legacy_single_real_driver_c_version.c 8.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*     This file is part of ELPA. */
/*  */
/*     The ELPA library was originally created by the ELPA consortium, */
/*     consisting of the following organizations: */
/*  */
/*     - Max Planck Computing and Data Facility (MPCDF), formerly known as */
/*       Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG), */
/*     - Bergische Universität Wuppertal, Lehrstuhl für angewandte */
/*       Informatik, */
/*     - Technische Universität München, Lehrstuhl für Informatik mit */
/*       Schwerpunkt Wissenschaftliches Rechnen , */
/*     - Fritz-Haber-Institut, Berlin, Abt. Theorie, */
/*     - Max-Plack-Institut für Mathematik in den Naturwissenschaften, */
/*       Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition, */
/*       and */
/*     - IBM Deutschland GmbH */
/*  */
/*  */
/*     More information can be found here: */
/*     http://elpa.mpcdf.mpg.de/ */
/*  */
/*     ELPA is free software: you can redistribute it and/or modify */
/*     it under the terms of the version 3 of the license of the */
/*     GNU Lesser General Public License as published by the Free */
/*     Software Foundation. */
/*  */
/*     ELPA is distributed in the hope that it will be useful, */
/*     but WITHOUT ANY WARRANTY; without even the implied warranty of */
/*     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the */
/*     GNU Lesser General Public License for more details. */
/*  */
/*     You should have received a copy of the GNU Lesser General Public License */
/*     along with ELPA.  If not, see <http://www.gnu.org/licenses/> */
/*  */
/*     ELPA reflects a substantial effort on the part of the original */
/*     ELPA consortium, and we ask you to respect the spirit of the */
/*     license that we chose: i.e., please contribute any changes you */
/*     may have back to the original ELPA library distribution, and keep */
/*     any derivatives of ELPA under the same license that we chose for */
/*     the original distribution, the GNU Lesser General Public License. */
/*  */
/*  */

#include "config-f90.h"

#include <stdio.h>
#include <stdlib.h>
#ifdef WITH_MPI
#include <mpi.h>
#endif
#include <math.h>

53
#include <elpa/elpa_legacy.h>
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include <test/shared/generated.h>

int main(int argc, char** argv) {
   int myid;
   int nprocs;
#ifndef WITH_MPI
   int MPI_COMM_WORLD;
#endif
   int na, nev, nblk;

   int status;

   int np_cols, np_rows, np_colsStart;

68
   int my_blacs_ctxt, my_prow, my_pcol;
69
70
71
72
73
74
75
76
77
78
79

   int mpierr;

   int my_mpi_comm_world;
   int mpi_comm_rows, mpi_comm_cols;

   int info, *sc_desc;

   int na_rows, na_cols;
   float startVal;

80
   float *a, *z, *as, *ev;
81
82

   int i;
83
   int useGPU;
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
   int success;

   int useQr, THIS_REAL_ELPA_KERNEL_API;
#ifdef WITH_MPI
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);
#else
   nprocs = 1;
   myid=0;
   MPI_COMM_WORLD=1;
#endif
   na = 1000;
   nev = 500;
   nblk = 16;

   if (myid == 0) {
     printf("This is the c version of an ELPA test-programm\n");
     printf("\n");
     printf("It will call the ELPA real solver for an\n");
     printf("of matrix size %d. It will compute %d eigenvalues\n",na,nev);
     printf("and uses a blocksize of %d\n",nblk);
     printf("\n");
     printf("This is an example program with much less functionality\n");
     printf("as it's Fortran counterpart. It's only purpose is to show how \n");
     printf("to evoke ELPA1 from a c programm\n");
     printf("\n");

   }

   status = 0;

   startVal = sqrt((float) nprocs);
   np_colsStart = (int) round(startVal);
   for (np_cols=np_colsStart;np_cols>1;np_cols--){
     if (nprocs %np_cols ==0){
     break;
     }
   }

   np_rows = nprocs/np_cols;

   if (myid == 0) {
     printf("\n");
     printf("Number of processor rows %d, cols %d, total %d \n",np_rows,np_cols,nprocs);
   }

   /* set up blacs */
   /* convert communicators before */
#ifdef WITH_MPI
   my_mpi_comm_world = MPI_Comm_c2f(MPI_COMM_WORLD);
#else
  my_mpi_comm_world = 1;
#endif
138
   set_up_blacsgrid_f(my_mpi_comm_world, np_rows, np_cols, 'C', &my_blacs_ctxt, &my_prow, &my_pcol);
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

   if (myid == 0) {
     printf("\n");
     printf("Past BLACS_Gridinfo...\n");
     printf("\n");
   }

   /* get the ELPA row and col communicators. */
   /* These are NOT usable in C without calling the MPI_Comm_f2c function on them !! */
#ifdef WITH_MPI
   my_mpi_comm_world = MPI_Comm_c2f(MPI_COMM_WORLD);
#endif
   mpierr = elpa_get_communicators(my_mpi_comm_world, my_prow, my_pcol, &mpi_comm_rows, &mpi_comm_cols);

   if (myid == 0) {
     printf("\n");
     printf("Past split communicator setup for rows and columns...\n");
     printf("\n");
   }

   sc_desc = malloc(9*sizeof(int));

161
   set_up_blacs_descriptor_f(na, nblk, my_prow, my_pcol, np_rows, np_cols, &na_rows, &na_cols, sc_desc, my_blacs_ctxt, &info);
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

   if (myid == 0) {
     printf("\n");
     printf("Past scalapack descriptor setup...\n");
     printf("\n");
   }

   /* allocate the matrices needed for elpa */
   if (myid == 0) {
     printf("\n");
     printf("Allocating matrices with na_rows=%d and na_cols=%d\n",na_rows, na_cols);
     printf("\n");
   }

   a  = malloc(na_rows*na_cols*sizeof(float));
   z  = malloc(na_rows*na_cols*sizeof(float));
   as = malloc(na_rows*na_cols*sizeof(float));
   ev = malloc(na*sizeof(float));

181
   prepare_matrix_real_single_f(na, myid, na_rows, na_cols, sc_desc, a, z, as);
182
183
184
185
186
187
188
189
190
191

   if (myid == 0) {
     printf("\n");
     printf("Entering ELPA 1stage real solver\n");
     printf("\n");
   }
#ifdef WITH_MPI
   mpierr = MPI_Barrier(MPI_COMM_WORLD);
#endif
   useQr = 0;
192
   useGPU = 0;
193
   THIS_REAL_ELPA_KERNEL_API = ELPA_2STAGE_REAL_DEFAULT;
194

195
   success = elpa_solve_evp_real_single(na, nev, a, na_rows, ev, z, na_rows, nblk, na_cols, mpi_comm_rows, mpi_comm_cols, my_mpi_comm_world, THIS_REAL_ELPA_KERNEL_API, useQr, useGPU, "1stage");
196
197
198
199
200

   if (success != 1) {
     printf("error in ELPA solve \n");
#ifdef WITH_MPI
     mpierr = MPI_Abort(MPI_COMM_WORLD, 99);
201
202
#else
     exit(99);
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#endif
   }


   if (myid == 0) {
     printf("\n");
     printf("1stage ELPA real solver complete\n");
     printf("\n");
   }

   for (i=0;i<na_rows*na_cols;i++){
      a[i] = as[i];
      z[i] = as[i];
   }

   if (myid == 0) {
     printf("\n");
     printf("Entering ELPA 2stage real solver\n");
     printf("\n");
   }
#ifdef WITH_MPI
   mpierr = MPI_Barrier(MPI_COMM_WORLD);
#endif
226
   useGPU = 0;
227
   useQr = 0;
228
   THIS_REAL_ELPA_KERNEL_API = ELPA_2STAGE_REAL_DEFAULT;
229

230
   success = elpa_solve_evp_real_single(na, nev, a, na_rows, ev, z, na_rows, nblk, na_cols, mpi_comm_rows, mpi_comm_cols, my_mpi_comm_world, THIS_REAL_ELPA_KERNEL_API, useQr, useGPU, "2stage");
231
232
233
234
235

   if (success != 1) {
     printf("error in ELPA solve \n");
#ifdef WITH_MPI
     mpierr = MPI_Abort(MPI_COMM_WORLD, 99);
236
237
#else
     exit(99);
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#endif
   }
   if (myid == 0) {
     printf("\n");
     printf("2stage ELPA real solver complete\n");
     printf("\n");
   }

   for (i=0;i<na_rows*na_cols;i++){
      a[i] = as[i];
      z[i] = as[i];
   }

   if (myid == 0) {
     printf("\n");
     printf("Entering auto-chosen ELPA real solver\n");
     printf("\n");
   }
#ifdef WITH_MPI
   mpierr = MPI_Barrier(MPI_COMM_WORLD);
#endif
   useQr = 0;
260
   useGPU = 0;
261
   THIS_REAL_ELPA_KERNEL_API = ELPA_2STAGE_REAL_DEFAULT;
262

263
   success = elpa_solve_evp_real_single(na, nev, a, na_rows, ev, z, na_rows, nblk, na_cols, mpi_comm_rows, mpi_comm_cols, my_mpi_comm_world, THIS_REAL_ELPA_KERNEL_API, useQr, useGPU, "auto");
264
265
266
267
268

   if (success != 1) {
     printf("error in ELPA solve \n");
#ifdef WITH_MPI
     mpierr = MPI_Abort(MPI_COMM_WORLD, 99);
269
270
#else
     exit(99);
271
272
273
274
275
276
277
278
279
#endif
   }
   if (myid == 0) {
     printf("\n");
     printf("Auto-chosen ELPA real solver complete\n");
     printf("\n");
   }

   /* check the results */
280
   status = check_correctness_real_single_f(na, nev, na_rows, na_cols, as, z, ev, sc_desc, myid);
281
282
283
284
285
286
287
288
289
290
291
292
293
294

   if (status !=0){
     printf("The computed EVs are not correct !\n");
   }
   if (status ==0){
     if (myid ==0) {
       printf("All ok!\n");
     }
   }

   free(sc_desc);
   free(a);
   free(z);
   free(as);
295
   free(ev);
296
297
298
299
300
301

#ifdef WITH_MPI
   MPI_Finalize();
#endif
   return 0;
}