test_real2.f90 7.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
program test_real2

!-------------------------------------------------------------------------------
! Standard eigenvalue problem - REAL version
!
! This program demonstrates the use of the ELPA module
! together with standard scalapack routines
! 
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".
!
!-------------------------------------------------------------------------------

   use ELPA1
   use ELPA2

   implicit none
   include 'mpif.h'

   !-------------------------------------------------------------------------------
   ! Please set system size parameters below!
   ! na:   System size
   ! nev:  Number of eigenvectors to be calculated
   ! nblk: Blocking factor in block cyclic distribution
   !-------------------------------------------------------------------------------

   integer, parameter :: na = 4000, nev = 1500, nblk = 16

   !-------------------------------------------------------------------------------
   !  Local Variables

   integer np_rows, np_cols, na_rows, na_cols

   integer myid, nprocs, my_prow, my_pcol, mpi_comm_rows, mpi_comm_cols
   integer i, mpierr, my_blacs_ctxt, sc_desc(9), info, nprow, npcol

   integer, external :: numroc

   real*8 err, errmax
   real*8, allocatable :: a(:,:), z(:,:), tmp1(:,:), tmp2(:,:), as(:,:), ev(:)

   integer :: iseed(4096) ! Random seed, size should be sufficient for every generator

   !-------------------------------------------------------------------------------
   !  MPI Initialization

   call mpi_init(mpierr)
   call mpi_comm_rank(mpi_comm_world,myid,mpierr)
   call mpi_comm_size(mpi_comm_world,nprocs,mpierr)

   !-------------------------------------------------------------------------------
   ! Selection of number of processor rows/columns
   ! We try to set up the grid square-like, i.e. start the search for possible
   ! divisors of nprocs with a number next to the square root of nprocs
   ! and decrement it until a divisor is found.

   do np_cols = NINT(SQRT(REAL(nprocs))),2,-1
      if(mod(nprocs,np_cols) == 0 ) exit
   enddo
   ! at the end of the above loop, nprocs is always divisible by np_cols

   np_rows = nprocs/np_cols

   if(myid==0) then
      print *
      print '(a)','Standard eigenvalue problem - REAL version'
      print *
      print '(3(a,i0))','Matrix size=',na,', Number of eigenvectors=',nev,', Block size=',nblk
      print '(3(a,i0))','Number of processor rows=',np_rows,', cols=',np_cols,', total=',nprocs
      print *
   endif

   !-------------------------------------------------------------------------------
   ! Set up BLACS context and MPI communicators
   !
   ! The BLACS context is only necessary for using Scalapack.
   !
   ! For ELPA, the MPI communicators along rows/cols are sufficient,
   ! and the grid setup may be done in an arbitrary way as long as it is
   ! consistent (i.e. 0<=my_prow<np_rows, 0<=my_pcol<np_cols and every
   ! process has a unique (my_prow,my_pcol) pair).

   my_blacs_ctxt = mpi_comm_world
   call BLACS_Gridinit( my_blacs_ctxt, 'C', np_rows, np_cols )
   call BLACS_Gridinfo( my_blacs_ctxt, nprow, npcol, my_prow, my_pcol )

   if (myid==0) then
     print '(a)','| Past BLACS_Gridinfo.'
   end if

   ! All ELPA routines need MPI communicators for communicating within
   ! rows or columns of processes, these are set in get_elpa_row_col_comms.

   call get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                               mpi_comm_rows, mpi_comm_cols)

   if (myid==0) then
     print '(a)','| Past split communicator setup for rows and columns.'
   end if

   ! Determine the necessary size of the distributed matrices,
   ! we use the Scalapack tools routine NUMROC for that.

   na_rows = numroc(na, nblk, my_prow, 0, np_rows)
   na_cols = numroc(na, nblk, my_pcol, 0, np_cols)

   ! Set up a scalapack descriptor for the checks below.
   ! For ELPA the following restrictions hold:
   ! - block sizes in both directions must be identical (args 4+5)
   ! - first row and column of the distributed matrix must be on row/col 0/0 (args 6+7)

   call descinit( sc_desc, na, na, nblk, nblk, 0, 0, my_blacs_ctxt, na_rows, info )

   if (myid==0) then
     print '(a)','| Past scalapack descriptor setup.'
   end if

   !-------------------------------------------------------------------------------
   ! Allocate matrices and set up a test matrix for the eigenvalue problem

   allocate(a (na_rows,na_cols))
   allocate(z (na_rows,na_cols))
   allocate(as(na_rows,na_cols))

   allocate(ev(na))

   ! For getting a symmetric test matrix A we get a random matrix Z
   ! and calculate A = Z + Z**T

   ! We want different random numbers on every process
   ! (otherways A might get rank deficient):

   iseed(:) = myid
   call RANDOM_SEED(put=iseed)

   call RANDOM_NUMBER(z)

   a(:,:) = z(:,:)

   if (myid==0) then
     print '(a)','| Random matrix block has been set up. (only processor 0 confirms this step)'
   end if

   call pdtran(na, na,  1.d0, z, 1, 1, sc_desc, 1.d0, a, 1, 1, sc_desc) ! A = A + Z**T

   if (myid==0) then
     print '(a)','| Random matrix has been symmetrized.'
   end if

   ! Save original matrix A for later accuracy checks

   as = a

   ! set print flag in elpa1
   elpa_print_times = .true.

   !-------------------------------------------------------------------------------
   ! Calculate eigenvalues/eigenvectors

   if (myid==0) then
     print '(a)','| Entering two-stage ELPA solver ... '
     print *
   end if

   call mpi_barrier(mpi_comm_world, mpierr) ! for correct timings only
   call solve_evp_real_2stage(na, nev, a, na_rows, ev, z, na_rows, nblk, &
                              mpi_comm_rows, mpi_comm_cols, mpi_comm_world)

   if (myid==0) then
     print '(a)','| Two-step ELPA solver complete.'
     print *
   end if

   if(myid == 0) print *,'Time transform to tridi :',time_evp_fwd
   if(myid == 0) print *,'Time solve tridi        :',time_evp_solve
   if(myid == 0) print *,'Time transform back EVs :',time_evp_back

   !-------------------------------------------------------------------------------
   ! Test correctness of result (using plain scalapack routines)

   deallocate(a)
   allocate(tmp1(na_rows,na_cols))

   ! 1. Residual (maximum of || A*Zi - Zi*EVi ||)

   ! tmp1 =  A * Z
   call pdgemm('N','N',na,nev,na,1.d0,as,1,1,sc_desc, &
           z,1,1,sc_desc,0.d0,tmp1,1,1,sc_desc)

   deallocate(as)
   allocate(tmp2(na_rows,na_cols))

   ! tmp2 = Zi*EVi
   tmp2(:,:) = z(:,:)
   do i=1,nev
      call pdscal(na,ev(i),tmp2,1,i,sc_desc,1)
   enddo

   !  tmp1 = A*Zi - Zi*EVi
   tmp1(:,:) =  tmp1(:,:) - tmp2(:,:)

   ! Get maximum norm of columns of tmp1
   errmax = 0
   do i=1,nev
      err = 0
      call pdnrm2(na,err,tmp1,1,i,sc_desc,1)
      errmax = max(errmax, err)
   enddo

   ! Get maximum error norm over all processors
   err = errmax
   call mpi_allreduce(err,errmax,1,MPI_REAL8,MPI_MAX,MPI_COMM_WORLD,mpierr)
   if(myid==0) print *
   if(myid==0) print *,'Error Residual     :',errmax

   ! 2. Eigenvector orthogonality

   ! tmp1 = Z**T * Z
   tmp1 = 0
   call pdgemm('T','N',nev,nev,na,1.d0,z,1,1,sc_desc, &
           z,1,1,sc_desc,0.d0,tmp1,1,1,sc_desc)
   ! Initialize tmp2 to unit matrix
   tmp2 = 0
   call pdlaset('A',nev,nev,0.d0,1.d0,tmp2,1,1,sc_desc)

   ! tmp1 = Z**T * Z - Unit Matrix
   tmp1(:,:) =  tmp1(:,:) - tmp2(:,:)

   ! Get maximum error (max abs value in tmp1)
   err = maxval(abs(tmp1))
   call mpi_allreduce(err,errmax,1,MPI_REAL8,MPI_MAX,MPI_COMM_WORLD,mpierr)
   if(myid==0) print *,'Error Orthogonality:',errmax

   deallocate(z)
   deallocate(tmp1)
   deallocate(tmp2)
   deallocate(ev)

   call mpi_finalize(mpierr)

end

!-------------------------------------------------------------------------------