elpa2_kernels_real_avx-avx2_2hv_double_precision.c 32.5 KB
Newer Older
1
2
//    This file is part of ELPA.
//
Andreas Marek's avatar
Andreas Marek committed
3
//    The ELPA library was originally created by the ELPA consortium,
4
5
//    consisting of the following organizations:
//
6
7
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
Andreas Marek's avatar
Andreas Marek committed
11
12
13
14
15
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
//      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//      and
16
17
//    - IBM Deutschland GmbH
//
18
//    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
//    enhancements authored by Intel Corporation which is not part of
20
//    the ELPA consortium.
21
22
//
//    More information can be found here:
23
//    http://elpa.mpcdf.mpg.de/
24
25
//
//    ELPA is free software: you can redistribute it and/or modify
Andreas Marek's avatar
Andreas Marek committed
26
27
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
//    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
//
// --------------------------------------------------------------------------------------------------
//
// This file contains the compute intensive kernels for the Householder transformations.
// It should be compiled with the highest possible optimization level.
//
// On Intel Nehalem or Intel Westmere or AMD Magny Cours use -O3 -msse3
// On Intel Sandy Bridge use -O3 -mavx
//
// Copyright of the original code rests with the authors inside the ELPA
// consortium. The copyright of any additional modifications shall rest
// with their original authors, but shall adhere to the licensing terms
// distributed along with the original code in the file "COPYING".
//
// Author: Alexander Heinecke (alexander.heinecke@mytum.de)
60
// Adapted for building a shared-library by Andreas Marek, MPCDF (andreas.marek@mpcdf.mpg.de)
61
62
// --------------------------------------------------------------------------------------------------

63
64
#include "config-f90.h"

65
66
67
68
#include <x86intrin.h>

#define __forceinline __attribute__((always_inline)) static

69
70
#ifdef HAVE_AVX2

71
72
73
74
75
76
77
78
79
80
#ifdef __FMA4__
#define __ELPA_USE_FMA__
#define _mm256_FMA_pd(a,b,c) _mm256_macc_pd(a,b,c)
#endif

#ifdef __AVX2__
#define __ELPA_USE_FMA__
#define _mm256_FMA_pd(a,b,c) _mm256_fmadd_pd(a,b,c)
#endif

81
82
#endif

83
//Forward declaration
84
85
86
87
__forceinline void hh_trafo_kernel_4_AVX_2hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s);
__forceinline void hh_trafo_kernel_8_AVX_2hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s);
__forceinline void hh_trafo_kernel_16_AVX_2hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s);
__forceinline void hh_trafo_kernel_24_AVX_2hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s);
88

89
void double_hh_trafo_real_avx_avx2_2hv_double_(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh);
90
91
92
93
#if 0
void double_hh_trafo_fast_(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh);
#endif

94
void double_hh_trafo_real_avx_avx2_2hv_double_(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
{
	int i;
	int nb = *pnb;
	int nq = *pldq;
	int ldq = *pldq;
	int ldh = *pldh;

	// calculating scalar product to compute
	// 2 householder vectors simultaneously
	double s = hh[(ldh)+1]*1.0;

	#pragma ivdep
	for (i = 2; i < nb; i++)
	{
		s += hh[i-1] * hh[(i+ldh)];
	}

	// Production level kernel calls with padding
	for (i = 0; i < nq-20; i+=24)
	{
115
		hh_trafo_kernel_24_AVX_2hv_double(&q[i], hh, nb, ldq, ldh, s);
116
117
118
119
120
121
122
123
124
	}

	if (nq == i)
	{
		return;
	}

	if (nq-i == 20)
	{
125
126
		hh_trafo_kernel_16_AVX_2hv_double(&q[i], hh, nb, ldq, ldh, s);
		hh_trafo_kernel_4_AVX_2hv_double(&q[i+16], hh, nb, ldq, ldh, s);
127
128
129
	}
	else if (nq-i == 16)
	{
130
		hh_trafo_kernel_16_AVX_2hv_double(&q[i], hh, nb, ldq, ldh, s);
131
132
133
	}
	else if (nq-i == 12)
	{
134
135
		hh_trafo_kernel_8_AVX_2hv_double(&q[i], hh, nb, ldq, ldh, s);
		hh_trafo_kernel_4_AVX_2hv_double(&q[i+8], hh, nb, ldq, ldh, s);
136
137
138
	}
	else if (nq-i == 8)
	{
139
		hh_trafo_kernel_8_AVX_2hv_double(&q[i], hh, nb, ldq, ldh, s);
140
141
142
	}
	else
	{
143
		hh_trafo_kernel_4_AVX_2hv_double(&q[i], hh, nb, ldq, ldh, s);
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
	}
}

#if 0
void double_hh_trafo_fast_(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh)
{
	int i;
	int nb = *pnb;
	int nq = *pldq;
	int ldq = *pldq;
	int ldh = *pldh;

	// calculating scalar product to compute
	// 2 householder vectors simultaneously
	double s = hh[(ldh)+1]*1.0;

	#pragma ivdep
	for (i = 2; i < nb; i++)
	{
		s += hh[i-1] * hh[(i+ldh)];
	}

	// Production level kernel calls with padding
#ifdef __AVX__
	for (i = 0; i < nq; i+=24)
	{
170
		hh_trafo_kernel_24_AVX_2hv_double(&q[i], hh, nb, ldq, ldh, s);
171
172
173
174
	}
#else
	for (i = 0; i < nq; i+=12)
	{
175
		hh_trafo_kernel_12_SSE_2hv_double(&q[i], hh, nb, ldq, ldh, s);
176
177
178
179
180
181
182
183
184
185
186
	}
#endif
}
#endif

/**
 * Unrolled kernel that computes
 * 24 rows of Q simultaneously, a
 * matrix vector product with two householder
 * vectors + a rank 2 update is performed
 */
187
 __forceinline void hh_trafo_kernel_24_AVX_2hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
{
	/////////////////////////////////////////////////////
	// Matrix Vector Multiplication, Q [24 x nb+1] * hh
	// hh contains two householder vectors, with offset 1
	/////////////////////////////////////////////////////
	int i;
	// Needed bit mask for floating point sign flip
	__m256d sign = (__m256d)_mm256_set1_epi64x(0x8000000000000000);

	__m256d x1 = _mm256_load_pd(&q[ldq]);
	__m256d x2 = _mm256_load_pd(&q[ldq+4]);
	__m256d x3 = _mm256_load_pd(&q[ldq+8]);
	__m256d x4 = _mm256_load_pd(&q[ldq+12]);
	__m256d x5 = _mm256_load_pd(&q[ldq+16]);
	__m256d x6 = _mm256_load_pd(&q[ldq+20]);

	__m256d h1 = _mm256_broadcast_sd(&hh[ldh+1]);
	__m256d h2;

207
#ifdef __ELPA_USE_FMA__
208
	__m256d q1 = _mm256_load_pd(q);
209
	__m256d y1 = _mm256_FMA_pd(x1, h1, q1);
210
	__m256d q2 = _mm256_load_pd(&q[4]);
211
	__m256d y2 = _mm256_FMA_pd(x2, h1, q2);
212
	__m256d q3 = _mm256_load_pd(&q[8]);
213
	__m256d y3 = _mm256_FMA_pd(x3, h1, q3);
214
	__m256d q4 = _mm256_load_pd(&q[12]);
215
	__m256d y4 = _mm256_FMA_pd(x4, h1, q4);
216
	__m256d q5 = _mm256_load_pd(&q[16]);
217
	__m256d y5 = _mm256_FMA_pd(x5, h1, q5);
218
	__m256d q6 = _mm256_load_pd(&q[20]);
219
	__m256d y6 = _mm256_FMA_pd(x6, h1, q6);
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#else
	__m256d q1 = _mm256_load_pd(q);
	__m256d y1 = _mm256_add_pd(q1, _mm256_mul_pd(x1, h1));
	__m256d q2 = _mm256_load_pd(&q[4]);
	__m256d y2 = _mm256_add_pd(q2, _mm256_mul_pd(x2, h1));
	__m256d q3 = _mm256_load_pd(&q[8]);
	__m256d y3 = _mm256_add_pd(q3, _mm256_mul_pd(x3, h1));
	__m256d q4 = _mm256_load_pd(&q[12]);
	__m256d y4 = _mm256_add_pd(q4, _mm256_mul_pd(x4, h1));
	__m256d q5 = _mm256_load_pd(&q[16]);
	__m256d y5 = _mm256_add_pd(q5, _mm256_mul_pd(x5, h1));
	__m256d q6 = _mm256_load_pd(&q[20]);
	__m256d y6 = _mm256_add_pd(q6, _mm256_mul_pd(x6, h1));
#endif

	for(i = 2; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-1]);
		h2 = _mm256_broadcast_sd(&hh[ldh+i]);
239
#ifdef __ELPA_USE_FMA__
240
		q1 = _mm256_load_pd(&q[i*ldq]);
241
242
		x1 = _mm256_FMA_pd(q1, h1, x1);
		y1 = _mm256_FMA_pd(q1, h2, y1);
243
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
244
245
		x2 = _mm256_FMA_pd(q2, h1, x2);
		y2 = _mm256_FMA_pd(q2, h2, y2);
246
		q3 = _mm256_load_pd(&q[(i*ldq)+8]);
247
248
		x3 = _mm256_FMA_pd(q3, h1, x3);
		y3 = _mm256_FMA_pd(q3, h2, y3);
249
		q4 = _mm256_load_pd(&q[(i*ldq)+12]);
250
251
		x4 = _mm256_FMA_pd(q4, h1, x4);
		y4 = _mm256_FMA_pd(q4, h2, y4);
252
		q5 = _mm256_load_pd(&q[(i*ldq)+16]);
253
254
		x5 = _mm256_FMA_pd(q5, h1, x5);
		y5 = _mm256_FMA_pd(q5, h2, y5);
255
		q6 = _mm256_load_pd(&q[(i*ldq)+20]);
256
257
		x6 = _mm256_FMA_pd(q6, h1, x6);
		y6 = _mm256_FMA_pd(q6, h2, y6);
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#else
		q1 = _mm256_load_pd(&q[i*ldq]);
		x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
		y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
		x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
		y2 = _mm256_add_pd(y2, _mm256_mul_pd(q2,h2));
		q3 = _mm256_load_pd(&q[(i*ldq)+8]);
		x3 = _mm256_add_pd(x3, _mm256_mul_pd(q3,h1));
		y3 = _mm256_add_pd(y3, _mm256_mul_pd(q3,h2));
		q4 = _mm256_load_pd(&q[(i*ldq)+12]);
		x4 = _mm256_add_pd(x4, _mm256_mul_pd(q4,h1));
		y4 = _mm256_add_pd(y4, _mm256_mul_pd(q4,h2));
		q5 = _mm256_load_pd(&q[(i*ldq)+16]);
		x5 = _mm256_add_pd(x5, _mm256_mul_pd(q5,h1));
		y5 = _mm256_add_pd(y5, _mm256_mul_pd(q5,h2));
		q6 = _mm256_load_pd(&q[(i*ldq)+20]);
		x6 = _mm256_add_pd(x6, _mm256_mul_pd(q6,h1));
		y6 = _mm256_add_pd(y6, _mm256_mul_pd(q6,h2));
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
281
#ifdef __ELPA_USE_FMA__
282
	q1 = _mm256_load_pd(&q[nb*ldq]);
283
	x1 = _mm256_FMA_pd(q1, h1, x1);
284
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
285
	x2 = _mm256_FMA_pd(q2, h1, x2);
286
	q3 = _mm256_load_pd(&q[(nb*ldq)+8]);
287
	x3 = _mm256_FMA_pd(q3, h1, x3);
288
	q4 = _mm256_load_pd(&q[(nb*ldq)+12]);
289
	x4 = _mm256_FMA_pd(q4, h1, x4);
290
	q5 = _mm256_load_pd(&q[(nb*ldq)+16]);
291
	x5 = _mm256_FMA_pd(q5, h1, x5);
292
	q6 = _mm256_load_pd(&q[(nb*ldq)+20]);
293
	x6 = _mm256_FMA_pd(q6, h1, x6);
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#else
	q1 = _mm256_load_pd(&q[nb*ldq]);
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
	x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
	q3 = _mm256_load_pd(&q[(nb*ldq)+8]);
	x3 = _mm256_add_pd(x3, _mm256_mul_pd(q3,h1));
	q4 = _mm256_load_pd(&q[(nb*ldq)+12]);
	x4 = _mm256_add_pd(x4, _mm256_mul_pd(q4,h1));
	q5 = _mm256_load_pd(&q[(nb*ldq)+16]);
	x5 = _mm256_add_pd(x5, _mm256_mul_pd(q5,h1));
	q6 = _mm256_load_pd(&q[(nb*ldq)+20]);
	x6 = _mm256_add_pd(x6, _mm256_mul_pd(q6,h1));
#endif

	/////////////////////////////////////////////////////
	// Rank-2 update of Q [24 x nb+1]
	/////////////////////////////////////////////////////

	__m256d tau1 = _mm256_broadcast_sd(hh);
	__m256d tau2 = _mm256_broadcast_sd(&hh[ldh]);
	__m256d vs = _mm256_broadcast_sd(&s);

	h1 = _mm256_xor_pd(tau1, sign);
	x1 = _mm256_mul_pd(x1, h1);
	x2 = _mm256_mul_pd(x2, h1);
	x3 = _mm256_mul_pd(x3, h1);
	x4 = _mm256_mul_pd(x4, h1);
	x5 = _mm256_mul_pd(x5, h1);
	x6 = _mm256_mul_pd(x6, h1);
	h1 = _mm256_xor_pd(tau2, sign);
	h2 = _mm256_mul_pd(h1, vs);
326
327
328
329
330
331
332
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(y1, h1, _mm256_mul_pd(x1,h2));
	y2 = _mm256_FMA_pd(y2, h1, _mm256_mul_pd(x2,h2));
	y3 = _mm256_FMA_pd(y3, h1, _mm256_mul_pd(x3,h2));
	y4 = _mm256_FMA_pd(y4, h1, _mm256_mul_pd(x4,h2));
	y5 = _mm256_FMA_pd(y5, h1, _mm256_mul_pd(x5,h2));
	y6 = _mm256_FMA_pd(y6, h1, _mm256_mul_pd(x6,h2));
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#else
	y1 = _mm256_add_pd(_mm256_mul_pd(y1,h1), _mm256_mul_pd(x1,h2));
	y2 = _mm256_add_pd(_mm256_mul_pd(y2,h1), _mm256_mul_pd(x2,h2));
	y3 = _mm256_add_pd(_mm256_mul_pd(y3,h1), _mm256_mul_pd(x3,h2));
	y4 = _mm256_add_pd(_mm256_mul_pd(y4,h1), _mm256_mul_pd(x4,h2));
	y5 = _mm256_add_pd(_mm256_mul_pd(y5,h1), _mm256_mul_pd(x5,h2));
	y6 = _mm256_add_pd(_mm256_mul_pd(y6,h1), _mm256_mul_pd(x6,h2));
#endif

	q1 = _mm256_load_pd(q);
	q1 = _mm256_add_pd(q1, y1);
	_mm256_store_pd(q,q1);
	q2 = _mm256_load_pd(&q[4]);
	q2 = _mm256_add_pd(q2, y2);
	_mm256_store_pd(&q[4],q2);
	q3 = _mm256_load_pd(&q[8]);
	q3 = _mm256_add_pd(q3, y3);
	_mm256_store_pd(&q[8],q3);
	q4 = _mm256_load_pd(&q[12]);
	q4 = _mm256_add_pd(q4, y4);
	_mm256_store_pd(&q[12],q4);
	q5 = _mm256_load_pd(&q[16]);
	q5 = _mm256_add_pd(q5, y5);
	_mm256_store_pd(&q[16],q5);
	q6 = _mm256_load_pd(&q[20]);
	q6 = _mm256_add_pd(q6, y6);
	_mm256_store_pd(&q[20],q6);

	h2 = _mm256_broadcast_sd(&hh[ldh+1]);
362
#ifdef __ELPA_USE_FMA__
363
	q1 = _mm256_load_pd(&q[ldq]);
364
	q1 = _mm256_add_pd(q1, _mm256_FMA_pd(y1, h2, x1));
365
366
	_mm256_store_pd(&q[ldq],q1);
	q2 = _mm256_load_pd(&q[ldq+4]);
367
	q2 = _mm256_add_pd(q2, _mm256_FMA_pd(y2, h2, x2));
368
369
	_mm256_store_pd(&q[ldq+4],q2);
	q3 = _mm256_load_pd(&q[ldq+8]);
370
	q3 = _mm256_add_pd(q3, _mm256_FMA_pd(y3, h2, x3));
371
372
	_mm256_store_pd(&q[ldq+8],q3);
	q4 = _mm256_load_pd(&q[ldq+12]);
373
	q4 = _mm256_add_pd(q4, _mm256_FMA_pd(y4, h2, x4));
374
375
	_mm256_store_pd(&q[ldq+12],q4);
	q5 = _mm256_load_pd(&q[ldq+16]);
376
	q5 = _mm256_add_pd(q5, _mm256_FMA_pd(y5, h2, x5));
377
378
	_mm256_store_pd(&q[ldq+16],q5);
	q6 = _mm256_load_pd(&q[ldq+20]);
379
	q6 = _mm256_add_pd(q6, _mm256_FMA_pd(y6, h2, x6));
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
	_mm256_store_pd(&q[ldq+20],q6);
#else
	q1 = _mm256_load_pd(&q[ldq]);
	q1 = _mm256_add_pd(q1, _mm256_add_pd(x1, _mm256_mul_pd(y1, h2)));
	_mm256_store_pd(&q[ldq],q1);
	q2 = _mm256_load_pd(&q[ldq+4]);
	q2 = _mm256_add_pd(q2, _mm256_add_pd(x2, _mm256_mul_pd(y2, h2)));
	_mm256_store_pd(&q[ldq+4],q2);
	q3 = _mm256_load_pd(&q[ldq+8]);
	q3 = _mm256_add_pd(q3, _mm256_add_pd(x3, _mm256_mul_pd(y3, h2)));
	_mm256_store_pd(&q[ldq+8],q3);
	q4 = _mm256_load_pd(&q[ldq+12]);
	q4 = _mm256_add_pd(q4, _mm256_add_pd(x4, _mm256_mul_pd(y4, h2)));
	_mm256_store_pd(&q[ldq+12],q4);
	q5 = _mm256_load_pd(&q[ldq+16]);
	q5 = _mm256_add_pd(q5, _mm256_add_pd(x5, _mm256_mul_pd(y5, h2)));
	_mm256_store_pd(&q[ldq+16],q5);
	q6 = _mm256_load_pd(&q[ldq+20]);
	q6 = _mm256_add_pd(q6, _mm256_add_pd(x6, _mm256_mul_pd(y6, h2)));
	_mm256_store_pd(&q[ldq+20],q6);
#endif

	for (i = 2; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-1]);
		h2 = _mm256_broadcast_sd(&hh[ldh+i]);
406
#ifdef __ELPA_USE_FMA__
407
		q1 = _mm256_load_pd(&q[i*ldq]);
408
409
		q1 = _mm256_FMA_pd(x1, h1, q1);
		q1 = _mm256_FMA_pd(y1, h2, q1);
410
411
		_mm256_store_pd(&q[i*ldq],q1);
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
412
413
		q2 = _mm256_FMA_pd(x2, h1, q2);
		q2 = _mm256_FMA_pd(y2, h2, q2);
414
415
		_mm256_store_pd(&q[(i*ldq)+4],q2);
		q3 = _mm256_load_pd(&q[(i*ldq)+8]);
416
417
		q3 = _mm256_FMA_pd(x3, h1, q3);
		q3 = _mm256_FMA_pd(y3, h2, q3);
418
419
		_mm256_store_pd(&q[(i*ldq)+8],q3);
		q4 = _mm256_load_pd(&q[(i*ldq)+12]);
420
421
		q4 = _mm256_FMA_pd(x4, h1, q4);
		q4 = _mm256_FMA_pd(y4, h2, q4);
422
423
		_mm256_store_pd(&q[(i*ldq)+12],q4);
		q5 = _mm256_load_pd(&q[(i*ldq)+16]);
424
425
		q5 = _mm256_FMA_pd(x5, h1, q5);
		q5 = _mm256_FMA_pd(y5, h2, q5);
426
427
		_mm256_store_pd(&q[(i*ldq)+16],q5);
		q6 = _mm256_load_pd(&q[(i*ldq)+20]);
428
429
		q6 = _mm256_FMA_pd(x6, h1, q6);
		q6 = _mm256_FMA_pd(y6, h2, q6);
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
		_mm256_store_pd(&q[(i*ldq)+20],q6);
#else
		q1 = _mm256_load_pd(&q[i*ldq]);
		q1 = _mm256_add_pd(q1, _mm256_add_pd(_mm256_mul_pd(x1,h1), _mm256_mul_pd(y1, h2)));
		_mm256_store_pd(&q[i*ldq],q1);
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
		q2 = _mm256_add_pd(q2, _mm256_add_pd(_mm256_mul_pd(x2,h1), _mm256_mul_pd(y2, h2)));
		_mm256_store_pd(&q[(i*ldq)+4],q2);
		q3 = _mm256_load_pd(&q[(i*ldq)+8]);
		q3 = _mm256_add_pd(q3, _mm256_add_pd(_mm256_mul_pd(x3,h1), _mm256_mul_pd(y3, h2)));
		_mm256_store_pd(&q[(i*ldq)+8],q3);
		q4 = _mm256_load_pd(&q[(i*ldq)+12]);
		q4 = _mm256_add_pd(q4, _mm256_add_pd(_mm256_mul_pd(x4,h1), _mm256_mul_pd(y4, h2)));
		_mm256_store_pd(&q[(i*ldq)+12],q4);
		q5 = _mm256_load_pd(&q[(i*ldq)+16]);
		q5 = _mm256_add_pd(q5, _mm256_add_pd(_mm256_mul_pd(x5,h1), _mm256_mul_pd(y5, h2)));
		_mm256_store_pd(&q[(i*ldq)+16],q5);
		q6 = _mm256_load_pd(&q[(i*ldq)+20]);
		q6 = _mm256_add_pd(q6, _mm256_add_pd(_mm256_mul_pd(x6,h1), _mm256_mul_pd(y6, h2)));
		_mm256_store_pd(&q[(i*ldq)+20],q6);
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
454
#ifdef __ELPA_USE_FMA__
455
	q1 = _mm256_load_pd(&q[nb*ldq]);
456
	q1 = _mm256_FMA_pd(x1, h1, q1);
457
458
	_mm256_store_pd(&q[nb*ldq],q1);
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
459
	q2 = _mm256_FMA_pd(x2, h1, q2);
460
461
	_mm256_store_pd(&q[(nb*ldq)+4],q2);
	q3 = _mm256_load_pd(&q[(nb*ldq)+8]);
462
	q3 = _mm256_FMA_pd(x3, h1, q3);
463
464
	_mm256_store_pd(&q[(nb*ldq)+8],q3);
	q4 = _mm256_load_pd(&q[(nb*ldq)+12]);
465
	q4 = _mm256_FMA_pd(x4, h1, q4);
466
467
	_mm256_store_pd(&q[(nb*ldq)+12],q4);
	q5 = _mm256_load_pd(&q[(nb*ldq)+16]);
468
	q5 = _mm256_FMA_pd(x5, h1, q5);
469
470
	_mm256_store_pd(&q[(nb*ldq)+16],q5);
	q6 = _mm256_load_pd(&q[(nb*ldq)+20]);
471
	q6 = _mm256_FMA_pd(x6, h1, q6);
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
	_mm256_store_pd(&q[(nb*ldq)+20],q6);
#else
	q1 = _mm256_load_pd(&q[nb*ldq]);
	q1 = _mm256_add_pd(q1, _mm256_mul_pd(x1, h1));
	_mm256_store_pd(&q[nb*ldq],q1);
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
	q2 = _mm256_add_pd(q2, _mm256_mul_pd(x2, h1));
	_mm256_store_pd(&q[(nb*ldq)+4],q2);
	q3 = _mm256_load_pd(&q[(nb*ldq)+8]);
	q3 = _mm256_add_pd(q3, _mm256_mul_pd(x3, h1));
	_mm256_store_pd(&q[(nb*ldq)+8],q3);
	q4 = _mm256_load_pd(&q[(nb*ldq)+12]);
	q4 = _mm256_add_pd(q4, _mm256_mul_pd(x4, h1));
	_mm256_store_pd(&q[(nb*ldq)+12],q4);
	q5 = _mm256_load_pd(&q[(nb*ldq)+16]);
	q5 = _mm256_add_pd(q5, _mm256_mul_pd(x5, h1));
	_mm256_store_pd(&q[(nb*ldq)+16],q5);
	q6 = _mm256_load_pd(&q[(nb*ldq)+20]);
	q6 = _mm256_add_pd(q6, _mm256_mul_pd(x6, h1));
	_mm256_store_pd(&q[(nb*ldq)+20],q6);
#endif
}

/**
 * Unrolled kernel that computes
 * 16 rows of Q simultaneously, a
 * matrix vector product with two householder
 * vectors + a rank 2 update is performed
 */
501
 __forceinline void hh_trafo_kernel_16_AVX_2hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s)
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
{
	/////////////////////////////////////////////////////
	// Matrix Vector Multiplication, Q [16 x nb+1] * hh
	// hh contains two householder vectors, with offset 1
	/////////////////////////////////////////////////////
	int i;
	// Needed bit mask for floating point sign flip
	__m256d sign = (__m256d)_mm256_set1_epi64x(0x8000000000000000);

	__m256d x1 = _mm256_load_pd(&q[ldq]);
	__m256d x2 = _mm256_load_pd(&q[ldq+4]);
	__m256d x3 = _mm256_load_pd(&q[ldq+8]);
	__m256d x4 = _mm256_load_pd(&q[ldq+12]);

	__m256d h1 = _mm256_broadcast_sd(&hh[ldh+1]);
	__m256d h2;

519
#ifdef __ELPA_USE_FMA__
520
	__m256d q1 = _mm256_load_pd(q);
521
	__m256d y1 = _mm256_FMA_pd(x1, h1, q1);
522
	__m256d q2 = _mm256_load_pd(&q[4]);
523
	__m256d y2 = _mm256_FMA_pd(x2, h1, q2);
524
	__m256d q3 = _mm256_load_pd(&q[8]);
525
	__m256d y3 = _mm256_FMA_pd(x3, h1, q3);
526
	__m256d q4 = _mm256_load_pd(&q[12]);
527
	__m256d y4 = _mm256_FMA_pd(x4, h1, q4);
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#else
	__m256d q1 = _mm256_load_pd(q);
	__m256d y1 = _mm256_add_pd(q1, _mm256_mul_pd(x1, h1));
	__m256d q2 = _mm256_load_pd(&q[4]);
	__m256d y2 = _mm256_add_pd(q2, _mm256_mul_pd(x2, h1));
	__m256d q3 = _mm256_load_pd(&q[8]);
	__m256d y3 = _mm256_add_pd(q3, _mm256_mul_pd(x3, h1));
	__m256d q4 = _mm256_load_pd(&q[12]);
	__m256d y4 = _mm256_add_pd(q4, _mm256_mul_pd(x4, h1));
#endif

	for(i = 2; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-1]);
		h2 = _mm256_broadcast_sd(&hh[ldh+i]);
543
#ifdef __ELPA_USE_FMA__
544
		q1 = _mm256_load_pd(&q[i*ldq]);
545
546
		x1 = _mm256_FMA_pd(q1, h1, x1);
		y1 = _mm256_FMA_pd(q1, h2, y1);
547
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
548
549
		x2 = _mm256_FMA_pd(q2, h1, x2);
		y2 = _mm256_FMA_pd(q2, h2, y2);
550
		q3 = _mm256_load_pd(&q[(i*ldq)+8]);
551
552
		x3 = _mm256_FMA_pd(q3, h1, x3);
		y3 = _mm256_FMA_pd(q3, h2, y3);
553
		q4 = _mm256_load_pd(&q[(i*ldq)+12]);
554
555
		x4 = _mm256_FMA_pd(q4, h1, x4);
		y4 = _mm256_FMA_pd(q4, h2, y4);
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#else
		q1 = _mm256_load_pd(&q[i*ldq]);
		x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
		y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
		x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
		y2 = _mm256_add_pd(y2, _mm256_mul_pd(q2,h2));
		q3 = _mm256_load_pd(&q[(i*ldq)+8]);
		x3 = _mm256_add_pd(x3, _mm256_mul_pd(q3,h1));
		y3 = _mm256_add_pd(y3, _mm256_mul_pd(q3,h2));
		q4 = _mm256_load_pd(&q[(i*ldq)+12]);
		x4 = _mm256_add_pd(x4, _mm256_mul_pd(q4,h1));
		y4 = _mm256_add_pd(y4, _mm256_mul_pd(q4,h2));
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
573
#ifdef __ELPA_USE_FMA__
574
	q1 = _mm256_load_pd(&q[nb*ldq]);
575
	x1 = _mm256_FMA_pd(q1, h1, x1);
576
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
577
	x2 = _mm256_FMA_pd(q2, h1, x2);
578
	q3 = _mm256_load_pd(&q[(nb*ldq)+8]);
579
	x3 = _mm256_FMA_pd(q3, h1, x3);
580
	q4 = _mm256_load_pd(&q[(nb*ldq)+12]);
581
	x4 = _mm256_FMA_pd(q4, h1, x4);
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#else
	q1 = _mm256_load_pd(&q[nb*ldq]);
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
	x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
	q3 = _mm256_load_pd(&q[(nb*ldq)+8]);
	x3 = _mm256_add_pd(x3, _mm256_mul_pd(q3,h1));
	q4 = _mm256_load_pd(&q[(nb*ldq)+12]);
	x4 = _mm256_add_pd(x4, _mm256_mul_pd(q4,h1));
#endif

	/////////////////////////////////////////////////////
	// Rank-2 update of Q [16 x nb+1]
	/////////////////////////////////////////////////////

	__m256d tau1 = _mm256_broadcast_sd(hh);
	__m256d tau2 = _mm256_broadcast_sd(&hh[ldh]);
	__m256d vs = _mm256_broadcast_sd(&s);

	h1 = _mm256_xor_pd(tau1, sign);
	x1 = _mm256_mul_pd(x1, h1);
	x2 = _mm256_mul_pd(x2, h1);
	x3 = _mm256_mul_pd(x3, h1);
	x4 = _mm256_mul_pd(x4, h1);
	h1 = _mm256_xor_pd(tau2, sign);
	h2 = _mm256_mul_pd(h1, vs);
608
609
610
611
612
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(y1, h1, _mm256_mul_pd(x1,h2));
	y2 = _mm256_FMA_pd(y2, h1, _mm256_mul_pd(x2,h2));
	y3 = _mm256_FMA_pd(y3, h1, _mm256_mul_pd(x3,h2));
	y4 = _mm256_FMA_pd(y4, h1, _mm256_mul_pd(x4,h2));
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
#else
	y1 = _mm256_add_pd(_mm256_mul_pd(y1,h1), _mm256_mul_pd(x1,h2));
	y2 = _mm256_add_pd(_mm256_mul_pd(y2,h1), _mm256_mul_pd(x2,h2));
	y3 = _mm256_add_pd(_mm256_mul_pd(y3,h1), _mm256_mul_pd(x3,h2));
	y4 = _mm256_add_pd(_mm256_mul_pd(y4,h1), _mm256_mul_pd(x4,h2));
#endif

	q1 = _mm256_load_pd(q);
	q1 = _mm256_add_pd(q1, y1);
	_mm256_store_pd(q,q1);
	q2 = _mm256_load_pd(&q[4]);
	q2 = _mm256_add_pd(q2, y2);
	_mm256_store_pd(&q[4],q2);
	q3 = _mm256_load_pd(&q[8]);
	q3 = _mm256_add_pd(q3, y3);
	_mm256_store_pd(&q[8],q3);
	q4 = _mm256_load_pd(&q[12]);
	q4 = _mm256_add_pd(q4, y4);
	_mm256_store_pd(&q[12],q4);

	h2 = _mm256_broadcast_sd(&hh[ldh+1]);
634
#ifdef __ELPA_USE_FMA__
635
	q1 = _mm256_load_pd(&q[ldq]);
636
	q1 = _mm256_add_pd(q1, _mm256_FMA_pd(y1, h2, x1));
637
638
	_mm256_store_pd(&q[ldq],q1);
	q2 = _mm256_load_pd(&q[ldq+4]);
639
	q2 = _mm256_add_pd(q2, _mm256_FMA_pd(y2, h2, x2));
640
641
	_mm256_store_pd(&q[ldq+4],q2);
	q3 = _mm256_load_pd(&q[ldq+8]);
642
	q3 = _mm256_add_pd(q3, _mm256_FMA_pd(y3, h2, x3));
643
644
	_mm256_store_pd(&q[ldq+8],q3);
	q4 = _mm256_load_pd(&q[ldq+12]);
645
	q4 = _mm256_add_pd(q4, _mm256_FMA_pd(y4, h2, x4));
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
	_mm256_store_pd(&q[ldq+12],q4);
#else
	q1 = _mm256_load_pd(&q[ldq]);
	q1 = _mm256_add_pd(q1, _mm256_add_pd(x1, _mm256_mul_pd(y1, h2)));
	_mm256_store_pd(&q[ldq],q1);
	q2 = _mm256_load_pd(&q[ldq+4]);
	q2 = _mm256_add_pd(q2, _mm256_add_pd(x2, _mm256_mul_pd(y2, h2)));
	_mm256_store_pd(&q[ldq+4],q2);
	q3 = _mm256_load_pd(&q[ldq+8]);
	q3 = _mm256_add_pd(q3, _mm256_add_pd(x3, _mm256_mul_pd(y3, h2)));
	_mm256_store_pd(&q[ldq+8],q3);
	q4 = _mm256_load_pd(&q[ldq+12]);
	q4 = _mm256_add_pd(q4, _mm256_add_pd(x4, _mm256_mul_pd(y4, h2)));
	_mm256_store_pd(&q[ldq+12],q4);
#endif

	for (i = 2; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-1]);
		h2 = _mm256_broadcast_sd(&hh[ldh+i]);
666
#ifdef __ELPA_USE_FMA__
667
		q1 = _mm256_load_pd(&q[i*ldq]);
668
669
		q1 = _mm256_FMA_pd(x1, h1, q1);
		q1 = _mm256_FMA_pd(y1, h2, q1);
670
671
		_mm256_store_pd(&q[i*ldq],q1);
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
672
673
		q2 = _mm256_FMA_pd(x2, h1, q2);
		q2 = _mm256_FMA_pd(y2, h2, q2);
674
675
		_mm256_store_pd(&q[(i*ldq)+4],q2);
		q3 = _mm256_load_pd(&q[(i*ldq)+8]);
676
677
		q3 = _mm256_FMA_pd(x3, h1, q3);
		q3 = _mm256_FMA_pd(y3, h2, q3);
678
679
		_mm256_store_pd(&q[(i*ldq)+8],q3);
		q4 = _mm256_load_pd(&q[(i*ldq)+12]);
680
681
		q4 = _mm256_FMA_pd(x4, h1, q4);
		q4 = _mm256_FMA_pd(y4, h2, q4);
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
		_mm256_store_pd(&q[(i*ldq)+12],q4);
#else
		q1 = _mm256_load_pd(&q[i*ldq]);
		q1 = _mm256_add_pd(q1, _mm256_add_pd(_mm256_mul_pd(x1,h1), _mm256_mul_pd(y1, h2)));
		_mm256_store_pd(&q[i*ldq],q1);
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
		q2 = _mm256_add_pd(q2, _mm256_add_pd(_mm256_mul_pd(x2,h1), _mm256_mul_pd(y2, h2)));
		_mm256_store_pd(&q[(i*ldq)+4],q2);
		q3 = _mm256_load_pd(&q[(i*ldq)+8]);
		q3 = _mm256_add_pd(q3, _mm256_add_pd(_mm256_mul_pd(x3,h1), _mm256_mul_pd(y3, h2)));
		_mm256_store_pd(&q[(i*ldq)+8],q3);
		q4 = _mm256_load_pd(&q[(i*ldq)+12]);
		q4 = _mm256_add_pd(q4, _mm256_add_pd(_mm256_mul_pd(x4,h1), _mm256_mul_pd(y4, h2)));
		_mm256_store_pd(&q[(i*ldq)+12],q4);
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
700
#ifdef __ELPA_USE_FMA__
701
	q1 = _mm256_load_pd(&q[nb*ldq]);
702
	q1 = _mm256_FMA_pd(x1, h1, q1);
703
704
	_mm256_store_pd(&q[nb*ldq],q1);
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
705
	q2 = _mm256_FMA_pd(x2, h1, q2);
706
707
	_mm256_store_pd(&q[(nb*ldq)+4],q2);
	q3 = _mm256_load_pd(&q[(nb*ldq)+8]);
708
	q3 = _mm256_FMA_pd(x3, h1, q3);
709
710
	_mm256_store_pd(&q[(nb*ldq)+8],q3);
	q4 = _mm256_load_pd(&q[(nb*ldq)+12]);
711
	q4 = _mm256_FMA_pd(x4, h1, q4);
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
	_mm256_store_pd(&q[(nb*ldq)+12],q4);
#else
	q1 = _mm256_load_pd(&q[nb*ldq]);
	q1 = _mm256_add_pd(q1, _mm256_mul_pd(x1, h1));
	_mm256_store_pd(&q[nb*ldq],q1);
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
	q2 = _mm256_add_pd(q2, _mm256_mul_pd(x2, h1));
	_mm256_store_pd(&q[(nb*ldq)+4],q2);
	q3 = _mm256_load_pd(&q[(nb*ldq)+8]);
	q3 = _mm256_add_pd(q3, _mm256_mul_pd(x3, h1));
	_mm256_store_pd(&q[(nb*ldq)+8],q3);
	q4 = _mm256_load_pd(&q[(nb*ldq)+12]);
	q4 = _mm256_add_pd(q4, _mm256_mul_pd(x4, h1));
	_mm256_store_pd(&q[(nb*ldq)+12],q4);
#endif
}

/**
 * Unrolled kernel that computes
 * 8 rows of Q simultaneously, a
 * matrix vector product with two householder
 * vectors + a rank 2 update is performed
 */
735
 __forceinline void hh_trafo_kernel_8_AVX_2hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s)
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
{
	/////////////////////////////////////////////////////
	// Matrix Vector Multiplication, Q [8 x nb+1] * hh
	// hh contains two householder vectors, with offset 1
	/////////////////////////////////////////////////////
	int i;
	// Needed bit mask for floating point sign flip
	__m256d sign = (__m256d)_mm256_set1_epi64x(0x8000000000000000);

	__m256d x1 = _mm256_load_pd(&q[ldq]);
	__m256d x2 = _mm256_load_pd(&q[ldq+4]);

	__m256d h1 = _mm256_broadcast_sd(&hh[ldh+1]);
	__m256d h2;

751
#ifdef __ELPA_USE_FMA__
752
	__m256d q1 = _mm256_load_pd(q);
753
	__m256d y1 = _mm256_FMA_pd(x1, h1, q1);
754
	__m256d q2 = _mm256_load_pd(&q[4]);
755
	__m256d y2 = _mm256_FMA_pd(x2, h1, q2);
756
757
758
759
760
761
762
763
764
765
766
#else
	__m256d q1 = _mm256_load_pd(q);
	__m256d y1 = _mm256_add_pd(q1, _mm256_mul_pd(x1, h1));
	__m256d q2 = _mm256_load_pd(&q[4]);
	__m256d y2 = _mm256_add_pd(q2, _mm256_mul_pd(x2, h1));
#endif

	for(i = 2; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-1]);
		h2 = _mm256_broadcast_sd(&hh[ldh+i]);
767
#ifdef __ELPA_USE_FMA__
768
		q1 = _mm256_load_pd(&q[i*ldq]);
769
770
		x1 = _mm256_FMA_pd(q1, h1, x1);
		y1 = _mm256_FMA_pd(q1, h2, y1);
771
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
772
773
		x2 = _mm256_FMA_pd(q2, h1, x2);
		y2 = _mm256_FMA_pd(q2, h2, y2);
774
775
776
777
778
779
780
781
782
783
784
#else
		q1 = _mm256_load_pd(&q[i*ldq]);
		x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
		y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
		x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
		y2 = _mm256_add_pd(y2, _mm256_mul_pd(q2,h2));
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
785
#ifdef __ELPA_USE_FMA__
786
	q1 = _mm256_load_pd(&q[nb*ldq]);
787
	x1 = _mm256_FMA_pd(q1, h1, x1);
788
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
789
	x2 = _mm256_FMA_pd(q2, h1, x2);
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
#else
	q1 = _mm256_load_pd(&q[nb*ldq]);
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
	x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
#endif

	/////////////////////////////////////////////////////
	// Rank-2 update of Q [8 x nb+1]
	/////////////////////////////////////////////////////

	__m256d tau1 = _mm256_broadcast_sd(hh);
	__m256d tau2 = _mm256_broadcast_sd(&hh[ldh]);
	__m256d vs = _mm256_broadcast_sd(&s);

	h1 = _mm256_xor_pd(tau1, sign);
	x1 = _mm256_mul_pd(x1, h1);
	x2 = _mm256_mul_pd(x2, h1);
	h1 = _mm256_xor_pd(tau2, sign);
	h2 = _mm256_mul_pd(h1, vs);
810
811
812
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(y1, h1, _mm256_mul_pd(x1,h2));
	y2 = _mm256_FMA_pd(y2, h1, _mm256_mul_pd(x2,h2));
813
814
815
816
817
818
819
820
821
822
823
824
825
#else
	y1 = _mm256_add_pd(_mm256_mul_pd(y1,h1), _mm256_mul_pd(x1,h2));
	y2 = _mm256_add_pd(_mm256_mul_pd(y2,h1), _mm256_mul_pd(x2,h2));
#endif

	q1 = _mm256_load_pd(q);
	q1 = _mm256_add_pd(q1, y1);
	_mm256_store_pd(q,q1);
	q2 = _mm256_load_pd(&q[4]);
	q2 = _mm256_add_pd(q2, y2);
	_mm256_store_pd(&q[4],q2);

	h2 = _mm256_broadcast_sd(&hh[ldh+1]);
826
#ifdef __ELPA_USE_FMA__
827
	q1 = _mm256_load_pd(&q[ldq]);
828
	q1 = _mm256_add_pd(q1, _mm256_FMA_pd(y1, h2, x1));
829
830
	_mm256_store_pd(&q[ldq],q1);
	q2 = _mm256_load_pd(&q[ldq+4]);
831
	q2 = _mm256_add_pd(q2, _mm256_FMA_pd(y2, h2, x2));
832
833
834
835
836
837
838
839
840
841
842
843
844
845
	_mm256_store_pd(&q[ldq+4],q2);
#else
	q1 = _mm256_load_pd(&q[ldq]);
	q1 = _mm256_add_pd(q1, _mm256_add_pd(x1, _mm256_mul_pd(y1, h2)));
	_mm256_store_pd(&q[ldq],q1);
	q2 = _mm256_load_pd(&q[ldq+4]);
	q2 = _mm256_add_pd(q2, _mm256_add_pd(x2, _mm256_mul_pd(y2, h2)));
	_mm256_store_pd(&q[ldq+4],q2);
#endif

	for (i = 2; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-1]);
		h2 = _mm256_broadcast_sd(&hh[ldh+i]);
846
#ifdef __ELPA_USE_FMA__
847
		q1 = _mm256_load_pd(&q[i*ldq]);
848
849
		q1 = _mm256_FMA_pd(x1, h1, q1);
		q1 = _mm256_FMA_pd(y1, h2, q1);
850
851
		_mm256_store_pd(&q[i*ldq],q1);
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
852
853
		q2 = _mm256_FMA_pd(x2, h1, q2);
		q2 = _mm256_FMA_pd(y2, h2, q2);
854
855
856
857
858
859
860
861
862
863
864
865
		_mm256_store_pd(&q[(i*ldq)+4],q2);
#else
		q1 = _mm256_load_pd(&q[i*ldq]);
		q1 = _mm256_add_pd(q1, _mm256_add_pd(_mm256_mul_pd(x1,h1), _mm256_mul_pd(y1, h2)));
		_mm256_store_pd(&q[i*ldq],q1);
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
		q2 = _mm256_add_pd(q2, _mm256_add_pd(_mm256_mul_pd(x2,h1), _mm256_mul_pd(y2, h2)));
		_mm256_store_pd(&q[(i*ldq)+4],q2);
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
866
#ifdef __ELPA_USE_FMA__
867
	q1 = _mm256_load_pd(&q[nb*ldq]);
868
	q1 = _mm256_FMA_pd(x1, h1, q1);
869
870
	_mm256_store_pd(&q[nb*ldq],q1);
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
871
	q2 = _mm256_FMA_pd(x2, h1, q2);
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
	_mm256_store_pd(&q[(nb*ldq)+4],q2);
#else
	q1 = _mm256_load_pd(&q[nb*ldq]);
	q1 = _mm256_add_pd(q1, _mm256_mul_pd(x1, h1));
	_mm256_store_pd(&q[nb*ldq],q1);
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
	q2 = _mm256_add_pd(q2, _mm256_mul_pd(x2, h1));
	_mm256_store_pd(&q[(nb*ldq)+4],q2);
#endif
}

/**
 * Unrolled kernel that computes
 * 4 rows of Q simultaneously, a
 * matrix vector product with two householder
 * vectors + a rank 2 update is performed
 */
889
 __forceinline void hh_trafo_kernel_4_AVX_2hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s)
890
891
892
893
894
895
896
897
898
899
900
901
902
903
{
	/////////////////////////////////////////////////////
	// Matrix Vector Multiplication, Q [4 x nb+1] * hh
	// hh contains two householder vectors, with offset 1
	/////////////////////////////////////////////////////
	int i;
	// Needed bit mask for floating point sign flip
	__m256d sign = (__m256d)_mm256_set1_epi64x(0x8000000000000000);

	__m256d x1 = _mm256_load_pd(&q[ldq]);

	__m256d h1 = _mm256_broadcast_sd(&hh[ldh+1]);
	__m256d h2;

904
#ifdef __ELPA_USE_FMA__
905
	__m256d q1 = _mm256_load_pd(q);
906
	__m256d y1 = _mm256_FMA_pd(x1, h1, q1);
907
908
909
910
911
912
913
914
915
#else
	__m256d q1 = _mm256_load_pd(q);
	__m256d y1 = _mm256_add_pd(q1, _mm256_mul_pd(x1, h1));
#endif

	for(i = 2; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-1]);
		h2 = _mm256_broadcast_sd(&hh[ldh+i]);
916
#ifdef __ELPA_USE_FMA__
917
		q1 = _mm256_load_pd(&q[i*ldq]);
918
919
		x1 = _mm256_FMA_pd(q1, h1, x1);
		y1 = _mm256_FMA_pd(q1, h2, y1);
920
921
922
923
924
925
926
927
#else
		q1 = _mm256_load_pd(&q[i*ldq]);
		x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
		y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
928
#ifdef __ELPA_USE_FMA__
929
	q1 = _mm256_load_pd(&q[nb*ldq]);
930
	x1 = _mm256_FMA_pd(q1, h1, x1);
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
#else
	q1 = _mm256_load_pd(&q[nb*ldq]);
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
#endif

	/////////////////////////////////////////////////////
	// Rank-2 update of Q [4 x nb+1]
	/////////////////////////////////////////////////////

	__m256d tau1 = _mm256_broadcast_sd(hh);
	__m256d tau2 = _mm256_broadcast_sd(&hh[ldh]);
	__m256d vs = _mm256_broadcast_sd(&s);

	h1 = _mm256_xor_pd(tau1, sign);
	x1 = _mm256_mul_pd(x1, h1);
	h1 = _mm256_xor_pd(tau2, sign);
	h2 = _mm256_mul_pd(h1, vs);
948
949
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(y1, h1, _mm256_mul_pd(x1,h2));
950
951
952
953
954
955
956
957
958
#else
	y1 = _mm256_add_pd(_mm256_mul_pd(y1,h1), _mm256_mul_pd(x1,h2));
#endif

	q1 = _mm256_load_pd(q);
	q1 = _mm256_add_pd(q1, y1);
	_mm256_store_pd(q,q1);

	h2 = _mm256_broadcast_sd(&hh[ldh+1]);
959
#ifdef __ELPA_USE_FMA__
960
	q1 = _mm256_load_pd(&q[ldq]);
961
	q1 = _mm256_add_pd(q1, _mm256_FMA_pd(y1, h2, x1));
962
963
964
965
966
967
968
969
970
971
972
	_mm256_store_pd(&q[ldq],q1);
#else
	q1 = _mm256_load_pd(&q[ldq]);
	q1 = _mm256_add_pd(q1, _mm256_add_pd(x1, _mm256_mul_pd(y1, h2)));
	_mm256_store_pd(&q[ldq],q1);
#endif

	for (i = 2; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-1]);
		h2 = _mm256_broadcast_sd(&hh[ldh+i]);
973
#ifdef __ELPA_USE_FMA__
974
		q1 = _mm256_load_pd(&q[i*ldq]);
975
976
		q1 = _mm256_FMA_pd(x1, h1, q1);
		q1 = _mm256_FMA_pd(y1, h2, q1);
977
978
979
980
981
982
983
984
985
		_mm256_store_pd(&q[i*ldq],q1);
#else
		q1 = _mm256_load_pd(&q[i*ldq]);
		q1 = _mm256_add_pd(q1, _mm256_add_pd(_mm256_mul_pd(x1,h1), _mm256_mul_pd(y1, h2)));
		_mm256_store_pd(&q[i*ldq],q1);
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
986
#ifdef __ELPA_USE_FMA__
987
	q1 = _mm256_load_pd(&q[nb*ldq]);
988
	q1 = _mm256_FMA_pd(x1, h1, q1);
989
990
991
992
993
994
995
996
	_mm256_store_pd(&q[nb*ldq],q1);
#else
	q1 = _mm256_load_pd(&q[nb*ldq]);
	q1 = _mm256_add_pd(q1, _mm256_mul_pd(x1, h1));
	_mm256_store_pd(&q[nb*ldq],q1);
#endif
}