nev
integer
np_rows
,
np_cols
,
na_rows
,
na_cols
integer
myid
,
nprocs
,
my_prow
,
my_pcol
,
mpi_comm_rows
,
mpi_comm_cols
integer
i
,
n_row
,
n_col
,
mpierr
,
my_blacs_ctxt
,
sc_desc
(
9
),
info
,
nprow
,
npcol
,
lenarg
integer
,
external
::
numroc
,
indxl2g
real
*
8
err
,
errmax
real
*
8
,
allocatable
::
a
(:,:),
z
(:,:),
tmp1
(:,:),
tmp2
(:,:),
as
(:,:),
ev
(:)
real
*
8
,
allocatable
::
b
(:,:),
bs
(:,:)
character
(
256
)
::
filename
,
fmttype
real
*
8
ttt0
,
ttt1
#ifdef WITH_OPENMP
integer
::
omp_get_max_threads
,
required_mpi_thread_level
,
provided_mpi_thread_level
#endif
#ifndef HAVE_ISO_FORTRAN_ENV
integer
,
parameter
::
error_unit
=
6
#endif
logical
::
success
success
=
.true.
!-------------------------------------------------------------------------------
! MPI Initialization
#ifndef WITH_OPENMP
call
mpi_init
(
mpierr
)
#else
required_mpi_thread_level
=
MPI_THREAD_MULTIPLE
call
mpi_init_thread
(
required_mpi_thread_level
,
&
provided_mpi_thread_level
,
mpierr
)
if
(
required_mpi_thread_level
.ne.
provided_mpi_thread_level
)
then
write
(
error_unit
,
*
)
"MPI ERROR: MPI_THREAD_MULTIPLE is not provided on this system"
write
(
error_unit
,
*
)
" "
,
mpi_thread_level_name
(
provided_mpi_thread_level
),
" is available"
call
EXIT
(
1
)
stop
1
endif
#endif
call
mpi_comm_rank
(
mpi_comm_world
,
myid
,
mpierr
)
call
mpi_comm_size
(
mpi_comm_world
,
nprocs
,
mpierr
)
#ifdef HAVE_REDIRECT
if
(
check_redirect_environment_variable
())
then
if
(
myid
.eq.
0
)
then
print
*
,
" "
print
*
,
"Redirection of mpi processes is used"
print
*
,
" "
if
(
create_directories
()
.ne.
1
)
then
write
(
error_unit
,
*
)
"Unable to create directory for stdout and stderr!"
stop
endif
endif
call
MPI_BARRIER
(
MPI_COMM_WORLD
,
mpierr
)
call
redirect_stdout
(
myid
)
endif
#endif
#ifdef HAVE_DETAILED_TIMINGS
! initialise the timing functionality
#ifdef HAVE_LIBPAPI
call
timer
%
measure_flops
(
.true.
)
#endif
call
timer
%
measure_allocated_memory
(
.true.
)
call
timer
%
measure_virtual_memory
(
.true.
)
call
timer
%
measure_max_allocated_memory
(
.true.
)
call
timer
%
set_print_options
(&
#ifdef HAVE_LIBPAPI
print_flop_count
=
.true.
,
&
print_flop_rate
=
.true.
,
&
#endif
print_allocated_memory
=
.true.
,
&
print_virtual_memory
=
.true.
,
&
print_max_allocated_memory
=
.true.
)
call
timer
%
enable
()
call
timer
%
start
(
"program"
)
#endif
!-------------------------------------------------------------------------------
! Get the name of the input files and open input files
! Please note:
! get_command_argument is a FORTRAN 2003 intrinsic which may not be implemented
! for every Fortran compiler!!!
if
(
myid
==
0
)
then
! 1. Get the format of the matrices.
call
get_command_argument
(
1
,
fmttype
,
lenarg
,
info
)
if
(
info
/
=
0
.or.
&
(
trim
(
fmttype
)
/
=
'bin'
.and.
trim
(
fmttype
)
/
=
'asc'
)
&
)
then
write
(
error_unit
,
*
)
'Usage: read_real_gen format matrix_file_1 matrix_file_2'
call
mpi_abort
(
mpi_comm_world
,
0
,
mpierr
)
endif
if
(
trim
(
fmttype
)
==
'bin'
)
then
fmttype
=
'unformatted'
else
! 'asc'
fmttype
=
'formatted'
endif
! 2. Get the file name of the first matrix.
call
get_command_argument
(
2
,
filename
,
lenarg
,
info
)
if
(
info
/
=
0
)
then
write
(
error_unit
,
*
)
'Usage: read_real_gen format matrix_file_1 matrix_file_2'
call
mpi_abort
(
mpi_comm_world
,
0
,
mpierr
)
endif
open
(
10
,
file
=
filename
,
action
=
'READ'
,
status
=
'OLD'
,
form
=
trim
(
fmttype
),
iostat
=
info
)
if
(
info
/
=
0
)
then
write
(
error_unit
,
*
)
'Error: Unable to open '
,
trim
(
filename
)
call
mpi_abort
(
mpi_comm_world
,
0
,
mpierr
)
endif
! 3. Get the file name of the second matrix.
call
get_command_argument
(
3
,
filename
,
lenarg
,
info
)
if
(
info
/
=
0
)
then
write
(
error_unit
,
*
)
'Usage: read_real_gen format matrix_file_1 matrix_file_2'
call
mpi_abort
(
mpi_comm_world
,
0
,
mpierr
)
endif
open
(
20
,
file
=
filename
,
action
=
'READ'
,
status
=
'OLD'
,
form
=
trim
(
fmttype
),
iostat
=
info
)
if
(
info
/
=
0
)
then
write
(
error_unit
,
*
)
'Error: Unable to open '
,
trim
(
filename
)
call
mpi_abort
(
mpi_comm_world
,
0
,
mpierr
)
endif
endif
! (myid == 0)
call
mpi_barrier
(
mpi_comm_world
,
mpierr
)
! Just for safety
!-------------------------------------------------------------------------------
! Selection of number of processor rows/columns
! We try to set up the grid square-like, i.e. start the search for possible
! divisors of nprocs with a number next to the square root of nprocs
! and decrement it until a divisor is found.
do
np_cols
=
NINT
(
SQRT
(
REAL
(
nprocs
))),
2
,
-1
if
(
mod
(
nprocs
,
np_cols
)
==
0
)
exit
enddo
! at the end of the above loop, nprocs is always divisible by np_cols
np_rows
=
nprocs
/
np_cols
if
(
myid
==
0
)
then
print
*
print
'(a)'
,
'Generalized eigenvalue problem - REAL version'
print
*
print
'(3(a,i0))'
,
'Number of processor rows='
,
np_rows
,
', cols='
,
np_cols
,
', total='
,
nprocs
print
*
endif
!-------------------------------------------------------------------------------
! Set up BLACS context and MPI communicators
!
! The BLACS context is only necessary for using Scalapack.
!
! For ELPA, the MPI communicators along rows/cols are sufficient,
! and the grid setup may be done in an arbitrary way as long as it is
! consistent (i.e. 0<=my_prow<np_rows, 0<=my_pcol<np_cols and every
! process has a unique (my_prow,my_pcol) pair).
my_blacs_ctxt
=
mpi_comm_world
call
BLACS_Gridinit
(
my_blacs_ctxt
,
'C'
,
np_rows
,
np_cols
)
call
BLACS_Gridinfo
(
my_blacs_ctxt
,
nprow
,
npcol
,
my_prow
,
my_pcol
)
! All ELPA routines need MPI communicators for communicating within
! rows or columns of processes, these are set in get_elpa_row_col_comms.
call
get_elpa_row_col_comms
(
mpi_comm_world
,
my_prow
,
my_pcol
,
&
mpi_comm_rows
,
mpi_comm_cols
)
! Read matrix size
if
(
myid
==
0
)
then
if
(
trim
(
fmttype
)
==
'unformatted'
)
then
read
(
10
)
na
read
(
20
)
nb
else
read
(
10
,
*
)
na
read
(
20
,
*
)
nb
endif
if
(
na
/
=
nb
)
then
write
(
error_unit
,
*
)
'Error: Matrix sizes in input differ: '
,
na
,
nb
call
mpi_abort
(
mpi_comm_world
,
0
,
mpierr
)
endif
endif
call
mpi_bcast
(
na
,
1
,
mpi_integer
,
0
,
mpi_comm_world
,
mpierr
)
! Quick check for plausibility
if
(
na
<=
0
.or.
na
>
10000000
)
then
if
(
myid
==
0
)
write
(
error_unit
,
*
)
'Illegal value for matrix size: '
,
na
call
mpi_finalize
(
mpierr
)
stop
endif
if
(
myid
==
0
)
print
*
,
'Matrix size: '
,
na
! Determine the necessary size of the distributed matrices,
! we use the Scalapack tools routine NUMROC for that.
na_rows
=
numroc
(
na
,
nblk
,
my_prow
,
0
,
np_rows
)
na_cols
=
numroc
(
na
,
nblk
,
my_pcol
,
0
,
np_cols
)
! Set up a scalapack descriptor for the checks below.
! For ELPA the following restrictions hold:
! - block sizes in both directions must be identical (args 4+5)
! - first row and column of the distributed matrix must be on row/col 0/0 (args 6+7)
call
descinit
(
sc_desc
,
na
,
na
,
nblk
,
nblk
,
0
,
0
,
my_blacs_ctxt
,
na_rows
,
info
)
!-------------------------------------------------------------------------------
! Allocate matrices and set up test matrices for the eigenvalue problem
#ifdef HAVE_DETAILED_TIMINGS
call
timer
%
start
(
"set up matrix"
)
#endif
allocate
(
a
(
na_rows
,
na_cols
))
allocate
(
z
(
na_rows
,
na_cols
))
allocate
(
as
(
na_rows
,
na_cols
))
allocate
(
b
(
na_rows
,
na_cols
))
allocate
(
bs
(
na_rows
,
na_cols
))
allocate
(
tmp1
(
na_rows
,
na_cols
))
allocate
(
tmp2
(
na_rows
,
na_cols
))
allocate
(
ev
(
na
))
!-------------------------------------------------------------------------------
! Read matrices
call
read_matrix
(
10
,
fmttype
,
na
,
a
,
ubound
(
a
,
1
),
nblk
,
my_prow
,
my_pcol
,
np_rows
,
np_cols
)
call
read_matrix
(
20
,
fmttype
,
na
,
b
,
ubound
(
b
,
1
),
nblk
,
my_prow
,
my_pcol
,
np_rows
,
np_cols
)
if
(
myid
==
0
)
close
(
10
)
if
(
myid
==
0
)
close
(
20
)
nev
=
na
! all eigenvaules
! Save original matrices A and B for later accuracy checks
as
=
a
bs
=
b
#ifdef HAVE_DETAILED_TIMINGS
call
timer
%
stop
(
"set up matrix"
)
#endif
!-------------------------------------------------------------------------------
! Solve generalized problem
!
! 1. Calculate Cholesky factorization of Matrix B = U**T * U
! and invert triangular matrix U
!
! Please note: cholesky_real/invert_trm_real are not trimmed for speed.
! The only reason having them is that the Scalapack counterpart
! PDPOTRF very often fails on higher processor numbers for unknown reasons!
call
cholesky_real
(
na
,
b
,
na_rows
,
nblk
,
mpi_comm_rows
,
mpi_comm_cols
)
call
invert_trm_real
(
na
,
b
,
na_rows
,
nblk
,
mpi_comm_rows
,
mpi_comm_cols
)
ttt0
=
MPI_Wtime
()
! 2. Calculate U**-T * A * U**-1
! 2a. tmp1 = U**-T * A
call
mult_at_b_real
(
'U'
,
'L'
,
na
,
na
,
b
,
na_rows
,
a
,
na_rows
,
&
nblk
,
mpi_comm_rows
,
mpi_comm_cols
,
tmp1
,
na_rows
)
! 2b. tmp2 = tmp1**T
call
pdtran
(
na
,
na
,
1.d0
,
tmp1
,
1
,
1
,
sc_desc
,
0.d0
,
tmp2
,
1
,
1
,
sc_desc
)
! 2c. A = U**-T * tmp2 ( = U**-T * Aorig * U**-1 )
call
mult_at_b_real
(
'U'
,
'U'
,
na
,
na
,
b
,
na_rows
,
tmp2
,
na_rows
,
&
nblk
,
mpi_comm_rows
,
mpi_comm_cols
,
a
,
na_rows
)
ttt1
=
MPI_Wtime
()
if
(
myid
==
0
)
print
*
,
'Time U**-T*A*U**-1:'
,
ttt1
-
ttt0
! A is only set in the upper half, solve_evp_real needs a full matrix
! Set lower half from upper half
call
pdtran
(
na
,
na
,
1.d0
,
a
,
1
,
1
,
sc_desc
,
0.d0
,
tmp1
,
1
,
1
,
sc_desc
)
do
i
=
1
,
na_cols
! Get global column corresponding to i and number of local rows up to
! and including the diagonal, these are unchanged in A
n_col
=
indxl2g
(
i
,
nblk
,
my_pcol
,
0
,
np_cols
)
n_row
=
numroc
(
n_col
,
nblk
,
my_prow
,
0
,
np_rows
)
a
(
n_row
+1
:
na_rows
,
i
)
=
tmp1
(
n_row
+1
:
na_rows
,
i
)
enddo
! 3. Calculate eigenvalues/eigenvectors of U**-T * A * U**-1
! Eigenvectors go to tmp1
success
=
solve_evp_real
(
na
,
nev
,
a
,
na_rows
,
ev
,
tmp1
,
na_rows
,
nblk
,
&
mpi_comm_rows
,
mpi_comm_cols
)
if
(
.not.
(
success
))
then
write
(
error_unit
,
*
)
"solve_evp_complex produced an error! Aborting..."
call
MPI_ABORT
(
mpi_comm_world
,
mpierr
)
endif
if
(
myid
==
0
)
print
*
,
'Time tridiag_real :'
,
time_evp_fwd
if
(
myid
==
0
)
print
*
,
'Time solve_tridi :'
,
time_evp_solve
if
(
myid
==
0
)
print
*
,
'Time trans_ev_real:'
,
time_evp_back
! 4. Backtransform eigenvectors: Z = U**-1 * tmp1
ttt0
=
MPI_Wtime
()
! mult_at_b_real needs the transpose of U**-1, thus tmp2 = (U**-1)**T
call
pdtran
(
na
,
na
,
1.d0
,
b
,
1
,
1
,
sc_desc
,
0.d0
,
tmp2
,
1
,
1
,
sc_desc
)
call
mult_at_b_real
(
'L'
,
'N'
,
na
,
nev
,
tmp2
,
na_rows
,
tmp1
,
na_rows
,
&
nblk
,
mpi_comm_rows
,
mpi_comm_cols
,
z
,
na_rows
)
ttt1
=
MPI_Wtime
()
if
(
myid
==
0
)
print
*
,
'Time Back U**-1*Z :'
,
ttt1
-
ttt0
!-------------------------------------------------------------------------------
! Print eigenvalues
if
(
myid
==
0
)
then
do
i
=
1
,
nev
print
'(i6,g25.15)'
,
i
,
ev
(
i
)
enddo
endif
!-------------------------------------------------------------------------------
! Test correctness of result (using plain scalapack routines)
! 1. Residual (maximum of || A*Zi - B*Zi*EVi ||)
! tmp1 = A * Z
call
pdgemm
(
'N'
,
'N'
,
na
,
nev
,
na
,
1.d0
,
as
,
1
,
1
,
sc_desc
,
&
z
,
1
,
1
,
sc_desc
,
0.d0
,
tmp1
,
1
,
1
,
sc_desc
)
! tmp2 = B*Zi*EVi
call
pdgemm
(
'N'
,
'N'
,
na
,
nev
,
na
,
1.d0
,
bs
,
1
,
1
,
sc_desc
,
&
z
,
1
,
1
,
sc_desc
,
0.d0
,
tmp2
,
1
,
1
,
sc_desc
)
do
i
=
1
,
nev
call
pdscal
(
na
,
ev
(
i
),
tmp2
,
1
,
i
,
sc_desc
,
1
)
enddo
! tmp1 = A*Zi - B*Zi*EVi
tmp1
(:,:)
=
tmp1
(:,:)
-
tmp2
(:,:)
! Get maximum norm of columns of tmp1
errmax
=
0
do
i
=
1
,
nev
err
=
0
call
pdnrm2
(
na
,
err
,
tmp1
,
1
,
i
,
sc_desc
,
1
)
errmax
=
max
(
errmax
,
err
)
enddo
! Get maximum error norm over all processors
err
=
errmax
call
mpi_allreduce
(
err
,
errmax
,
1
,
MPI_REAL8
,
MPI_MAX
,
MPI_COMM_WORLD
,
mpierr
)
if
(
myid
==
0
)
print
*
if
(
myid
==
0
)
print
*
,
'Error Residual :'
,
errmax
! 2. Eigenvector orthogonality
! tmp1 = Z**T * B * Z
call
pdgemm
(
'N'
,
'N'
,
na
,
nev
,
na
,
1.d0
,
bs
,
1
,
1
,
sc_desc
,
&
z
,
1
,
1
,
sc_desc
,
0.d0
,
tmp2
,
1
,
1
,
sc_desc
)
tmp1
=
0
call
pdgemm
(
'T'
,
'N'
,
nev
,
nev
,
na
,
1.d0
,
z
,
1
,
1
,
sc_desc
,
&
tmp2
,
1
,
1
,
sc_desc
,
0.d0
,
tmp1
,
1
,
1
,
sc_desc
)
! Initialize tmp2 to unit matrix
tmp2
=
0
call
pdlaset
(
'A'
,
nev
,
nev
,
0.d0
,
1.d0
,
tmp2
,
1
,
1
,
sc_desc
)
! tmp1 = Z**T * B * Z - Unit Matrix
tmp1
(:,:)
=
tmp1
(:,:)
-
tmp2
(:,:)
! Get maximum error (max abs value in tmp1)
err
=
maxval
(
abs
(
tmp1
))
call
mpi_allreduce
(
err
,
errmax
,
1
,
MPI_REAL8
,
MPI_MAX
,
MPI_COMM_WORLD
,
mpierr
)
if
(
myid
==
0
)
print
*
,
'Error Orthogonality:'
,
errmax
#ifdef HAVE_DETAILED_TIMINGS
call
timer
%
stop
(
"program"
)
print
*
,
" "
print
*
,
"Timings program:"
call
timer
%
print
(
"program"
)
print
*
,
" "
print
*
,
"End timings program"
#endif
call
blacs_gridexit
(
my_blacs_ctxt
)
call
mpi_finalize
(
mpierr
)
end
program
read_real_gen
!-------------------------------------------------------------------------------
subroutine
read_matrix
(
iunit
,
fmttype
,
na
,
a
,
lda
,
nblk
,
my_prow
,
my_pcol
,
np_rows
,
np_cols
)
implicit
none
include
'mpif.h'
integer
,
intent
(
in
)
::
iunit
,
na
,
lda
,
nblk
,
my_prow
,
my_pcol
,
np_rows
,
np_cols
character
(
256
),
intent
(
in
)
::
fmttype
real
*
8
,
intent
(
out
)
::
a
(
lda
,
*
)
integer
i
,
j
,
lr
,
lc
,
myid
,
mpierr
integer
,
allocatable
::
l_row
(:),
l_col
(:)
real
*
8
,
allocatable
::
col
(:)
! allocate and set index arrays
allocate
(
l_row
(
na
))
allocate
(
l_col
(
na
))
! Mapping of global rows/cols to local
l_row
(:)
=
0
l_col
(:)
=
0
lr
=
0
! local row counter
lc
=
0
! local column counter
do
i
=
1
,
na
if
(
MOD
((
i
-1
)/
nblk
,
np_rows
)
==
my_prow
)
then
! row i is on local processor
lr
=
lr
+1
l_row
(
i
)
=
lr
endif
if
(
MOD
((
i
-1
)/
nblk
,
np_cols
)
==
my_pcol
)
then
! column i is on local processor
lc
=
lc
+1
l_col
(
i
)
=
lc
endif
enddo
call
mpi_comm_rank
(
mpi_comm_world
,
myid
,
mpierr
)
allocate
(
col
(
na
))
do
i
=
1
,
na