legacy_single_complex_gpu.F90 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
#include "config-f90.h"
!>
!> Fortran test programm to demonstrates the use of
!> ELPA 1 complex case library.
!> If "HAVE_REDIRECT" was defined at build time
!> the stdout and stderr output of each MPI task
!> can be redirected to files if the environment
!> variable "REDIRECT_ELPA_TEST_OUTPUT" is set
!> to "true".
!>
!> By calling executable [arg1] [arg2] [arg3] [arg4]
!> one can define the size (arg1), the number of
!> Eigenvectors to compute (arg2), and the blocking (arg3).
!> If these values are not set default values (4000, 1500, 16)
!> are choosen.
!> If these values are set the 4th argument can be
!> "output", which specifies that the EV's are written to
!> an ascii file.
!>
program test_complex_gpu_version_single_precision

!-------------------------------------------------------------------------------
! Standard eigenvalue problem - COMPLEX version
!
! This program demonstrates the use of the ELPA module
! together with standard scalapack routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".
!-------------------------------------------------------------------------------
75
   use elpa1
76
77
   use elpa_utilities, only : error_unit

78
   use test_util
79
80
81
82
83
   use test_read_input_parameters
   use test_check_correctness
   use test_setup_mpi
   use test_blacs_infrastructure
   use test_prepare_matrix
84
#ifdef HAVE_REDIRECT
85
   use test_redirect
86
87
#endif

88
  use test_output_type
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
   implicit none

   !-------------------------------------------------------------------------------
   ! Please set system size parameters below!
   ! na:   System size
   ! nev:  Number of eigenvectors to be calculated
   ! nblk: Blocking factor in block cyclic distribution
   !-------------------------------------------------------------------------------

   integer(kind=ik)              :: nblk
   integer(kind=ik)              :: na, nev

   integer(kind=ik)              :: np_rows, np_cols, na_rows, na_cols

   integer(kind=ik)              :: myid, nprocs, my_prow, my_pcol, mpi_comm_rows, mpi_comm_cols
   integer(kind=ik)              :: i, mpierr, my_blacs_ctxt, sc_desc(9), info, nprow, npcol

106
   real(kind=rk4), allocatable    :: ev(:)
107

108
   complex(kind=ck4), allocatable :: a(:,:), z(:,:), as(:,:)
109
110
111
112
113
114
115
116
117
118
119

   complex(kind=ck4), parameter   :: CZERO = (0._rk4,0.0_rk4), CONE = (1._rk4,0._rk4)

   integer(kind=ik)              :: STATUS
#ifdef WITH_OPENMP
   integer(kind=ik)              :: omp_get_max_threads,  required_mpi_thread_level, provided_mpi_thread_level
#endif
   type(output_t)                :: write_to_file
   logical                       :: success
   character(len=8)              :: task_suffix
   integer(kind=ik)              :: j
120
   logical                       :: useGPU
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#undef DOUBLE_PRECISION_COMPLEX

   success = .true.
   ! read input parameters if they are provided
   call read_input_parameters(na, nev, nblk, write_to_file)

   !-------------------------------------------------------------------------------
   !  MPI Initialization
   call setup_mpi(myid, nprocs)

   STATUS = 0

#define COMPLEXCASE
#define ELPA1
Andreas Marek's avatar
Andreas Marek committed
135
#include "../../elpa_print_headers.X90"
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

   !-------------------------------------------------------------------------------
   ! Selection of number of processor rows/columns
   ! We try to set up the grid square-like, i.e. start the search for possible
   ! divisors of nprocs with a number next to the square root of nprocs
   ! and decrement it until a divisor is found.

   do np_cols = NINT(SQRT(REAL(nprocs))),2,-1
      if(mod(nprocs,np_cols) == 0 ) exit
   enddo
   ! at the end of the above loop, nprocs is always divisible by np_cols

   np_rows = nprocs/np_cols

   if(myid==0) then
      print *
      print '(a)','Standard eigenvalue problem - COMPLEX version'
Pavel Kus's avatar
Pavel Kus committed
153
154
155
156
157
      print *
      print '((a,i0))', 'Matrix size: ', na 
      print '((a,i0))', 'Num eigenvectors: ', nev
      print '((a,i0))', 'Blocksize: ', nblk 
      print '((a,i0))', 'Num MPI proc: ', nprocs 
158
      print '((a))', 'Using gpu: YES'
Pavel Kus's avatar
Pavel Kus committed
159
160
      print '((a))', 'Number type: complex'
      print '((a))', 'Number precision: single'
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
      print *
      print '(3(a,i0))','Number of processor rows=',np_rows,', cols=',np_cols,', total=',nprocs
      print *
   endif

   !-------------------------------------------------------------------------------
   ! Set up BLACS context and MPI communicators
   !
   ! The BLACS context is only necessary for using Scalapack.
   !
   ! For ELPA, the MPI communicators along rows/cols are sufficient,
   ! and the grid setup may be done in an arbitrary way as long as it is
   ! consistent (i.e. 0<=my_prow<np_rows, 0<=my_pcol<np_cols and every
   ! process has a unique (my_prow,my_pcol) pair).

176
177
   call set_up_blacsgrid(mpi_comm_world, np_rows, np_cols, 'C', &
                         my_blacs_ctxt, my_prow, my_pcol)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

   if (myid==0) then
     print '(a)','| Past BLACS_Gridinfo.'
   end if

   ! All ELPA routines need MPI communicators for communicating within
   ! rows or columns of processes, these are set in get_elpa_communicators.

   mpierr = get_elpa_communicators(mpi_comm_world, my_prow, my_pcol, &
                                   mpi_comm_rows, mpi_comm_cols)

   if (myid==0) then
     print '(a)','| Past split communicator setup for rows and columns.'
   end if

   ! Determine the necessary size of the distributed matrices,
   ! we use the Scalapack tools routine NUMROC for that.

   call set_up_blacs_descriptor(na ,nblk, my_prow, my_pcol, np_rows, np_cols, &
                                na_rows, na_cols, sc_desc, my_blacs_ctxt, info)

   if (myid==0) then
     print '(a)','| Past scalapack descriptor setup.'
   end if

   !-------------------------------------------------------------------------------
   ! Allocate matrices and set up a test matrix for the eigenvalue problem

   allocate(a (na_rows,na_cols))
   allocate(z (na_rows,na_cols))
   allocate(as(na_rows,na_cols))

   allocate(ev(na))

212
   call prepare_matrix(na, myid, sc_desc, a, z, as)
213
214
215
216
217
218
219
220
221
222
223

   !-------------------------------------------------------------------------------
   ! Calculate eigenvalues/eigenvectors

   if (myid==0) then
     print '(a)','| Entering one-step ELPA solver ... '
     print *
   end if
#ifdef WITH_MPI
   call mpi_barrier(mpi_comm_world, mpierr) ! for correct timings only
#endif
224
   useGPU = .true. 
225
   success = solve_evp_complex_1stage_single(na, nev, a, na_rows, ev, z, na_rows, nblk, &
226
                               na_cols, mpi_comm_rows, mpi_comm_cols, mpi_comm_world, useGPU)
227
228
229
230
231

   if (.not.(success)) then
      write(error_unit,*) "solve_evp_complex produced an error! Aborting..."
#ifdef WITH_MPI
      call MPI_ABORT(mpi_comm_world, 1, mpierr)
232
233
#else
      call exit(1)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#endif
   endif

   if (myid==0) then
     print '(a)','| One-step ELPA solver complete.'
     print *
   end if

   if(myid == 0) print *,'Time tridiag_complex  :',time_evp_fwd
   if(myid == 0) print *,'Time solve_tridi      :',time_evp_solve
   if(myid == 0) print *,'Time trans_ev_complex :',time_evp_back
   if(myid == 0) print *,'Total time (sum above):',time_evp_back+time_evp_solve+time_evp_fwd

   if(write_to_file%eigenvectors) then
     write(unit = task_suffix, fmt = '(i8.8)') myid
     open(17,file="EVs_complex_out_task_"//task_suffix(1:8)//".txt",form='formatted',status='new')
     write(17,*) "Part of eigenvectors: na_rows=",na_rows,"of na=",na," na_cols=",na_cols," of na=",na

     do i=1,na_rows
       do j=1,na_cols
         write(17,*) "row=",i," col=",j," element of eigenvector=",z(i,j)
       enddo
     enddo
     close(17)
   endif

   if(write_to_file%eigenvalues) then
      if (myid == 0) then
         open(17,file="Eigenvalues_complex_out.txt",form='formatted',status='new')
         do i=1,na
            write(17,*) i,ev(i)
         enddo
         close(17)
      endif
   endif


   !-------------------------------------------------------------------------------
   ! Test correctness of result (using plain scalapack routines)
Pavel Kus's avatar
Pavel Kus committed
273
   status = check_correctness(na, nev, as, z, ev, sc_desc, nblk, myid, np_rows, np_cols, my_prow, my_pcol)
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

   deallocate(a)
   deallocate(as)

   deallocate(z)
   deallocate(ev)

#ifdef WITH_MPI
   call blacs_gridexit(my_blacs_ctxt)
   call mpi_finalize(mpierr)
#endif
   call EXIT(STATUS)
end

!-------------------------------------------------------------------------------