elpa2.F90 208 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
!    http://elpa.rzg.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"

module ELPA2

! Version 1.1.2, 2011-02-21

65
  use elpa_utilities
66
  USE ELPA1
67
68
  use elpa2_utilities

69

70
71
72
#ifdef HAVE_ISO_FORTRAN_ENV
  use iso_fortran_env, only : error_unit
#endif
73
74
75

  use elpa_pdgeqrf

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  implicit none

  PRIVATE ! By default, all routines contained are private

  ! The following routines are public:

  public :: solve_evp_real_2stage
  public :: solve_evp_complex_2stage

  public :: bandred_real
  public :: tridiag_band_real
  public :: trans_ev_tridi_to_band_real
  public :: trans_ev_band_to_full_real

  public :: bandred_complex
  public :: tridiag_band_complex
  public :: trans_ev_tridi_to_band_complex
  public :: trans_ev_band_to_full_complex
94
95
96
97
#ifndef HAVE_ISO_FORTRAN_ENV
  integer, parameter :: error_unit = 6
#endif

98
99
100
101
102
103
  public :: band_band_real
  public :: divide_band

  integer, public :: which_qr_decomposition = 1     ! defines, which QR-decomposition algorithm will be used
                                                    ! 0 for unblocked
                                                    ! 1 for blocked (maxrank: nblk)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
!-------------------------------------------------------------------------------

  ! The following array contains the Householder vectors of the
  ! transformation band -> tridiagonal.
  ! It is allocated and set in tridiag_band_real and used in
  ! trans_ev_tridi_to_band_real.
  ! It must be deallocated by the user after trans_ev_tridi_to_band_real!

  real*8, allocatable :: hh_trans_real(:,:)
  complex*16, allocatable :: hh_trans_complex(:,:)

!-------------------------------------------------------------------------------

  include 'mpif.h'


!******
contains
122

123
124
125
126
function solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk,        &
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

!-------------------------------------------------------------------------------
!  solve_evp_real_2stage: Solves the real eigenvalue problem with a 2 stage approach
!
!  Parameters
!
!  na          Order of matrix a
!
!  nev         Number of eigenvalues needed
!
!  a(lda,*)    Distributed matrix for which eigenvalues are to be computed.
!              Distribution is like in Scalapack.
!              The full matrix must be set (not only one half like in scalapack).
!              Destroyed on exit (upper and lower half).
!
!  lda         Leading dimension of a
!
!  ev(na)      On output: eigenvalues of a, every processor gets the complete set
!
!  q(ldq,*)    On output: Eigenvectors of a
!              Distribution is like in Scalapack.
!              Must be always dimensioned to the full size (corresponding to (na,na))
!              even if only a part of the eigenvalues is needed.
!
!  ldq         Leading dimension of q
!
!  nblk        blocksize of cyclic distribution, must be the same in both directions!
!
!  mpi_comm_rows
!  mpi_comm_cols
!              MPI-Communicators for rows/columns
!  mpi_comm_all
!              MPI-Communicator for the total processor set
!
!-------------------------------------------------------------------------------
162
163
164
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
165
   implicit none
166
167
   logical, intent(in), optional :: useQR
   logical                       :: useQRActual, useQREnvironment
Andreas Marek's avatar
Andreas Marek committed
168
   integer, intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
169
   integer                       :: THIS_REAL_ELPA_KERNEL
170

171
   integer, intent(in)           :: na, nev, lda, ldq, mpi_comm_rows, &
172
                                    mpi_comm_cols, mpi_comm_all
173
   integer, intent(inout)        :: nblk
174
   real*8, intent(inout)         :: a(lda,*), ev(na), q(ldq,*)
175

176
177
178
179
180
181
   integer                       :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer                       :: nbw, num_blocks
   real*8, allocatable           :: tmat(:,:,:), e(:)
   real*8                        :: ttt0, ttt1, ttts
   integer                       :: i
   logical                       :: success
182
183
   logical, save                 :: firstCall = .true.
   logical                       :: wantDebug
184

185
186
187
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_real_2stage")
#endif
188
189
190
191
192
193
194
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
195

196
197
198
199
200
201
202
203

   wantDebug = .false.
   if (firstCall) then
     ! are debug messages desired?
     wantDebug = debug_messages_via_environment_variable()
     firstCall = .false.
   endif

204
205
   success = .true.

206
207
208
209
210
211
212
213
214
215
216
217
218
   useQRActual = .false.

   ! set usage of qr decomposition via API call
   if (present(useQR)) then
     if (useQR) useQRActual = .true.
     if (.not.(useQR)) useQRACtual = .false.
   endif

   ! overwrite this with environment variable settings
   if (qr_decomposition_via_environment_variable(useQREnvironment)) then
     useQRActual = useQREnvironment
   endif

219
   if (useQRActual) then
220
221
222
223
     if (mod(na,nblk) .ne. 0) then
       if (wantDebug) then
         write(error_unit,*) "solve_evp_real_2stage: QR-decomposition: blocksize does not fit with matrixsize"
       endif
Andreas Marek's avatar
Andreas Marek committed
224
225
     print *, "Do not use QR-decomposition for this matrix and blocksize."
     call mpi_abort(mpi_comm_world,0,mpierr)
226
     endif
227
228
   endif

229

230
231
232
   if (present(THIS_REAL_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
233
   else
234

235
236
237
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
Andreas Marek's avatar
Andreas Marek committed
238
239
240
241
   endif

   ! check whether choosen kernel is allowed
   if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then
242

243
244
245
246
247
248
249
250
251
252
253
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
254

255
256
257
258
       write(error_unit,*) " "
       write(error_unit,*) "The defaul kernel REAL_ELPA_KERNEL_GENERIC will be used !"
     endif
     THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
259
260

   endif
261
262
263
264
265
266
267
268
269
270
271
272
273

   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

   nbw = (31/nblk+1)*nblk

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
274
   call bandred_real(na, a, lda, nblk, nbw, mpi_comm_rows, mpi_comm_cols, &
275
                     tmat, wantDebug, success, useQRActual)
276
   if (.not.(success)) return
277
   ttt1 = MPI_Wtime()
278
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
279
      write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
280
281
282
283
284
285

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
Andreas Marek's avatar
Andreas Marek committed
286
287
   call tridiag_band_real(na, nbw, nblk, a, lda, ev, e, mpi_comm_rows, &
                          mpi_comm_cols, mpi_comm_all)
288
   ttt1 = MPI_Wtime()
289
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
290
      write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
291
292
293
294
295
296
297
298
299
300

   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)

   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
301
   call solve_tridi(na, nev, ev, e, q, ldq, nblk, mpi_comm_rows,  &
302
                    mpi_comm_cols, wantDebug, success)
303
304
   if (.not.(success)) return

305
   ttt1 = MPI_Wtime()
306
307
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
308
309
310
311
312
313
314
315
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   deallocate(e)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
316
   call trans_ev_tridi_to_band_real(na, nev, nblk, nbw, q, ldq, mpi_comm_rows, &
317
                                    mpi_comm_cols, wantDebug, success, THIS_REAL_ELPA_KERNEL)
318
   if (.not.(success)) return
319
   ttt1 = MPI_Wtime()
320
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
321
      write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
322
323
324
325
326
327
328

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_real)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
329
330
   call trans_ev_band_to_full_real(na, nev, nblk, nbw, a, lda, tmat, q, ldq, mpi_comm_rows, &
                                   mpi_comm_cols, useQRActual)
331
   ttt1 = MPI_Wtime()
332
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
333
      write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
334
335
336
   time_evp_back = ttt1-ttts

   deallocate(tmat)
337
338
339
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_real_2stage")
#endif
340
341
1  format(a,f10.3)

342
end function solve_evp_real_2stage
343
344
345
346
347

!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------

348
function solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, &
Andreas Marek's avatar
Andreas Marek committed
349
                                    mpi_comm_rows, mpi_comm_cols,      &
350
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

!-------------------------------------------------------------------------------
!  solve_evp_complex_2stage: Solves the complex eigenvalue problem with a 2 stage approach
!
!  Parameters
!
!  na          Order of matrix a
!
!  nev         Number of eigenvalues needed
!
!  a(lda,*)    Distributed matrix for which eigenvalues are to be computed.
!              Distribution is like in Scalapack.
!              The full matrix must be set (not only one half like in scalapack).
!              Destroyed on exit (upper and lower half).
!
!  lda         Leading dimension of a
!
!  ev(na)      On output: eigenvalues of a, every processor gets the complete set
!
!  q(ldq,*)    On output: Eigenvectors of a
!              Distribution is like in Scalapack.
!              Must be always dimensioned to the full size (corresponding to (na,na))
!              even if only a part of the eigenvalues is needed.
!
!  ldq         Leading dimension of q
!
!  nblk        blocksize of cyclic distribution, must be the same in both directions!
!
!  mpi_comm_rows
!  mpi_comm_cols
!              MPI-Communicators for rows/columns
!  mpi_comm_all
!              MPI-Communicator for the total processor set
!
!-------------------------------------------------------------------------------
386
387
388
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
389
   implicit none
Andreas Marek's avatar
Andreas Marek committed
390
391
   integer, intent(in), optional :: THIS_COMPLEX_ELPA_KERNEL_API
   integer                       :: THIS_COMPLEX_ELPA_KERNEL
392
393
394
395
396
397
398
399
400
401
   integer, intent(in)           :: na, nev, lda, ldq, nblk, mpi_comm_rows, mpi_comm_cols, mpi_comm_all
   complex*16, intent(inout)     :: a(lda,*), q(ldq,*)
   real*8, intent(inout)         :: ev(na)

   integer                       :: my_prow, my_pcol, np_rows, np_cols, mpierr, my_pe, n_pes
   integer                       :: l_cols, l_rows, l_cols_nev, nbw, num_blocks
   complex*16, allocatable       :: tmat(:,:,:)
   real*8, allocatable           :: q_real(:,:), e(:)
   real*8                        :: ttt0, ttt1, ttts
   integer                       :: i
402

403
404
405
   logical                       :: success, wantDebug
   logical, save                 :: firstCall = .true.

406
407
408
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_complex_2stage")
#endif
Andreas Marek's avatar
Andreas Marek committed
409
410
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)
411
412
413
414
415

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
416

417
418
419
420
421
422
423
424
   wantDebug = .false.
   if (firstCall) then
     ! are debug messages desired?
     wantDebug = debug_messages_via_environment_variable()
     firstCall = .false.
   endif


425
426
   success = .true.

427
428
429
   if (present(THIS_COMPLEX_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_COMPLEX_ELPA_KERNEL = THIS_COMPLEX_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
430
   else
431
432
433
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_COMPLEX_ELPA_KERNEL = get_actual_complex_kernel()
Andreas Marek's avatar
Andreas Marek committed
434
   endif
435

Andreas Marek's avatar
Andreas Marek committed
436
437
   ! check whether choosen kernel is allowed
   if (check_allowed_complex_kernels(THIS_COMPLEX_ELPA_KERNEL)) then
438

439
440
441
442
443
444
445
446
447
448
449
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",COMPLEX_ELPA_KERNEL_NAMES(THIS_COMPLEX_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(COMPLEX_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_COMPLEX_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) COMPLEX_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
450

451
452
453
454
       write(error_unit,*) " "
       write(error_unit,*) "The defaul kernel COMPLEX_ELPA_KERNEL_GENERIC will be used !"
     endif
     THIS_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
455
456
!      call MPI_ABORT(mpi_comm_all, mpierr)
   endif
457
458
459
460
461
462
463
464
465
466
467
468
   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

   nbw = (31/nblk+1)*nblk

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
469
   call bandred_complex(na, a, lda, nblk, nbw, mpi_comm_rows, mpi_comm_cols, &
470
                        tmat, wantDebug, success)
471
472
473
474
475
476
   if (.not.(success)) then
#ifdef HAVE_DETAILED_TIMINGS
     call timer%stop()
#endif
     return
   endif
477
   ttt1 = MPI_Wtime()
478
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
479
      write(error_unit,*) 'Time bandred_complex               :',ttt1-ttt0
480
481
482
483
484
485
486
487

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
   call tridiag_band_complex(na, nbw, nblk, a, lda, ev, e, mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
   ttt1 = MPI_Wtime()
488
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
489
      write(error_unit,*) 'Time tridiag_band_complex          :',ttt1-ttt0
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)

   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   l_rows = local_index(na, my_prow, np_rows, nblk, -1) ! Local rows of a and q
   l_cols = local_index(na, my_pcol, np_cols, nblk, -1) ! Local columns of q
   l_cols_nev = local_index(nev, my_pcol, np_cols, nblk, -1) ! Local columns corresponding to nev

   allocate(q_real(l_rows,l_cols))

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
506
   call solve_tridi(na, nev, ev, e, q_real, ubound(q_real,1), nblk, &
507
                    mpi_comm_rows, mpi_comm_cols, wantDebug, success)
508
509
   if (.not.(success)) return

510
   ttt1 = MPI_Wtime()
511
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times)  &
512
      write(error_unit,*) 'Time solve_tridi                   :',ttt1-ttt0
513
514
515
516
517
518
519
520
521
522
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   q(1:l_rows,1:l_cols_nev) = q_real(1:l_rows,1:l_cols_nev)

   deallocate(e, q_real)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
Andreas Marek's avatar
Andreas Marek committed
523
   call trans_ev_tridi_to_band_complex(na, nev, nblk, nbw, q, ldq,  &
524
                                       mpi_comm_rows, mpi_comm_cols,&
525
                                       wantDebug, success,THIS_COMPLEX_ELPA_KERNEL)
526
   if (.not.(success)) return
527
   ttt1 = MPI_Wtime()
528
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
529
      write(error_unit,*) 'Time trans_ev_tridi_to_band_complex:',ttt1-ttt0
530
531
532
533
534
535
536
537
538

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_complex)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
   call trans_ev_band_to_full_complex(na, nev, nblk, nbw, a, lda, tmat, q, ldq, mpi_comm_rows, mpi_comm_cols)
   ttt1 = MPI_Wtime()
539
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
540
      write(error_unit,*) 'Time trans_ev_band_to_full_complex :',ttt1-ttt0
541
542
543
   time_evp_back = ttt1-ttts

   deallocate(tmat)
544
545
546
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_complex_2stage")
#endif
547
548
549

1  format(a,f10.3)

550
end function solve_evp_complex_2stage
551
552
553

!-------------------------------------------------------------------------------

554
subroutine bandred_real(na, a, lda, nblk, nbw, mpi_comm_rows, mpi_comm_cols, &
555
                        tmat, wantDebug, success, useQR)
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

!-------------------------------------------------------------------------------
!  bandred_real: Reduces a distributed symmetric matrix to band form
!
!  Parameters
!
!  na          Order of matrix
!
!  a(lda,*)    Distributed matrix which should be reduced.
!              Distribution is like in Scalapack.
!              Opposed to Scalapack, a(:,:) must be set completely (upper and lower half)
!              a(:,:) is overwritten on exit with the band and the Householder vectors
!              in the upper half.
!
!  lda         Leading dimension of a
!
!  nblk        blocksize of cyclic distribution, must be the same in both directions!
!
!  nbw         semi bandwith of output matrix
!
!  mpi_comm_rows
!  mpi_comm_cols
!              MPI-Communicators for rows/columns
!
!  tmat(nbw,nbw,num_blocks)    where num_blocks = (na-1)/nbw + 1
!              Factors for the Householder vectors (returned), needed for back transformation
!
!-------------------------------------------------------------------------------
584
585
586
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
587
   implicit none
588
   
589
590
   integer             :: na, lda, nblk, nbw, mpi_comm_rows, mpi_comm_cols
   real*8              :: a(lda,*), tmat(nbw,nbw,*)
591

592
593
594
595
596
   integer             :: my_prow, my_pcol, np_rows, np_cols, mpierr
   integer             :: l_cols, l_rows
   integer             :: i, j, lcs, lce, lre, lc, lr, cur_pcol, n_cols, nrow
   integer             :: istep, ncol, lch, lcx, nlc
   integer             :: tile_size, l_rows_tile, l_cols_tile
597

598
   real*8              :: vnorm2, xf, aux1(nbw), aux2(nbw), vrl, tau, vav(nbw,nbw)
599

600
   real*8, allocatable :: tmp(:,:), vr(:), vmr(:,:), umc(:,:)
601

602
603
604
605
606
   ! needed for blocked QR decomposition
   integer             :: PQRPARAM(11), work_size
   real*8              :: dwork_size(1)
   real*8, allocatable :: work_blocked(:), tauvector(:), blockheuristic(:)

607
   logical, intent(in) :: wantDebug
608
609
   logical, intent(out):: success

610
611
   logical, intent(in) :: useQR

612
613
614
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("bandred_real")
#endif
615
616
617
618
   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
619
   success = .true.
620
621


622
   ! Semibandwith nbw must be a multiple of blocksize nblk
623
624
   if (mod(nbw,nblk)/=0) then
     if (my_prow==0 .and. my_pcol==0) then
625
626
627
628
       if (wantDebug) then
         write(error_unit,*) 'ELPA2_bandred_real: ERROR: nbw=',nbw,', nblk=',nblk
         write(error_unit,*) 'ELPA2_bandred_real: ELPA2 works only for nbw==n*nblk'
       endif
629
       success = .false.
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
630
       return
631
     endif
632
633
634
635
636
637
638
639
640
641
   endif

   ! Matrix is split into tiles; work is done only for tiles on the diagonal or above

   tile_size = nblk*least_common_multiple(np_rows,np_cols) ! minimum global tile size
   tile_size = ((128*max(np_rows,np_cols)-1)/tile_size+1)*tile_size ! make local tiles at least 128 wide

   l_rows_tile = tile_size/np_rows ! local rows of a tile
   l_cols_tile = tile_size/np_cols ! local cols of a tile

642
643
644
645
646
647
648
   if (useQR) then
     if (which_qr_decomposition == 1) then
       call qr_pqrparam_init(pqrparam,    nblk,'M',0,   nblk,'M',0,   nblk,'M',1,'s')
       allocate(tauvector(na))
       allocate(blockheuristic(nblk))
       l_rows = local_index(na, my_prow, np_rows, nblk, -1)
       allocate(vmr(max(l_rows,1),na))
649

650
       call qr_pdgeqrf_2dcomm(a, lda, vmr, max(l_rows,1), tauvector(1), tmat(1,1,1), nbw, dwork_size(1), -1, na, &
651
                             nbw, nblk, nblk, na, na, 1, 0, PQRPARAM, mpi_comm_rows, mpi_comm_cols, blockheuristic)
652
653
       work_size = dwork_size(1)
       allocate(work_blocked(work_size))
654

655
656
657
       work_blocked = 0.0d0
       deallocate(vmr)
     endif
658
659
   endif

660
661
   do istep = (na-1)/nbw, 1, -1

662
     n_cols = MIN(na,(istep+1)*nbw) - istep*nbw ! Number of columns in current step
663

664
665
666
     ! Number of local columns/rows of remaining matrix
     l_cols = local_index(istep*nbw, my_pcol, np_cols, nblk, -1)
     l_rows = local_index(istep*nbw, my_prow, np_rows, nblk, -1)
667

668
     ! Allocate vmr and umc to their exact sizes so that they can be used in bcasts and reduces
669

670
671
     allocate(vmr(max(l_rows,1),2*n_cols))
     allocate(umc(max(l_cols,1),2*n_cols))
672

673
     allocate(vr(l_rows+1))
674

675
676
677
     vmr(1:l_rows,1:n_cols) = 0.
     vr(:) = 0
     tmat(:,:,istep) = 0
678

679
     ! Reduce current block to lower triangular form
680
681
682
683
684
685
686
687
688
689

     if (useQR) then
       if (which_qr_decomposition == 1) then
         call qr_pdgeqrf_2dcomm(a, lda, vmr, max(l_rows,1), tauvector(1), &
                                  tmat(1,1,istep), nbw, work_blocked,       &
                                  work_size, na, n_cols, nblk, nblk,        &
                                  istep*nbw+n_cols-nbw, istep*nbw+n_cols, 1,&
                                  0, PQRPARAM, mpi_comm_rows, mpi_comm_cols,&
                                  blockheuristic)
       endif
690
     else
691

692
       do lc = n_cols, 1, -1
693

694
695
         ncol = istep*nbw + lc ! absolute column number of householder vector
         nrow = ncol - nbw ! Absolute number of pivot row
696

697
698
         lr  = local_index(nrow, my_prow, np_rows, nblk, -1) ! current row length
         lch = local_index(ncol, my_pcol, np_cols, nblk, -1) ! HV local column number
699

700
         tau = 0
701

702
         if (nrow == 1) exit ! Nothing to do
703

704
         cur_pcol = pcol(ncol, nblk, np_cols) ! Processor column owning current block
705

706
         if (my_pcol==cur_pcol) then
707

708
709
           ! Get vector to be transformed; distribute last element and norm of
           ! remaining elements to all procs in current column
710

711
           vr(1:lr) = a(1:lr,lch) ! vector to be transformed
712

713
           if (my_prow==prow(nrow, nblk, np_rows)) then
714
715
716
717
718
719
             aux1(1) = dot_product(vr(1:lr-1),vr(1:lr-1))
             aux1(2) = vr(lr)
           else
             aux1(1) = dot_product(vr(1:lr),vr(1:lr))
             aux1(2) = 0.
           endif
720

721
           call mpi_allreduce(aux1,aux2,2,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
722

723
724
           vnorm2 = aux2(1)
           vrl    = aux2(2)
725

726
           ! Householder transformation
727

728
           call hh_transform_real(vrl, vnorm2, xf, tau)
729

730
           ! Scale vr and store Householder vector for back transformation
731

732
           vr(1:lr) = vr(1:lr) * xf
733
           if (my_prow==prow(nrow, nblk, np_rows)) then
734
735
736
737
738
             a(1:lr-1,lch) = vr(1:lr-1)
             a(lr,lch) = vrl
             vr(lr) = 1.
           else
             a(1:lr,lch) = vr(1:lr)
739
           endif
740

741
         endif
742

743
         ! Broadcast Householder vector and tau along columns
744

745
746
747
748
749
         vr(lr+1) = tau
         call MPI_Bcast(vr,lr+1,MPI_REAL8,cur_pcol,mpi_comm_cols,mpierr)
         vmr(1:lr,lc) = vr(1:lr)
         tau = vr(lr+1)
         tmat(lc,lc,istep) = tau ! Store tau in diagonal of tmat
750

751
752
         ! Transform remaining columns in current block with Householder vector
         ! Local dot product
753

754
         aux1 = 0
755

756
757
758
759
760
761
762
763
         nlc = 0 ! number of local columns
         do j=1,lc-1
           lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
           if (lcx>0) then
             nlc = nlc+1
             if (lr>0) aux1(nlc) = dot_product(vr(1:lr),a(1:lr,lcx))
           endif
         enddo
764

765
766
         ! Get global dot products
         if (nlc>0) call mpi_allreduce(aux1,aux2,nlc,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
767

768
         ! Transform
769

770
771
772
773
774
775
776
777
778
779
         nlc = 0
         do j=1,lc-1
           lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
           if (lcx>0) then
             nlc = nlc+1
             a(1:lr,lcx) = a(1:lr,lcx) - tau*aux2(nlc)*vr(1:lr)
           endif
         enddo

       enddo
780

781
782
       ! Calculate scalar products of stored Householder vectors.
       ! This can be done in different ways, we use dsyrk
783

784
785
       vav = 0
       if (l_rows>0) &
786
           call dsyrk('U','T',n_cols,l_rows,1.d0,vmr,ubound(vmr,1),0.d0,vav,ubound(vav,1))
787
       call symm_matrix_allreduce(n_cols,vav,ubound(vav,1),mpi_comm_rows)
788

789
       ! Calculate triangular matrix T for block Householder Transformation
790

791
792
793
794
795
796
797
       do lc=n_cols,1,-1
         tau = tmat(lc,lc,istep)
         if (lc<n_cols) then
           call dtrmv('U','T','N',n_cols-lc,tmat(lc+1,lc+1,istep),ubound(tmat,1),vav(lc+1,lc),1)
           tmat(lc,lc+1:n_cols,istep) = -tau * vav(lc+1:n_cols,lc)
         endif
       enddo
798
     endif
799

800
    ! Transpose vmr -> vmc (stored in umc, second half)
801

802
    call elpa_transpose_vectors  (vmr, ubound(vmr,1), mpi_comm_rows, &
803
804
805
                                    umc(1,n_cols+1), ubound(umc,1), mpi_comm_cols, &
                                    1, istep*nbw, n_cols, nblk)

806
807
808
809
    ! Calculate umc = A**T * vmr
    ! Note that the distributed A has to be transposed
    ! Opposed to direct tridiagonalization there is no need to use the cache locality
    ! of the tiles, so we can use strips of the matrix
810

811
812
813
814
    umc(1:l_cols,1:n_cols) = 0.d0
    vmr(1:l_rows,n_cols+1:2*n_cols) = 0
    if (l_cols>0 .and. l_rows>0) then
      do i=0,(istep*nbw-1)/tile_size
815

816
817
818
        lcs = i*l_cols_tile+1
        lce = min(l_cols,(i+1)*l_cols_tile)
        if (lce<lcs) cycle
819

820
821
822
        lre = min(l_rows,(i+1)*l_rows_tile)
        call DGEMM('T','N',lce-lcs+1,n_cols,lre,1.d0,a(1,lcs),ubound(a,1), &
                     vmr,ubound(vmr,1),1.d0,umc(lcs,1),ubound(umc,1))
823

824
825
826
827
828
829
        if (i==0) cycle
        lre = min(l_rows,i*l_rows_tile)
        call DGEMM('N','N',lre,n_cols,lce-lcs+1,1.d0,a(1,lcs),lda, &
                     umc(lcs,n_cols+1),ubound(umc,1),1.d0,vmr(1,n_cols+1),ubound(vmr,1))
      enddo
    endif
830

831
832
833
834
    ! Sum up all ur(:) parts along rows and add them to the uc(:) parts
    ! on the processors containing the diagonal
    ! This is only necessary if ur has been calculated, i.e. if the
    ! global tile size is smaller than the global remaining matrix
835

836
837
838
839
840
    if (tile_size < istep*nbw) then
       call elpa_reduce_add_vectors  (vmr(1,n_cols+1),ubound(vmr,1),mpi_comm_rows, &
                                      umc, ubound(umc,1), mpi_comm_cols, &
                                      istep*nbw, n_cols, nblk)
    endif
841

842
843
844
845
846
847
    if (l_cols>0) then
      allocate(tmp(l_cols,n_cols))
      call mpi_allreduce(umc,tmp,l_cols*n_cols,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
      umc(1:l_cols,1:n_cols) = tmp(1:l_cols,1:n_cols)
      deallocate(tmp)
    endif
848

849
    ! U = U * Tmat**T
850

851
    call dtrmm('Right','Upper','Trans','Nonunit',l_cols,n_cols,1.d0,tmat(1,1,istep),ubound(tmat,1),umc,ubound(umc,1))
852

853
    ! VAV = Tmat * V**T * A * V * Tmat**T = (U*Tmat**T)**T * V * Tmat**T
854

855
856
    call dgemm('T','N',n_cols,n_cols,l_cols,1.d0,umc,ubound(umc,1),umc(1,n_cols+1),ubound(umc,1),0.d0,vav,ubound(vav,1))
    call dtrmm('Right','Upper','Trans','Nonunit',n_cols,n_cols,1.d0,tmat(1,1,istep),ubound(tmat,1),vav,ubound(vav,1))
857

858
    call symm_matrix_allreduce(n_cols,vav,ubound(vav,1),mpi_comm_cols)
859

860
861
    ! U = U - 0.5 * V * VAV
    call dgemm('N','N',l_cols,n_cols,n_cols,-0.5d0,umc(1,n_cols+1),ubound(umc,1),vav,ubound(vav,1),1.d0,umc,ubound(umc,1))
862

863
    ! Transpose umc -> umr (stored in vmr, second half)
864

865
866
867
    call elpa_transpose_vectors  (umc, ubound(umc,1), mpi_comm_cols, &
                                   vmr(1,n_cols+1), ubound(vmr,1), mpi_comm_rows, &
                                   1, istep*nbw, n_cols, nblk)
868

869
    ! A = A - V*U**T - U*V**T
870

871
872
873
874
875
876
877
878
879
    do i=0,(istep*nbw-1)/tile_size
      lcs = i*l_cols_tile+1
      lce = min(l_cols,(i+1)*l_cols_tile)
      lre = min(l_rows,(i+1)*l_rows_tile)
      if (lce<lcs .or. lre<1) cycle
      call dgemm('N','T',lre,lce-lcs+1,2*n_cols,-1.d0, &
                  vmr,ubound(vmr,1),umc(lcs,1),ubound(umc,1), &
                  1.d0,a(1,lcs),lda)
    enddo
880

881
    deallocate(vmr, umc, vr)
882

883
  enddo
884

885
886
887
888
889
  if (useQR) then
    if (which_qr_decomposition == 1) then
      deallocate(work_blocked)
      deallocate(tauvector)
    endif
890
  endif
891

Andreas Marek's avatar
Andreas Marek committed
892
893
894
#ifdef HAVE_DETAILED_TIMINGS
  call timer%stop("bandred_real")
#endif
895
896
897
898
899
900
901
902
903
904
905
end subroutine bandred_real

!-------------------------------------------------------------------------------

subroutine symm_matrix_allreduce(n,a,lda,comm)

!-------------------------------------------------------------------------------
!  symm_matrix_allreduce: Does an mpi_allreduce for a symmetric matrix A.
!  On entry, only the upper half of A needs to be set
!  On exit, the complete matrix is set
!-------------------------------------------------------------------------------
Andreas Marek's avatar
Andreas Marek committed
906
907
908
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
909
   implicit none
Andreas Marek's avatar
Andreas Marek committed
910
911
912
913
914
   integer  :: n, lda, comm
   real*8   :: a(lda,*)

   integer  :: i, nc, mpierr
   real*8   :: h1(n*n), h2(n*n)
915

Andreas Marek's avatar
Andreas Marek committed
916
917
918
#ifdef HAVE_DETAILED_TIMINGS
  call timer%start("symm_matrix_allreduce")
#endif
919
920
921

   nc = 0
   do i=1,n
922
923
     h1(nc+1:nc+i) = a(1:i,i)
     nc = nc+i
924
925
926
927
928
929
   enddo

   call mpi_allreduce(h1,h2,nc,MPI_REAL8,MPI_SUM,comm,mpierr)

   nc = 0
   do i=1,n
930
931
932
     a(1:i,i) = h2(nc+1:nc+i)
     a(i,1:i-1) = a(1:i-1,i)
     nc = nc+i
933
934
   enddo

Andreas Marek's avatar
Andreas Marek committed
935
936
937
938
#ifdef HAVE_DETAILED_TIMINGS
  call timer%stop("symm_matrix_allreduce")
#endif

939
940
941
942
end subroutine symm_matrix_allreduce

!-------------------------------------------------------------------------------

943
944
subroutine trans_ev_band_to_full_real(na, nqc, nblk, nbw, a, lda, tmat, q, ldq, mpi_comm_rows, &
                                      mpi_comm_cols, useQR)
945

Andreas Marek's avatar
Andreas Marek committed
946

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
!-------------------------------------------------------------------------------
!  trans_ev_band_to_full_real:
!  Transforms the eigenvectors of a band matrix back to the eigenvectors of the original matrix
!
!  Parameters
!
!  na          Order of matrix a, number of rows of matrix q
!
!  nqc         Number of columns of matrix q
!
!  nblk        blocksize of cyclic distribution, must be the same in both directions!
!
!  nbw         semi bandwith
!
!  a(lda,*)    Matrix containing the Householder vectors (i.e. matrix a after bandred_real)
!              Distribution is like in Scalapack.
!
!  lda         Leading dimension of a
!
!  tmat(nbw,nbw,.) Factors returned by bandred_real
!
!  q           On input: Eigenvectors of band matrix
!              On output: Transformed eigenvectors
!              Distribution is like in Scalapack.
!
!  ldq         Leading dimension of q
!
!  mpi_comm_rows
!  mpi_comm_cols
!              MPI-Communicators for rows/columns
!
!-------------------------------------------------------------------------------
979
980
981
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
982
983
   implicit none

984
985
   integer              :: na, nqc, lda, ldq, nblk, nbw, mpi_comm_rows, mpi_comm_cols
   real*8               :: a(lda,*), q(ldq,*), tmat(nbw, nbw, *)
986

987
988
989
990
991
   integer              :: my_prow, my_pcol, np_rows, np_cols, mpierr
   integer              :: max_blocks_row, max_blocks_col, max_local_rows, &
                           max_local_cols
   integer              :: l_cols, l_rows, l_colh, n_cols
   integer              :: istep, lc, ncol, nrow, nb, ns
992

993
   real*8, allocatable  :: tmp1(:), tmp2(:), hvb(:), hvm(:,:)
994

995
   integer              :: i
996
997

   real*8, allocatable  :: tmat_complete(:,:), t_tmp(:,:), t_tmp2(:,:)
998
999
1000
   integer              :: cwy_blocking, t_blocking, t_cols, t_rows
   logical, intent(in)  :: useQR

1001
1002
1003
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("trans_ev_band_to_full_real")
#endif
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)

   max_blocks_row = ((na -1)/nblk)/np_rows + 1  ! Rows of A
   max_blocks_col = ((nqc-1)/nblk)/np_cols + 1  ! Columns of q!

   max_local_rows = max_blocks_row*nblk
   max_local_cols = max_blocks_col*nblk

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
   if (useQR) then
     t_blocking = 2 ! number of matrices T (tmat) which are aggregated into a new (larger) T matrix (tmat_complete) and applied at once
     cwy_blocking = t_blocking * nbw

     allocate(tmp1(max_local_cols*cwy_blocking))
     allocate(tmp2(max_local_cols*cwy_blocking))
     allocate(hvb(max_local_rows*cwy_blocking))
     allocate(hvm(max_local_rows,cwy_blocking))
     allocate(tmat_complete(cwy_blocking,cwy_blocking))
     allocate(t_tmp(cwy_blocking,nbw))
     allocate(t_tmp2(cwy_blocking,nbw))
   else
     allocate(tmp1(max_local_cols*nbw))
     allocate(tmp2(max_local_cols*nbw))
     allocate(hvb(max_local_rows*nbw))
     allocate(hvm(max_local_rows,nbw))
   endif
1033
1034
1035
1036
1037
1038

   hvm = 0   ! Must be set to 0 !!!
   hvb = 0   ! Safety only

   l_cols = local_index(nqc, my_pcol, np_cols, nblk, -1) ! Local columns of q

1039
   if (useQR) then
1040

1041
1042
     do istep=1,((na-1)/nbw-1)/t_blocking + 1
       n_cols = MIN(na,istep*cwy_blocking+nbw) - (istep-1)*cwy_blocking - nbw ! Number of columns in current step
1043

1044
       ! Broadcast all Householder vectors for current step compressed in hvb
1045

1046
1047
       nb = 0
       ns = 0
1048

1049
1050
1051
       do lc = 1, n_cols
         ncol = (istep-1)*cwy_blocking + nbw + lc ! absolute column number of householder vector
         nrow = ncol - nbw ! absolute number of pivot row
1052

1053
1054
         l_rows = local_index(nrow-1, my_prow, np_rows, nblk, -1) ! row length for bcast
         l_colh = local_index(ncol  , my_pcol, np_cols, nblk, -1) ! HV local column number
1055

1056
         if (my_pcol==pcol(ncol, nblk, np_cols)) hvb(nb+1:nb+l_rows) = a(1:l_rows,l_colh)
1057

1058
         nb = nb+l_rows
1059

1060
         if (lc==n_cols .or. mod(ncol,nblk)==0) then
1061
           call MPI_Bcast(hvb(ns+1),nb-ns,MPI_REAL8,pcol(ncol, nblk, np_cols),mpi_comm_cols,mpierr)
1062
1063
1064
           ns = nb
         endif
       enddo
1065

1066
       ! Expand compressed Householder vectors into matrix hvm
1067

1068
1069
1070
1071
       nb = 0
       do lc = 1, n_cols
         nrow = (istep-1)*cwy_blocking + lc ! absolute number of pivot row
         l_rows = local_index(nrow-1, my_prow, np_rows, nblk, -1) ! row length for bcast
1072

1073
         hvm(1:l_rows,lc) = hvb(nb+1:nb+l_rows)
1074
         if (my_prow==prow(nrow, nblk, np_rows)) hvm(l_rows+1,lc) = 1.
1075

1076
1077
         nb = nb+l_rows
       enddo
1078

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
       l_rows = local_index(MIN(na,(istep+1)*cwy_blocking), my_prow, np_rows, nblk, -1)

       ! compute tmat2 out of tmat(:,:,)
       tmat_complete = 0
       do i = 1, t_blocking
         t_cols = MIN(nbw, n_cols - (i-1)*nbw)
         if (t_cols <= 0) exit
         t_rows = (i - 1) * nbw
         tmat_complete(t_rows+1:t_rows+t_cols,t_rows+1:t_rows+t_cols) = tmat(1:t_cols,1:t_cols,(istep-1)*t_blocking + i)
         if (i > 1) then
           call dgemm('T', 'N', t_rows, t_cols, l_rows, 1.d0, hvm(1,1), max_local_rows, hvm(1,(i-1)*nbw+1), &
1090
                     max_local_rows, 0.d0, t_tmp, cwy_blocking)
1091
1092
1093
1094
1095
1096
           call mpi_allreduce(t_tmp,t_tmp2,cwy_blocking*nbw,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
           call dtrmm('L','U','N','N',t_rows,t_cols,1.0d0,tmat_complete,cwy_blocking,t_tmp2,cwy_blocking)
           call dtrmm('R','U','N','N',t_rows,t_cols,-1.0d0,tmat_complete(t_rows+1,t_rows+1),cwy_blocking,t_tmp2,cwy_blocking)
           tmat_complete(1:t_rows,t_rows+1:t_rows+t_cols) = t_tmp2(1:t_rows,1:t_cols)
         endif
       enddo
1097

1098
       ! Q = Q - V * T**T * V**T * Q
1099

1100
       if (l_rows>0) then
1101
1102
         call dgemm('T','N',n_cols,l_cols,l_rows,1.d0,hvm,ubound(hvm,1), &
                    q,ldq,0.d0,tmp1,n_cols)
1103
       else
1104
         tmp1(1:l_cols*n_cols) = 0
1105
1106
1107
1108
1109
       endif
       call mpi_allreduce(tmp1,tmp2,n_cols*l_cols,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)


       if (l_rows>0) then
1110
1111
         call dtrmm('L','U','T','N',n_cols,l_cols,1.0d0,tmat_complete,cwy_blocking,tmp2,n_cols)
         call dgemm('N','N',l_rows,l_cols,n_cols,-1.d0,hvm,ubound(hvm,1), tmp2,n_cols,1.d0,q,ldq)
1112
1113
       endif
     enddo
1114