elpa_c_interface.F90 76.7 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
Andreas Marek's avatar
Andreas Marek committed
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
Andreas Marek's avatar
Andreas Marek committed
14
15
16
17
18
19
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
20
!    http://elpa.mpcdf.mpg.de/
Andreas Marek's avatar
Andreas Marek committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
42
! Author: Andreas Marek, MCPDF
Andreas Marek's avatar
Andreas Marek committed
43
#include "config-f90.h"
Andreas Marek's avatar
Andreas Marek committed
44
  !c> #include <complex.h>
Andreas Marek's avatar
Andreas Marek committed
45

46
  !c> /*! \brief C old, deprecated interface to create the MPI communicators for ELPA
47
48
49
50
51
52
53
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
Andreas Marek's avatar
Andreas Marek committed
54
  !c> int elpa_get_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
55
  function get_elpa_row_col_comms_wrapper_c_name1(mpi_comm_world, my_prow, my_pcol, &
Andreas Marek's avatar
Andreas Marek committed
56
57
58
59
60
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="elpa_get_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

Andreas Marek's avatar
Andreas Marek committed
61
    implicit none
Andreas Marek's avatar
Andreas Marek committed
62
63
64
65
66
67
68
69
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  !c> #include <complex.h>

  !c> /*! \brief C interface to create the MPI communicators for ELPA
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
  !c> int get_elpa_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
  function get_elpa_row_col_comms_wrapper_c_name2(mpi_comm_world, my_prow, my_pcol, &
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="get_elpa_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

    implicit none
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function



99
  !c>  /*! \brief C interface to solve the double-precision real eigenvalue problem with 1-stage solver
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  !c>  *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c>*/
121
#define DOUBLE_PRECISION_REAL 1
122
123
124
125
126
#ifdef DOUBLE_PRECISION_REAL
  !c> int elpa_solve_evp_real_1stage_double_precision(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
#else
  !c> int elpa_solve_evp_real_1stage_single_precision(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
#endif
127

128
#ifdef DOUBLE_PRECISION_REAL
129
130
  function solve_elpa1_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
131
132
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage_double_precision")
#else
133
134
  function solve_elpa1_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
135
136
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage_single_precision")
#endif
137

Andreas Marek's avatar
Andreas Marek committed
138
    use, intrinsic :: iso_c_binding
139
    use elpa1
Andreas Marek's avatar
Andreas Marek committed
140

Andreas Marek's avatar
Andreas Marek committed
141
    implicit none
Andreas Marek's avatar
Andreas Marek committed
142
    integer(kind=c_int)                    :: success
143
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
144
#ifdef DOUBLE_PRECISION_REAL
145
146
147
148
149
    real(kind=c_double)                    :: ev(1:na)
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    real(kind=c_double)                    :: a(lda,*), q(ldq,*)
#else
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
150
151
152
153
154
155
156
#endif

#else /* SINGLE_PRECISION */
    real(kind=c_float)                     :: ev(1:na)

#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    real(kind=c_float)                     :: a(lda,*), q(ldq,*)
157
158
#else
    real(kind=c_float)                     :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
159
160
#endif

161
#endif
Andreas Marek's avatar
Andreas Marek committed
162
163
    logical                                :: successFortran

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#ifdef DOUBLE_PRECISION_REAL
    successFortran = solve_evp_real_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#else
    successFortran = solve_evp_real_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#endif
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_REAL
#undef DOUBLE_PRECISION_REAL
  !c>  /*! \brief C interface to solve the single-precision real eigenvalue problem with 1-stage solver
  !c>  *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c>*/
#ifdef DOUBLE_PRECISION_REAL
  !c> int elpa_solve_evp_real_1stage_double_precision(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
#else
  !c> int elpa_solve_evp_real_1stage_single_precision(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
#endif

#ifdef DOUBLE_PRECISION_REAL
  function solve_elpa1_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage_double_precision")
#else
  function solve_elpa1_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage_single_precision")
#endif
    use, intrinsic :: iso_c_binding
    use elpa1

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
#ifdef DOUBLE_PRECISION_REAL
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
#else
    real(kind=c_float)                     :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
#endif
    logical                                :: successFortran
Andreas Marek's avatar
Andreas Marek committed
228

229
230
231
232
233
#ifdef DOUBLE_PRECISION_REAL
    successFortran = solve_evp_real_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#else
    successFortran = solve_evp_real_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#endif
Andreas Marek's avatar
Andreas Marek committed
234
235
236
237
238
239
240
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
241

242
243
#endif /* WANT_SINGLE_PRECISION_REAL */

244

245
246

  !c> /*! \brief C interface to solve the double-precision complex eigenvalue problem with 1-stage solver
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  !c> *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
268
#define DOUBLE_PRECISION_COMPLEX 1
269
270
271
272
273
274
275
#ifdef DOUBLE_PRECISION_COMPLEX
  !c> int elpa_solve_evp_complex_1stage_double_precision(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
#else
  !c> int elpa_solve_evp_complex_1stage_single_precision(int na, int nev,  complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
276
277
  function solve_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
278
279
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage_double_precision")
#else
280
281
  function solve_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
282
283
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage_single_precision")
#endif
Andreas Marek's avatar
Andreas Marek committed
284
    use, intrinsic :: iso_c_binding
285
    use elpa1
Andreas Marek's avatar
Andreas Marek committed
286

Andreas Marek's avatar
Andreas Marek committed
287
    implicit none
Andreas Marek's avatar
Andreas Marek committed
288
    integer(kind=c_int)                    :: success
289
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
290
#ifdef DOUBLE_PRECISION_COMPLEX
Andreas Marek's avatar
Andreas Marek committed
291
    real(kind=c_double)                    :: ev(1:na)
292
293
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    complex(kind=c_double_complex)         :: a(lda,*), q(ldq,*)
294
#else
295
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
296
#endif
297
298

#else /* SINGLE_PRECISION */
299
    real(kind=c_float)                     :: ev(1:na)
300
301
302
303
304
305
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    complex(kind=c_float_complex)          :: a(lda,*), q(ldq,*)
#else
    complex(kind=c_float_complex)          :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif

306
#endif
Andreas Marek's avatar
Andreas Marek committed
307
308
309

    logical                                :: successFortran

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#ifdef DOUBLE_PRECISION_COMPLEX
    successFortran = solve_evp_complex_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#else
    successFortran = solve_evp_complex_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#endif
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_COMPLEX

  !c> /*! \brief C interface to solve the single-precision complex eigenvalue problem with 1-stage solver
  !c> *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
#undef DOUBLE_PRECISION_COMPLEX
#ifdef DOUBLE_PRECISION_COMPLEX
  !c> int elpa_solve_evp_complex_1stage_double_precision(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
#else
  !c> int elpa_solve_evp_complex_1stage_single_precision(int na, int nev,  complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
  function solve_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage_double_precision")
#else
  function solve_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage_single_precision")
#endif
    use, intrinsic :: iso_c_binding
    use elpa1

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
#ifdef DOUBLE_PRECISION_COMPLEX
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
    real(kind=c_double)                    :: ev(1:na)
#else
    complex(kind=c_float_complex)          :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
    real(kind=c_float)                     :: ev(1:na)
#endif

    logical                                :: successFortran
Andreas Marek's avatar
Andreas Marek committed
378

379
380
381
382
383
#ifdef DOUBLE_PRECISION_COMPLEX
    successFortran = solve_evp_complex_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#else
    successFortran = solve_evp_complex_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#endif
Andreas Marek's avatar
Andreas Marek committed
384
385
386
387
388
389
390
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
391
392
393
394
395

#endif /* WANT_SINGLE_PRECISION_COMPLEX */


  !c> /*! \brief C interface to solve the double-precision real eigenvalue problem with 2-stage solver
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
420
#define DOUBLE_PRECISION_REAL 1
421
422
423
424
425
426
#ifdef DOUBLE_PRECISION_REAL
  !c> int elpa_solve_evp_real_2stage_double_precision(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
#else
  !c> int elpa_solve_evp_real_2stage_single_precision(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
#endif

427
428
#ifdef DOUBLE_PRECISION_REAL
  function solve_elpa2_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
429
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
Andreas Marek's avatar
Andreas Marek committed
430
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
431
432
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_double_precision")
#else
433
434
435
436
437
  function solve_elpa2_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_double_precision")

438
439
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_single_precision")
#endif
Andreas Marek's avatar
Andreas Marek committed
440
    use, intrinsic :: iso_c_binding
441
    use elpa2
Andreas Marek's avatar
Andreas Marek committed
442

Andreas Marek's avatar
Andreas Marek committed
443
    implicit none
Andreas Marek's avatar
Andreas Marek committed
444
    integer(kind=c_int)                    :: success
445
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
446
447
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_REAL_ELPA_KERNEL_API, useQR
448
#ifdef DOUBLE_PRECISION_REAL
449
450
    real(kind=c_double)                    :: ev(1:na)
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
451
    real(kind=c_double)                    :: a(1:lda,*), q(1:ldq,*)
452
#else
453
454
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
455
456
457
458
459
460
461
462
463
464

#else /* SINGLE_PRECISION */

    real(kind=c_float)                     :: ev(1:na)
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    real(kind=c_float)                     :: a(1:lda,*), q(1:ldq,*)
#else
    real(kind=c_float)                     :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif

465
#endif
Andreas Marek's avatar
Andreas Marek committed
466
467
468
469
470
471
472
473
474

    logical                                :: successFortran, useQRFortran

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

475
476
#ifdef DOUBLE_PRECISION_REAL
    successFortran = solve_evp_real_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
477
                                           mpi_comm_cols, mpi_comm_all,                                  &
Andreas Marek's avatar
Andreas Marek committed
478
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
479
480
481
482
483
484
485
486
487
488
#else
    successFortran = solve_evp_real_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
#endif
    if (successFortran) then
      success = 1
    else
      success = 0
    endif
Andreas Marek's avatar
Andreas Marek committed
489

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
  end function

#ifdef WANT_SINGLE_PRECISION_REAL

  !c> /*! \brief C interface to solve the single-precision real eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
#undef DOUBLE_PRECISION_REAL
#ifdef DOUBLE_PRECISION_REAL
  !c> int elpa_solve_evp_real_2stage_double_precision(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
#else
  !c> int elpa_solve_evp_real_2stage_single_precision(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
#endif

#ifdef DOUBLE_PRECISION_REAL
  function solve_elpa2_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_double_precision")
#else
  function solve_elpa2_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_single_precision")
#endif
    use, intrinsic :: iso_c_binding
    use elpa2

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_REAL_ELPA_KERNEL_API, useQR
#ifdef DOUBLE_PRECISION_REAL
546
547
548
    real(kind=c_double)                    ::  ev(1:na)
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    real(kind=c_double)                    :: a(1:lda,*), q(1:ldq,*)
549
#else
550
551
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
Andreas Marek's avatar
Andreas Marek committed
552

553
554
555
556
557
558
559
#else /* SINGLE_PRECISION */

    real(kind=c_float)                     :: ev(1:na)
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    real(kind=c_float)                     :: a(1:lda,*), q(1:ldq,*)
#else
    real(kind=c_float)                     :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
560
561
#endif

562
#endif
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    logical                                :: successFortran, useQRFortran

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

#ifdef DOUBLE_PRECISION_REAL
    successFortran = solve_evp_real_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
#else
    successFortran = solve_evp_real_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
#endif
Andreas Marek's avatar
Andreas Marek committed
580
581
582
583
584
585
586
587
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

588
#endif /* WANT_SINGLE_PRECISION_REAL */
589

590
  !c> /*! \brief C interface to solve the double-precision complex eigenvalue problem with 2-stage solver
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
615
616
#define DOUBLE_PRECISION_COMPLEX 1

617
618
619
620
621
#ifdef DOUBLE_PRECISION_COMPLEX
  !c> int elpa_solve_evp_complex_2stage_double_precision(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
#else
  !c> int elpa_solve_evp_complex_2stage_single_precision(int na, int nev, complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
#endif
622
623
624

#ifdef DOUBLE_PRECISION_COMPLEX
  function solve_elpa2_evp_complex_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
625
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
Andreas Marek's avatar
Andreas Marek committed
626
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
627
628
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage_double_precision")
#else
629
630
631
  function solve_elpa2_evp_complex_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
632
633
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage_single_precision")
#endif
Andreas Marek's avatar
Andreas Marek committed
634
635

    use, intrinsic :: iso_c_binding
636
    use elpa2
Andreas Marek's avatar
Andreas Marek committed
637

Andreas Marek's avatar
Andreas Marek committed
638
    implicit none
Andreas Marek's avatar
Andreas Marek committed
639
    integer(kind=c_int)                    :: success
640
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
641
642
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
643
#ifdef DOUBLE_PRECISION_COMPLEX
Andreas Marek's avatar
Andreas Marek committed
644
    real(kind=c_double)                    :: ev(1:na)
645
646
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    complex(kind=c_double_complex)         :: a(lda,*), q(ldq,*)
647
#else
648
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
649
#endif
650
651

#else /* SINGLE_PRECISION */
652
    real(kind=c_float)                     :: ev(1:na)
653
654
655
656
657
658
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    complex(kind=c_float_complex)          ::  a(lda,*), q(ldq,*)
#else
    complex(kind=c_float_complex)          :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif

659
#endif
Andreas Marek's avatar
Andreas Marek committed
660
661
    logical                                :: successFortran

662
663
#ifdef DOUBLE_PRECISION_COMPLEX
    successFortran = solve_evp_complex_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
Andreas Marek's avatar
Andreas Marek committed
664
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
#else
    successFortran = solve_evp_complex_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
#endif
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_COMPLEX

  !c> /*! \brief C interface to solve the single-precision complex eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
#undef DOUBLE_PRECISION_COMPLEX
Andreas Marek's avatar
Andreas Marek committed
705

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
#ifdef DOUBLE_PRECISION_COMPLEX
  !c> int elpa_solve_evp_complex_2stage_double_precision(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
#else
  !c> int elpa_solve_evp_complex_2stage_single_precision(int na, int nev, complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
  function solve_elpa2_evp_complex_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage_double_precision")
#else
  function solve_elpa2_evp_complex_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage_single_precision")
#endif

    use, intrinsic :: iso_c_binding
    use elpa2

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
#ifdef DOUBLE_PRECISION_COMPLEX
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
    real(kind=c_double)                    :: ev(1:na)
#else
    complex(kind=c_float_complex)          :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
    real(kind=c_float)                     :: ev(1:na)
#endif
    logical                                :: successFortran

#ifdef DOUBLE_PRECISION_COMPLEX
    successFortran = solve_evp_complex_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
#else
    successFortran = solve_evp_complex_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
#endif
Andreas Marek's avatar
Andreas Marek committed
748
749
750
751
752
753
754
755
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

756
757
#endif /* WANT_SINGLE_PRECISION_COMPLEX */

758
  !c> /*
759
  !c> \brief  C interface to solve double-precision tridiagonal eigensystem with divide and conquer method
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
  !c> \details
  !c>
  !c> \param na                    Matrix dimension
  !c> \param nev                   number of eigenvalues/vectors to be computed
  !c> \param d                     array d(na) on input diagonal elements of tridiagonal matrix, on
  !c>                              output the eigenvalues in ascending order
  !c> \param e                     array e(na) on input subdiagonal elements of matrix, on exit destroyed
  !c> \param q                     on exit : matrix q(ldq,matrixCols) contains the eigenvectors
  !c> \param ldq                   leading dimension of matrix q
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param matrixCols            columns of matrix q
  !c> \param mpi_comm_rows         MPI communicator for rows
  !c> \param mpi_comm_cols         MPI communicator for columns
  !c> \param wantDebug             give more debug information if 1, else 0
  !c> \result success              int 1 on success, else 0
  !c> */
776
777
778
  !c> int elpa_solve_tridi_double(int na, int nev, double *d, double *e, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_solve_tridi_wrapper_double(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
           result(success) bind(C,name="elpa_solve_tridi_double")
779
780

    use, intrinsic :: iso_c_binding
781
    use elpa1_auxiliary, only : elpa_solve_tridi_double
782
783
784
785
786

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, ldq, nblk, matrixCols,  mpi_comm_cols, mpi_comm_rows
    integer(kind=c_int), value             :: wantDebug
787
788
    real(kind=c_double)                    :: d(1:na), e(1:na)
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
789
790
791
792
    real(kind=c_double)                    :: q(ldq,*)
#else
    real(kind=c_double)                    :: q(1:ldq, 1:matrixCols)
#endif
793
794
795
796
797
798
799
800
    logical                                :: successFortran, wantDebugFortran

    if (wantDebug .ne. 0) then
      wantDebugFortran = .true.
    else
      wantDebugFortran = .false.
    endif

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
    successFortran = elpa_solve_tridi_double(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                      wantDebugFortran)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_REAL

  !c> /*
  !c> \brief  C interface to solve single-precision tridiagonal eigensystem with divide and conquer method
  !c> \details
  !c>
  !c> \param na                    Matrix dimension
  !c> \param nev                   number of eigenvalues/vectors to be computed
  !c> \param d                     array d(na) on input diagonal elements of tridiagonal matrix, on
  !c>                              output the eigenvalues in ascending order
  !c> \param e                     array e(na) on input subdiagonal elements of matrix, on exit destroyed
  !c> \param q                     on exit : matrix q(ldq,matrixCols) contains the eigenvectors
  !c> \param ldq                   leading dimension of matrix q
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param matrixCols            columns of matrix q
  !c> \param mpi_comm_rows         MPI communicator for rows
  !c> \param mpi_comm_cols         MPI communicator for columns
  !c> \param wantDebug             give more debug information if 1, else 0
  !c> \result success              int 1 on success, else 0
  !c> */
  !c> int elpa_solve_tridi_single(int na, int nev, float *d, float *e, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_solve_tridi_wrapper_single(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
           result(success) bind(C,name="elpa_solve_tridi_single")

    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_solve_tridi_single

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, ldq, nblk, matrixCols,  mpi_comm_cols, mpi_comm_rows
    integer(kind=c_int), value             :: wantDebug
    real(kind=c_float)                     :: d(1:na), e(1:na), q(1:ldq, 1:matrixCols)
    logical                                :: successFortran, wantDebugFortran

    if (wantDebug .ne. 0) then
      wantDebugFortran = .true.
    else
      wantDebugFortran = .false.
    endif

852
853
    successFortran = elpa_solve_tridi_single(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                             mpi_comm_cols, wantDebugFortran)
854
855
856
857
858
859
860
861
862

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

863
864
#endif /* WANT_SINGLE_PRECISION_REAL */

865
  !c> /*
866
  !c> \brief  C interface for elpa_mult_at_b_real_double: Performs C : = A**T * B for double-precision matrices
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
  !c>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c>                 B is a (na,ncb) matrix
  !c>                 C is a (na,ncb) matrix where optionally only the upper or lower
  !c>                   triangle may be computed
  !c> \details
  !c> \param  uplo_a               'U' if A is upper triangular
  !c>                              'L' if A is lower triangular
  !c>                              anything else if A is a full matrix
  !c>                              Please note: This pertains to the original A (as set in the calling program)
  !c>                                           whereas the transpose of A is used for calculations
  !c>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c>                              i.e. it may contain arbitrary numbers
  !c> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !c>                              'L' if only the upper diagonal part of C is needed
  !c>                              anything else if the full matrix C is needed
  !c>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> \param na                    Number of rows/columns of A, number of rows of B and C
  !c> \param ncb                   Number of columns  of B and C
  !c> \param a                     matrix a
  !c> \param lda                   leading dimension of matrix a
888
  !c> \param ldaCols               columns of matrix a
889
890
  !c> \param b                     matrix b
  !c> \param ldb                   leading dimension of matrix b
891
  !c> \param ldbCols               columns of matrix b
892
893
894
895
896
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param c                     matrix c
  !c> \param ldc                   leading dimension of matrix c
897
  !c> \param ldcCols               columns of matrix c
898
899
900
  !c> \result success              int report success (1) or failure (0)
  !c> */

901
902
903
  !c> int elpa_mult_at_b_real_double(char uplo_a, char uplo_c, int na, int ncb, double *a, int lda, int ldaCols, double *b, int ldb, int ldbCols, int nlbk, int mpi_comm_rows, int mpi_comm_cols, double *c, int ldc, int ldcCols);
  function elpa_mult_at_b_real_wrapper_double(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                              nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols) &
904
                                              bind(C,name="elpa_mult_at_b_real_double") result(success)
905
    use, intrinsic :: iso_c_binding
906
    use elpa1_auxiliary, only : elpa_mult_at_b_real_double
907
908
909
910

    implicit none

    character(1,C_CHAR), value  :: uplo_a, uplo_c
911
912
    integer(kind=c_int), value  :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc, &
                                   ldaCols, ldbCols, ldcCols
913
    integer(kind=c_int)         :: success
914
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
915
    real(kind=c_double)         :: a(lda,*), b(ldb,*), c(ldc,*)
916
917
918
#else
    real(kind=c_double)         :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
919
920
    logical                     :: successFortran

921
922
    successFortran = elpa_mult_at_b_real_double(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                                nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)
923
924
925
926
927
928
929
930
931

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

932
#ifdef WANT_SINGLE_PRECISION_REAL
933
  !c> /*
934
  !c> \brief  C interface for elpa_mult_at_b_real_single: Performs C : = A**T * B for single-precision matrices
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
  !c>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c>                 B is a (na,ncb) matrix
  !c>                 C is a (na,ncb) matrix where optionally only the upper or lower
  !c>                   triangle may be computed
  !c> \details
  !c> \param  uplo_a               'U' if A is upper triangular
  !c>                              'L' if A is lower triangular
  !c>                              anything else if A is a full matrix
  !c>                              Please note: This pertains to the original A (as set in the calling program)
  !c>                                           whereas the transpose of A is used for calculations
  !c>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c>                              i.e. it may contain arbitrary numbers
  !c> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !c>                              'L' if only the upper diagonal part of C is needed
  !c>                              anything else if the full matrix C is needed
  !c>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> \param na                    Number of rows/columns of A, number of rows of B and C
  !c> \param ncb                   Number of columns  of B and C
  !c> \param a                     matrix a
  !c> \param lda                   leading dimension of matrix a
956
  !c> \param ldaCols               columns of matrix a
957
958
  !c> \param b                     matrix b
  !c> \param ldb                   leading dimension of matrix b
959
  !c> \param ldbCols               columns of matrix b
960
961
962
963
964
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param c                     matrix c
  !c> \param ldc                   leading dimension of matrix c
965
  !c> \result success              int report success (1) or failure (0)
966
967
  !c> */

968
969
970
971
  !c> int elpa_mult_at_b_real_single(char uplo_a, char uplo_c, int na, int ncb, float *a, int lda, int ldaCols, float *b, int ldb, int ldbCols, int nlbk, int mpi_comm_rows, int mpi_comm_cols, float *c, int ldc, int ldcCols);
  function elpa_mult_at_b_real_wrapper_float(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                             nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols) &
    bind(C,name="elpa_mult_at_b_real_float") result(success)
972
    use, intrinsic :: iso_c_binding
973
    use elpa1_auxiliary, only : elpa_mult_at_b_real_single
974
975
976

    implicit none

977
978
979
980
981
982
983
984
985
986
987
    character(1,C_CHAR), value  :: uplo_a, uplo_c
    integer(kind=c_int), value  :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc
    integer(kind=c_int)         :: success
    integer(kind=c_int), value  :: ldaCols, ldbCols, ldCcols
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    real(kind=c_float)          :: a(lda,*), b(ldb,*), c(ldc,*)
#else
    real(kind=c_float)          :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
    logical                     :: successFortran

988
    successFortran = elpa_mult_at_b_real_single(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
                                               nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#endif /* WANT_SINGLE_PRECISION_REAL */

  !c> /*
  !c> \brief C interface for elpa_mult_ah_b_complex_double: Performs C : = A**H * B for double-precision matrices
  !c>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c>                 B is a (na,ncb) matrix
  !c>                 C is a (na,ncb) matrix where optionally only the upper or lower
  !c>                   triangle may be computed
  !c> \details
  !c>
  !c> \param  uplo_a               'U' if A is upper triangular
  !c>                              'L' if A is lower triangular
  !c>                              anything else if A is a full matrix
  !c>                              Please note: This pertains to the original A (as set in the calling program)
  !c>                                           whereas the transpose of A is used for calculations
  !c>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c>                              i.e. it may contain arbitrary numbers
  !c> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !c>                              'L' if only the upper diagonal part of C is needed
  !c>                              anything else if the full matrix C is needed
  !c>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> \param na                    Number of rows/columns of A, number of rows of B and C
  !c> \param ncb                   Number of columns  of B and C
  !c> \param a                     matrix a
  !c> \param lda                   leading dimension of matrix a
  !c> \param b                     matrix b
  !c> \param ldb                   leading dimension of matrix b
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param c                     matrix c
  !c> \param ldc                   leading dimension of matrix c
  !c> \result success              int reports success (1) or failure (0)
  !c> */

  !c> int elpa_mult_ah_b_complex_double(char uplo_a, char uplo_c, int na, int ncb, double complex *a, int lda, int ldaCols, double complex *b, int ldb, int ldbCols, int nblk, int mpi_comm_rows, int mpi_comm_cols, double complex *c, int ldc, int ldcCols);
  function elpa_mult_ah_b_complex_wrapper_double( uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                                  nblk, mpi_comm_rows, &
                                                mpi_comm_cols, c, ldc, ldcCols) result(success) &
                                                bind(C,name="elpa_mult_ah_b_complex_double")
    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_mult_ah_b_complex_double

    implicit none

    character(1,C_CHAR), value     :: uplo_a, uplo_c
    integer(kind=c_int), value     :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc
    integer(kind=c_int)            :: success
    integer(kind=c_int), value     :: ldaCols, ldbCols, ldcCols
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
1050
    complex(kind=c_double_complex) :: a(lda,*), b(ldb,*), c(ldc,*)
1051
1052
1053
#else
    complex(kind=c_double_complex) :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
1054
1055
    logical                        :: successFortran

1056
1057
    successFortran = elpa_mult_ah_b_complex_double(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, nblk, &
                                                   mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)
1058
1059
1060
1061
1062
1063
1064
1065
1066

    if (successFortran) then
      success = 1
    else
      success = 0
     endif

  end function

1067
1068
#ifdef WANT_SINGLE_PRECISION_COMPLEX

1069
  !c> /*
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
  !c> \brief C interface for elpa_mult_ah_b_complex_single: Performs C : = A**H * B for single-precision matrices
  !c>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c>                 B is a (na,ncb) matrix
  !c>                 C is a (na,ncb) matrix where optionally only the upper or lower
  !c>                   triangle may be computed
  !c> \details
  !c>
  !c> \param  uplo_a               'U' if A is upper triangular
  !c>                              'L' if A is lower triangular
  !c>                              anything else if A is a full matrix
  !c>                              Please note: This pertains to the original A (as set in the calling program)
  !c>                                           whereas the transpose of A is used for calculations
  !c>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c>                              i.e. it may contain arbitrary numbers
  !c> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !c>                              'L' if only the upper diagonal part of C is needed
  !c>                              anything else if the full matrix C is needed
  !c>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> \param na                    Number of rows/columns of A, number of rows of B and C
  !c> \param ncb                   Number of columns  of B and C
  !c> \param a                     matrix a
  !c> \param lda                   leading dimension of matrix a
  !c> \param b                     matrix b
  !c> \param ldb                   leading dimension of matrix b
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param c                     matrix c
  !c> \param ldc                   leading dimension of matrix c
  !c> \result success              int reports success (1) or failure (0)
  !c> */

  !c> int elpa_mult_ah_b_complex_single(char uplo_a, char uplo_c, int na, int ncb, complex *a, int lda, int ldaCols, complex *b, int ldb, int ldbCols, int nblk, int mpi_comm_rows, int mpi_comm_cols, complex *c, int ldc, int ldcCols);
  function elpa_mult_ah_b_complex_wrapper_single( uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                                 nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols) &
    result(success) bind(C,name="elpa_mult_ah_b_complex_single")
    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_mult_ah_b_complex_single

    implicit none

    character(1,C_CHAR), value     :: uplo_a, uplo_c
    integer(kind=c_int), value     :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc
    integer(kind=c_int)            :: success
    integer(kind=c_int), value     :: ldaCols, ldbCols, ldcCols
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
    complex(kind=c_float_complex)  :: a(lda,*), b(ldb,*), c(ldc,*)
#else
    complex(kind=c_float_complex)  :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
    logical                        :: successFortran

1123
    successFortran = elpa_mult_ah_b_complex_single(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
                                                  nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)

    if (successFortran) then
      success = 1
    else
      success = 0
     endif

  end function

#endif /* WANT_SINGLE_PRECISION_COMPLEX */

  !c> /*
  !c> \brief  C interface to elpa_invert_trm_real_double: Inverts a real double-precision upper triangular matrix
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
  !c> \details
  !c> \param  na                   Order of matrix
  !c> \param  a(lda,matrixCols)    Distributed matrix which should be inverted
  !c>                              Distribution is like in Scalapack.
  !c>                              Only upper triangle is needs to be set.
  !c>                              The lower triangle is not referenced.
  !c> \param  lda                  Leading dimension of a
  !c> \param                       matrixCols  local columns of matrix a
  !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param wantDebug             int more debug information on failure if 1, else 0
  !c> \result succes               int reports success (1) or failure (0)
  !c> */

1153
1154
1155
  !c> int elpa_invert_trm_real_double(int na, double *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_invert_trm_real_wrapper_double(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
        result(success) bind(C,name="elpa_invert_trm_real_double")
1156
   use, intrinsic :: iso_c_binding
1157
   use elpa1_auxiliary, only : elpa_invert_trm_real_double
1158
1159
1160
1161
1162
1163

   implicit none

   integer(kind=c_int), value  :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols
   integer(kind=c_int), value  :: wantDebug
   integer(kind=c_int)         :: success
1164
1165
1166
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
   real(kind=c_double)         :: a(lda,*)
#else
1167
   real(kind=c_double)         :: a(lda,matrixCols)
1168
#endif
1169
1170
1171
1172
1173
1174
1175
1176
   logical                     :: wantDebugFortran, successFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

1177
   successFortran = elpa_invert_trm_real_double(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)
1178
1179
1180
1181
1182
1183
1184
1185
1186

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
#ifdef WANT_SINGLE_PRECISION_REAL

  !c> /*
  !c> \brief  C interface to elpa_invert_trm_real_single: Inverts a real single-precision upper triangular matrix
  !c> \details
  !c> \param  na                   Order of matrix
  !c> \param  a(lda,matrixCols)    Distributed matrix which should be inverted
  !c>                              Distribution is like in Scalapack.
  !c>                              Only upper triangle is needs to be set.
  !c>                              The lower triangle is not referenced.
  !c> \param  lda                  Leading dimension of a
  !c> \param                       matrixCols  local columns of matrix a
  !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param wantDebug             int more debug information on failure if 1, else 0
  !c> \result succes               int reports success (1) or failure (0)
  !c> */

  !c> int elpa_invert_trm_real_single(int na, double *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_invert_trm_real_wrapper_single(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
        result(success) bind(C,name="elpa_invert_trm_real_single")
   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_invert_trm_real_single

   implicit none

   integer(kind=c_int), value  :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols
   integer(kind=c_int), value  :: wantDebug
   integer(kind=c_int)         :: success
   real(kind=c_float)          :: a(lda,matrixCols)

   logical                     :: wantDebugFortran, successFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_invert_trm_real_single(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function


#endif /* WANT_SINGLE_PRECISION_REAL */

1240
 !c> /*
1241
 !c> \brief  C interface to elpa_invert_trm_complex_double: Inverts a double-precision complex upper triangular matrix
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
 !c> \details
 !c> \param  na                   Order of matrix
 !c> \param  a(lda,matrixCols)    Distributed matrix which should be inverted
 !c>                              Distribution is like in Scalapack.
 !c>                              Only upper triangle is needs to be set.
 !c>                              The lower triangle is not referenced.
 !c> \param  lda                  Leading dimension of a
 !c> \param                       matrixCols  local columns of matrix a
 !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> \param  mpi_comm_rows        MPI communicator for rows
 !c> \param  mpi_comm_cols        MPI communicator for columns
 !c> \param wantDebug             int more debug information on failure if 1, else 0
 !c> \result succes               int reports success (1) or failure (0)
 !c> */

1257
1258
1259
1260
 !c> int elpa_invert_trm_complex_double(int na, double complex *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
 function elpa_invert_trm_complex_wrapper_double(na, a, lda, nblk, matrixCols, mpi_comm_rows, &
                                                 mpi_comm_cols, wantDebug) result(success) &
   bind(C,name="elpa_invert_trm_complex_double")
1261
1262

   use, intrinsic :: iso_c_binding
1263
   use elpa1_auxiliary, only : elpa_invert_trm_complex_double
1264
1265
1266
1267
1268
1269

   implicit none

   integer(kind=c_int), value     :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols
   integer(kind=c_int), value     :: wantDebug
   integer(kind=c_int)            :: success
1270
1271
1272
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
   complex(kind=c_double_complex) :: a(lda, *)
#else
1273
   complex(kind=c_double_complex) :: a(lda, matrixCols)
1274
#endif
1275
1276
1277
1278
1279
1280
1281
1282
1283
   logical                        :: successFortran, wantDebugFortran


   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

1284
1285
   successFortran = elpa_invert_trm_complex_double(na, a, lda, nblk, matrixCols, mpi_comm_rows, &
                                                   mpi_comm_cols, wantDebugFortran)
1286
1287
1288
1289
1290
1291
1292
1293

   if (successFortran) then
     success = 1
   else
     success = 0
   endif
 end function

1294
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1295
 !c> /*
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
 !c> \brief  C interface to elpa_invert_trm_complex_single: Inverts a single-precision complex upper triangular matrix
 !c> \details
 !c> \param  na                   Order of matrix
 !c> \param  a(lda,matrixCols)    Distributed matrix which should be inverted
 !c>                              Distribution is like in Scalapack.
 !c>                              Only upper triangle is needs to be set.
 !c>                              The lower triangle is not referenced.
 !c> \param  lda                  Leading dimension of a
 !c> \param                       matrixCols  local columns of matrix a
 !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> \param  mpi_comm_rows        MPI communicator for rows
 !c> \param  mpi_comm_cols        MPI communicator for columns
 !c> \param wantDebug             int more debug information on failure if 1, else 0
 !c> \result succes               int reports success (1) or failure (0)
 !c> */

 !c> int elpa_invert_trm_complex_single(int na, complex *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
1313
1314
 function elpa_invert_trm_complex_wrapper_single(na, a, lda, nblk, matrixCols, mpi_comm_rows, &
                                                 mpi_comm_cols, wantDebug) result(success) &
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
   bind(C,name="elpa_invert_trm_complex_single")

   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_invert_trm_complex_single

   implicit none

   integer(kind=c_int), value     :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols
   integer(kind=c_int), value     :: wantDebug
   integer(kind=c_int)            :: success
   complex(kind=c_float_complex)  :: a(lda, matrixCols)

   logical                        :: successFortran, wantDebugFortran


   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_invert_trm_complex_single(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif
 end function
1344
1345
1346

#endif /* WANT_SINGLE_PRECISION_COMPLEX */

1347
1348
 !c> /*
 !c> \brief  elpa_cholesky_real_double: Cholesky factorization of a double-precision real symmetric matrix
1349
1350
1351
1352
1353
1354
1355
1356
1357
 !c> \details
 !c>
 !c> \param  na                   Order of matrix
 !c> \param  a(lda,matrixCols)    Distributed matrix which should be factorized.
 !c>                              Distribution is like in Scalapack.
 !c>                              Only upper triangle is needs to be set.
 !c>                              On return, the upper triangle contains the Cholesky factor
 !c>                              and the lower triangle is set to 0.
 !c> \param  lda                  Leading dimension of a
1358
 !c> \param  matrixCols           local columns of matrix a
1359
1360
1361
1362
1363
1364
1365
 !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> \param  mpi_comm_rows        MPI communicator for rows
 !c> \param  mpi_comm_cols        MPI communicator for columns
 !c> \param wantDebug             int more debug information on failure if 1, else 0
 !c> \result succes               int reports success (1) or failure (0)
 !c> */

1366
1367
1368
 !c> int elpa_cholesky_real_double(int na, double *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
 function elpa_cholesky_real_wrapper_double(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) result(success) &
       bind(C,name="elpa_cholesky_real_double")
1369
1370

   use, intrinsic :: iso_c_binding
1371
   use elpa1_auxiliary, only : elpa_cholesky_real_double
1372
1373
1374
1375
1376

   implicit none

   integer(kind=c_int), value :: na, lda, nblk, matrixCols,  mpi_comm_rows, mpi_comm_cols, wantDebug
   integer(kind=c_int)        :: success
1377
1378
1379
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
   real(kind=c_double)        :: a(lda,*)
#else
1380
   real(kind=c_double)        :: a(lda,matrixCols)
1381
#endif
1382
1383
1384
1385
1386
1387
1388
1389
   logical                    :: successFortran, wantDebugFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
   successFortran = elpa_cholesky_real_double(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function

#ifdef WANT_SINGLE_PRECISION_REAL

 !c> /*
 !c> \brief  elpa_cholesky_real_single: Cholesky factorization of a single-precision real symmetric matrix
 !c> \details
 !c>
 !c> \param  na                   Order of matrix
 !c> \param  a(lda,matrixCols)    Distributed matrix which should be factorized.
 !c>                              Distribution is like in Scalapack.
 !c>                              Only upper triangle is needs to be set.
 !c>                              On return, the upper triangle contains the Cholesky factor
 !c>                              and the lower triangle is set to 0.
 !c> \param  lda                  Leading dimension of a
 !c> \param                       matrixCols  local columns of matrix a
 !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> \param  mpi_comm_rows        MPI communicator for rows
 !c> \param  mpi_comm_cols        MPI communicator for columns
 !c> \param wantDebug             int more debug information on failure if 1, else 0
 !c> \result succes               int reports success (1) or failure (0)
 !c> */

 !c> int elpa_cholesky_real_single(int na, float *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
 function elpa_cholesky_real_wrapper_single(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) result(success) &
       bind(C,name="elpa_cholesky_real_single")

   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_cholesky_real_single

   implicit none

   integer(kind=c_int), value :: na, lda, nblk, matrixCols,  mpi_comm_rows, mpi_comm_cols, wantDebug
   integer(kind=c_int)        :: success
   real(kind=c_float)         :: a(lda,matrixCols)

   logical                    :: successFortran, wantDebugFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_cholesky_real_single(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)
1443
1444
1445
1446
1447
1448
1449
1450
1451

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function

1452
1453
#endif /* WANT_SINGLE_PRECISION_REAL */

1454
 !c> /*
1455
 !c> \brief  C interface elpa_cholesky_complex_double: Cholesky factorization of a double-precision complex hermitian matrix
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
 !c> \details
 !c> \param  na                   Order of matrix
 !c> \param  a(lda,matrixCols)    Distributed matrix which should be factorized.
 !c>                              Distribution is like in Scalapack.
 !c>                              Only upper triangle is needs to be set.
 !c>