elpa2_compute.F90 326 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), fomerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"

module ELPA2_compute

! Version 1.1.2, 2011-02-21

69
  use ELPA_utilities
Andreas Marek's avatar
Andreas Marek committed
70
71
72
73
  USE ELPA1_compute
  use elpa1, only : elpa_print_times, time_evp_back, time_evp_fwd, time_evp_solve
  use elpa2_utilities
  use elpa_pdgeqrf
74
  use precision
Andreas Marek's avatar
Andreas Marek committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

  implicit none

  PRIVATE ! By default, all routines contained are private

  public :: bandred_real
  public :: tridiag_band_real
  public :: trans_ev_tridi_to_band_real
  public :: trans_ev_band_to_full_real

  public :: bandred_complex
  public :: tridiag_band_complex
  public :: trans_ev_tridi_to_band_complex
  public :: trans_ev_band_to_full_complex

  public :: band_band_real
  public :: divide_band

93
  integer(kind=ik), public :: which_qr_decomposition = 1     ! defines, which QR-decomposition algorithm will be used
Andreas Marek's avatar
Andreas Marek committed
94
95
96
97
98
99
                                                    ! 0 for unblocked
                                                    ! 1 for blocked (maxrank: nblk)
  include 'mpif.h'

  contains

100
    subroutine bandred_real(na, a, lda, nblk, nbw, matrixCols, numBlocks, mpi_comm_rows, mpi_comm_cols, &
101
                            tmat, wantDebug, useGPU, success, useQR)
Andreas Marek's avatar
Andreas Marek committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

  !-------------------------------------------------------------------------------
  !  bandred_real: Reduces a distributed symmetric matrix to band form
  !
  !  Parameters
  !
  !  na          Order of matrix
  !
  !  a(lda,matrixCols)    Distributed matrix which should be reduced.
  !              Distribution is like in Scalapack.
  !              Opposed to Scalapack, a(:,:) must be set completely (upper and lower half)
  !              a(:,:) is overwritten on exit with the band and the Householder vectors
  !              in the upper half.
  !
  !  lda         Leading dimension of a
  !  matrixCols  local columns of matrix a
  !
  !  nblk        blocksize of cyclic distribution, must be the same in both directions!
  !
  !  nbw         semi bandwith of output matrix
  !
  !  mpi_comm_rows
  !  mpi_comm_cols
  !              MPI-Communicators for rows/columns
  !
  !  tmat(nbw,nbw,numBlocks)    where numBlocks = (na-1)/nbw + 1
  !              Factors for the Householder vectors (returned), needed for back transformation
  !
  !-------------------------------------------------------------------------------

132
133
      use cuda_functions
      use iso_c_binding
Andreas Marek's avatar
Andreas Marek committed
134
135

#ifdef HAVE_DETAILED_TIMINGS
136
      use timings
Andreas Marek's avatar
Andreas Marek committed
137
#endif
138
139
140
#ifdef WITH_OPENMP
      use omp_lib
#endif
Andreas Marek's avatar
Andreas Marek committed
141
      use precision
142
      implicit none
Andreas Marek's avatar
Andreas Marek committed
143

Andreas Marek's avatar
Andreas Marek committed
144
      integer(kind=ik)           :: na, lda, nblk, nbw, matrixCols, numBlocks, mpi_comm_rows, mpi_comm_cols
Andreas Marek's avatar
Andreas Marek committed
145
146
147
#ifdef DESPERATELY_WANT_ASSUMED_SIZE
      real(kind=rk)              :: a(lda,*), tmat(nbw,nbw,*)
#else
Andreas Marek's avatar
Andreas Marek committed
148
      real(kind=rk)              :: a(lda,matrixCols), tmat(nbw,nbw,numBlocks)
Andreas Marek's avatar
Andreas Marek committed
149
#endif
150
151
      real(kind=rk)              :: eps
      logical, intent(in)        :: useGPU
152

Andreas Marek's avatar
Andreas Marek committed
153
      integer(kind=ik)           :: my_prow, my_pcol, np_rows, np_cols, mpierr
154
      integer(kind=ik)           :: l_cols, l_rows, vmrCols
Andreas Marek's avatar
Andreas Marek committed
155
156
157
      integer(kind=ik)           :: i, j, lcs, lce, lrs, lre, lc, lr, cur_pcol, n_cols, nrow
      integer(kind=ik)           :: istep, ncol, lch, lcx, nlc, mynlc
      integer(kind=ik)           :: tile_size, l_rows_tile, l_cols_tile
158

Andreas Marek's avatar
Andreas Marek committed
159
      real(kind=rk)              :: vnorm2, xf, aux1(nbw), aux2(nbw), vrl, tau, vav(nbw,nbw)
160

161
162
163
      real(kind=rk), allocatable :: tmpCUDA(:),  vmrCUDA(:),  umcCUDA(:)
      real(kind=rk), allocatable :: tmpCPU(:,:), vmrCPU(:,:), umcCPU(:,:)
      real(kind=rk), allocatable :: vr(:)
164
      ! needed for blocked QR decomposition
Andreas Marek's avatar
Andreas Marek committed
165
166
167
      integer(kind=ik)           :: PQRPARAM(11), work_size
      real(kind=rk)              :: dwork_size(1)
      real(kind=rk), allocatable :: work_blocked(:), tauvector(:), blockheuristic(:)
Andreas Marek's avatar
Andreas Marek committed
168

169
170
171
172
173
174
175
      integer(kind=C_intptr_T)   :: a_dev, vmr_dev, umc_dev, tmat_dev, vav_dev
      integer(kind=ik), external :: numroc
      integer(kind=ik)           :: ierr
      integer(kind=ik)           :: cur_l_rows, cur_l_cols, vmr_size, umc_size
      integer(kind=c_size_t)     :: lc_start, lc_end
      integer(kind=ik)           :: lr_end
      integer(kind=ik)           :: na_rows, na_cols
Andreas Marek's avatar
Andreas Marek committed
176

Andreas Marek's avatar
Andreas Marek committed
177
178
      logical, intent(in)        :: wantDebug
      logical, intent(out)       :: success
179
180
181
      logical                    :: successCUDA
      integer(kind=ik)           :: istat
      character(200)             :: errorMessage
Andreas Marek's avatar
Andreas Marek committed
182

Andreas Marek's avatar
Andreas Marek committed
183
      logical, intent(in)        :: useQR
Andreas Marek's avatar
Andreas Marek committed
184

Andreas Marek's avatar
Andreas Marek committed
185
      integer(kind=ik)           :: mystart, myend, m_way, n_way, work_per_thread, m_id, n_id, n_threads, ii, pp, transformChunkSize
Andreas Marek's avatar
Andreas Marek committed
186
187

#ifdef HAVE_DETAILED_TIMINGS
188
      call timer%start("bandred_real")
Andreas Marek's avatar
Andreas Marek committed
189
#endif
190
191
192
193
194
      call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
      call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
      call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
      call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
      success = .true.
Andreas Marek's avatar
Andreas Marek committed
195
196


197
198
199
200
201
202
203
204
205
206
207
      ! Semibandwith nbw must be a multiple of blocksize nblk
      if (mod(nbw,nblk)/=0) then
        if (my_prow==0 .and. my_pcol==0) then
          if (wantDebug) then
            write(error_unit,*) 'ELPA2_bandred_real: ERROR: nbw=',nbw,', nblk=',nblk
            write(error_unit,*) 'ELPA2_bandred_real: ELPA2 works only for nbw==n*nblk'
          endif
          success = .false.
          return
        endif
      endif
Andreas Marek's avatar
Andreas Marek committed
208

209
210
211
212
      if (useGPU) then
        na_rows = numroc(na, nblk, my_prow, 0, np_rows)
        na_cols = numroc(na, nblk, my_pcol, 0, np_cols)
      endif
Andreas Marek's avatar
Andreas Marek committed
213

214
      ! Matrix is split into tiles; work is done only for tiles on the diagonal or above
Andreas Marek's avatar
Andreas Marek committed
215

216
217
      tile_size = nblk*least_common_multiple(np_rows,np_cols) ! minimum global tile size
      tile_size = ((128*max(np_rows,np_cols)-1)/tile_size+1)*tile_size ! make local tiles at least 128 wide
Andreas Marek's avatar
Andreas Marek committed
218

219
220
      l_rows_tile = tile_size/np_rows ! local rows of a tile
      l_cols_tile = tile_size/np_cols ! local cols of a tile
Andreas Marek's avatar
Andreas Marek committed
221

222
      if (useQR) then
Andreas Marek's avatar
Andreas Marek committed
223

224
225
226
227
        if (useGPU) then
          print *,"qr decomposition at the moment not supported with GPU"
          stop
        endif
Andreas Marek's avatar
Andreas Marek committed
228

229
        if (which_qr_decomposition == 1) then
230
          call qr_pqrparam_init(pqrparam(1:11),    nblk,'M',0,   nblk,'M',0,   nblk,'M',1,'s')
231
232
233
234
235
          allocate(tauvector(na), stat=istat, errmsg=errorMessage)
          if (istat .ne. 0) then
            print *,"bandred_real: error when allocating tauvector "//errorMessage
            stop
          endif
Andreas Marek's avatar
Andreas Marek committed
236

237
238
239
240
241
          allocate(blockheuristic(nblk), stat=istat, errmsg=errorMessage)
          if (istat .ne. 0) then
            print *,"bandred_real: error when allocating blockheuristic "//errorMessage
            stop
          endif
Andreas Marek's avatar
Andreas Marek committed
242

243
          l_rows = local_index(na, my_prow, np_rows, nblk, -1)
244
245
246
247
248
          allocate(vmrCPU(max(l_rows,1),na), stat=istat, errmsg=errorMessage)
          if (istat .ne. 0) then
            print *,"bandred_real: error when allocating vmrCPU "//errorMessage
            stop
          endif
Andreas Marek's avatar
Andreas Marek committed
249

250
251
          vmrCols = na
#ifdef DESPERATELY_WANT_ASSUMED_SIZE_QR
252
          call qr_pdgeqrf_2dcomm(a, lda, matrixCols, vmrCPU, max(l_rows,1), vmrCols, tauvector(1), na, tmat(1,1,1), &
253
254
255
256
                                 nbw, nbw, dwork_size, 1, -1, na, nbw, nblk, nblk, na, na, 1, 0, PQRPARAM(1:11), &
                                 mpi_comm_rows, mpi_comm_cols, blockheuristic)

#else
257
          call qr_pdgeqrf_2dcomm(a(1:lda,1:matrixCols), matrixCols, lda, vmrCPU(1:max(l_rows,1),1:vmrCols), max(l_rows,1), &
258
259
260
261
                                 vmrCols, tauvector(1:na), na, tmat(1:nbw,1:nbw,1), nbw, &
                                 nbw, dwork_size(1:1), 1, -1, na, nbw, nblk, nblk, na, na, 1, 0, PQRPARAM(1:11), &
                                 mpi_comm_rows, mpi_comm_cols, blockheuristic)
#endif
262
          work_size = dwork_size(1)
263
264
265
266
267
          allocate(work_blocked(work_size), stat=istat, errmsg=errorMessage)
          if (istat .ne. 0) then
            print *,"bandred_real: error when allocating work_blocked "//errorMessage
            stop
          endif
Andreas Marek's avatar
Andreas Marek committed
268

269
          work_blocked = 0.0d0
270
271
272
273
274
          deallocate(vmrCPU, stat=istat, errmsg=errorMessage)
          if (istat .ne. 0) then
            print *,"bandred_real: error when deallocating vmrCPU "//errorMessage
            stop
          endif
Andreas Marek's avatar
Andreas Marek committed
275

276
        endif ! which_qr_decomposition
Andreas Marek's avatar
Andreas Marek committed
277

278
      endif ! useQr
Andreas Marek's avatar
Andreas Marek committed
279

280
281
282
283
284
285
      if (useGPU) then
        ! Here we convert the regular host array into a pinned host array
        successCUDA = cuda_malloc(a_dev, lda*na_cols*size_of_real_datatype)
        if (.not.(successCUDA)) then
          print *,"bandred_real: error in cudaMalloc"
          stop
286
        endif
Andreas Marek's avatar
Andreas Marek committed
287

288
289
290
291
292
        successCUDA = cuda_malloc(tmat_dev, nbw*nbw*size_of_real_datatype)
        if (.not.(successCUDA)) then
          print *,"bandred_real: error in cudaMalloc"
          stop
        endif
Andreas Marek's avatar
Andreas Marek committed
293

294
295
296
297
298
        successCUDA = cuda_malloc(vav_dev, nbw*nbw*size_of_real_datatype)
        if (.not.(successCUDA)) then
          print *,"bandred_real: error in cudaMalloc"
          stop
        endif
Andreas Marek's avatar
Andreas Marek committed
299

300
301
        cur_l_rows = 0
        cur_l_cols = 0
Andreas Marek's avatar
Andreas Marek committed
302

303
304
305
306
307
308
        successCUDA = cuda_memcpy(a_dev, loc(a(1,1)), (lda)*(na_cols)*size_of_real_datatype,cudaMemcpyHostToDevice)
        if (.not.(successCUDA)) then
          print *,"bandred_real: error in cudaMemcpy"
          stop
        endif
      endif ! useGPU
Andreas Marek's avatar
Andreas Marek committed
309
310


311
      do istep = (na-1)/nbw, 1, -1
Andreas Marek's avatar
Andreas Marek committed
312

313
        n_cols = MIN(na,(istep+1)*nbw) - istep*nbw ! Number of columns in current step
Andreas Marek's avatar
Andreas Marek committed
314

315
316
317
        ! Number of local columns/rows of remaining matrix
        l_cols = local_index(istep*nbw, my_pcol, np_cols, nblk, -1)
        l_rows = local_index(istep*nbw, my_prow, np_rows, nblk, -1)
Andreas Marek's avatar
Andreas Marek committed
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        if (useGPU) then
          cur_l_rows = max(l_rows, 1)
          cur_l_cols = max(l_cols, 1)

          vmr_size = cur_l_rows * 2 * n_cols
          umc_size = cur_l_cols * 2 * n_cols

          ! Allocate vmr and umc only if the inew size exceeds their current capacity
          ! Added for FORTRAN CALLS
          if ((.not. allocated(vr)) .or. (l_rows + 1 .gt. ubound(vr, dim=1))) then
            if (allocated(vr)) then
              deallocate(vr, stat=istat, errmsg=errorMessage)
              if (istat .ne. 0) then
                print *,"bandred_real: error when deallocating vr "//errorMessage
                stop
              endif
            endif
            allocate(vr(l_rows + 1), stat=istat, errmsg=errorMessage)
            if (istat .ne. 0) then
              print *,"bandred_real: error when allocating vr "//errorMessage
              stop
            endif
Andreas Marek's avatar
Andreas Marek committed
341

342
          endif
Andreas Marek's avatar
Andreas Marek committed
343

344
345
346
347
348
349
350
          if ((.not. allocated(vmrCUDA)) .or. (vmr_size .gt. ubound(vmrCUDA, dim=1))) then
            if (allocated(vmrCUDA)) then
              deallocate(vmrCUDA, stat=istat, errmsg=errorMessage)
              if (istat .ne. 0) then
                print *,"bandred_real: error when allocating vmrCUDA "//errorMessage
                stop
              endif
Andreas Marek's avatar
Andreas Marek committed
351

352
353
354
355
356
357
              successCUDA = cuda_free(vmr_dev)
              if (.not.(successCUDA)) then
                print *,"bandred_real: error in cuda_free"
                stop
              endif
            endif
Andreas Marek's avatar
Andreas Marek committed
358

359
360
361
362
363
            allocate(vmrCUDA(vmr_size), stat=istat, errmsg=errorMessage)
            if (istat .ne. 0) then
              print *,"bandred_real: error when allocating vmrCUDA "//errorMessage
              stop
            endif
Andreas Marek's avatar
Andreas Marek committed
364

365
366
367
368
369
            successCUDA = cuda_malloc(vmr_dev, vmr_size*size_of_real_datatype)
            if (.not.(successCUDA)) then
              print *,"bandred_real: error in cudaMalloc"
              stop
            endif
Andreas Marek's avatar
Andreas Marek committed
370

371
          endif
Andreas Marek's avatar
Andreas Marek committed
372

373
374
375
376
377
378
379
          if ((.not. allocated(umcCUDA)) .or. (umc_size .gt. ubound(umcCUDA, dim=1))) then
            if (allocated(umcCUDA)) then
              deallocate(umcCUDA, stat=istat, errmsg=errorMessage)
              if (istat .ne. 0) then
                print *,"bandred_real: error when deallocating umcCUDA "//errorMessage
                stop
              endif
Andreas Marek's avatar
Andreas Marek committed
380

381
382
383
384
385
              successCUDA = cuda_free(umc_dev)
              if (.not.(successCUDA)) then
                 print *,"bandred_real: error in cudaFree"
                 stop
              endif
Andreas Marek's avatar
Andreas Marek committed
386

387
            endif
Andreas Marek's avatar
Andreas Marek committed
388

389
390
391
392
393
            allocate(umcCUDA(umc_size), stat=istat, errmsg=errorMessage)
            if (istat .ne. 0) then
              print *,"bandred_real: error when deallocating umcCUDA "//errorMessage
              stop
            endif
Andreas Marek's avatar
Andreas Marek committed
394

395
396
397
398
399
            successCUDA = cuda_malloc(umc_dev, umc_size*size_of_real_datatype)
            if (.not.(successCUDA)) then
              print *,"bandred_real: error in cudaMalloc"
              stop
            endif
Andreas Marek's avatar
Andreas Marek committed
400

401
402
403
          endif
        else ! GPU not used
          ! Allocate vmr and umc to their exact sizes so that they can be used in bcasts and reduces
Andreas Marek's avatar
Andreas Marek committed
404

405
406
407
408
409
          allocate(vmrCPU(max(l_rows,1),2*n_cols), stat=istat, errmsg=errorMessage)
          if (istat .ne. 0) then
            print *,"bandred_real: error when allocating vmrCPU "//errorMessage
            stop
          endif
Andreas Marek's avatar
Andreas Marek committed
410

411
412
413
414
415
          allocate(umcCPU(max(l_cols,1),2*n_cols), stat=istat, errmsg=errorMessage)
          if (istat .ne. 0) then
            print *,"bandred_real: error when allocating umcCPU "//errorMessage
            stop
          endif
Andreas Marek's avatar
Andreas Marek committed
416

417
418
419
420
421
422
          allocate(vr(l_rows+1), stat=istat, errmsg=errorMessage)
          if (istat .ne. 0) then
            print *,"bandred_real: error when allocating vr "//errorMessage
            stop
          endif
        endif ! use GPU
Andreas Marek's avatar
Andreas Marek committed
423

424
425
426
427
428
        if (useGPU) then
          vmrCUDA(1 : cur_l_rows * n_cols) = 0.
        else
          vmrCPU(1:l_rows,1:n_cols) = 0.
        endif
Andreas Marek's avatar
Andreas Marek committed
429

430
431
        vr(:) = 0
        tmat(:,:,istep) = 0
Andreas Marek's avatar
Andreas Marek committed
432

433
434
        if (useGPU) then
          umcCUDA(1 : umc_size) = 0.
Andreas Marek's avatar
Andreas Marek committed
435

436
437
438
          lc_start = local_index(istep*nbw+1, my_pcol, np_cols, nblk, -1)
          lc_end   = local_index(istep*nbw+n_cols, my_pcol, np_cols, nblk, -1)
          lr_end   = local_index((istep-1)*nbw + n_cols, my_prow, np_rows, nblk, -1)
Andreas Marek's avatar
Andreas Marek committed
439

440
          if(lc_start .le. 0) lc_start = 1
Andreas Marek's avatar
Andreas Marek committed
441

442
443
          ! Here we assume that the processor grid and the block grid are aligned
          cur_pcol = pcol(istep*nbw+1, nblk, np_cols)
Andreas Marek's avatar
Andreas Marek committed
444

445
          if(my_pcol == cur_pcol) then
Andreas Marek's avatar
Andreas Marek committed
446

447
448
449
450
451
452
453
454
            successCUDA = cuda_memcpy2d(loc(a(1, lc_start)), lda*size_of_real_datatype,         &
                                       (a_dev + ((lc_start-1) * lda*size_of_real_datatype)),    &
                                       lda*size_of_real_datatype, lr_end*size_of_real_datatype, &
                                       (lc_end - lc_start+1), cudaMemcpyDeviceToHost)
            if (.not.(successCUDA)) then
              print *,"bandred_real: error in cudaMemcpy2d"
              stop
            endif
Andreas Marek's avatar
Andreas Marek committed
455

456
457
          endif
        endif ! useGPU
Andreas Marek's avatar
Andreas Marek committed
458

459
        ! Reduce current block to lower triangular form
Andreas Marek's avatar
Andreas Marek committed
460

461
462
        if (useQR) then
          if (which_qr_decomposition == 1) then
463
464
            vmrCols = 2*n_cols
#ifdef DESPERATELY_WANT_ASSUMED_SIZE_QR
465
            call qr_pdgeqrf_2dcomm(a, lda, matrixCols, vmrCPU, max(l_rows,1), vmrCols, tauvector(1), &
466
                                   na, tmat(1,1,istep), nbw, nbw, work_blocked, work_size,        &
467
468
                                     work_size, na, n_cols, nblk, nblk,        &
                                     istep*nbw+n_cols-nbw, istep*nbw+n_cols, 1,&
469
                                     0, PQRPARAM(1:11), mpi_comm_rows, mpi_comm_cols,&
470
                                     blockheuristic)
471
472

#else
473
            call qr_pdgeqrf_2dcomm(a(1:lda,1:matrixCols), lda, matrixCols, vmrCPU(1:max(l_rows,1),1:vmrCols) ,   &
474
475
476
477
478
479
480
                                    max(l_rows,1), vmrCols, tauvector(1:na), na, &
                                     tmat(1:nbw,1:nbw,istep), nbw, nbw, work_blocked(1:work_size), work_size, &
                                     work_size, na, n_cols, nblk, nblk,        &
                                     istep*nbw+n_cols-nbw, istep*nbw+n_cols, 1,&
                                     0, PQRPARAM(1:11), mpi_comm_rows, mpi_comm_cols,&
                                     blockheuristic)
#endif
481
          endif
482
       else !useQR
Andreas Marek's avatar
Andreas Marek committed
483

484
         do lc = n_cols, 1, -1
Andreas Marek's avatar
Andreas Marek committed
485

486
487
           ncol = istep*nbw + lc ! absolute column number of householder vector
           nrow = ncol - nbw ! Absolute number of pivot row
Andreas Marek's avatar
Andreas Marek committed
488

489
490
           lr  = local_index(nrow, my_prow, np_rows, nblk, -1) ! current row length
           lch = local_index(ncol, my_pcol, np_cols, nblk, -1) ! HV local column number
Andreas Marek's avatar
Andreas Marek committed
491

492
           tau = 0
Andreas Marek's avatar
Andreas Marek committed
493

494
           if (nrow == 1) exit ! Nothing to do
Andreas Marek's avatar
Andreas Marek committed
495

496
           cur_pcol = pcol(ncol, nblk, np_cols) ! Processor column owning current block
Andreas Marek's avatar
Andreas Marek committed
497

498
           if (my_pcol==cur_pcol) then
Andreas Marek's avatar
Andreas Marek committed
499

500
501
             ! Get vector to be transformed; distribute last element and norm of
             ! remaining elements to all procs in current column
Andreas Marek's avatar
Andreas Marek committed
502

503
             vr(1:lr) = a(1:lr,lch) ! vector to be transformed
Andreas Marek's avatar
Andreas Marek committed
504

505
506
507
508
509
510
511
             if (my_prow==prow(nrow, nblk, np_rows)) then
               aux1(1) = dot_product(vr(1:lr-1),vr(1:lr-1))
               aux1(2) = vr(lr)
             else
               aux1(1) = dot_product(vr(1:lr),vr(1:lr))
               aux1(2) = 0.
             endif
Andreas Marek's avatar
Andreas Marek committed
512

513
             call mpi_allreduce(aux1,aux2,2,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
Andreas Marek's avatar
Andreas Marek committed
514

515
516
             vnorm2 = aux2(1)
             vrl    = aux2(2)
Andreas Marek's avatar
Andreas Marek committed
517

518
             ! Householder transformation
Andreas Marek's avatar
Andreas Marek committed
519

520
             call hh_transform_real(vrl, vnorm2, xf, tau)
Andreas Marek's avatar
Andreas Marek committed
521

522
             ! Scale vr and store Householder vector for back transformation
Andreas Marek's avatar
Andreas Marek committed
523

524
525
526
527
528
529
530
531
             vr(1:lr) = vr(1:lr) * xf
             if (my_prow==prow(nrow, nblk, np_rows)) then
               a(1:lr-1,lch) = vr(1:lr-1)
               a(lr,lch) = vrl
               vr(lr) = 1.
             else
               a(1:lr,lch) = vr(1:lr)
             endif
532

533
           endif
534

535
           ! Broadcast Householder vector and tau along columns
536

537
538
           vr(lr+1) = tau
           call MPI_Bcast(vr,lr+1,MPI_REAL8,cur_pcol,mpi_comm_cols,mpierr)
539

540
541
           if (useGPU) then
             vmrCUDA(cur_l_rows * (lc - 1) + 1 : cur_l_rows * (lc - 1) + lr) = vr(1:lr)
Andreas Marek's avatar
Andreas Marek committed
542
           else
543
             vmrCPU(1:lr,lc) = vr(1:lr)
Andreas Marek's avatar
Andreas Marek committed
544
545
           endif

546
547
           tau = vr(lr+1)
           tmat(lc,lc,istep) = tau ! Store tau in diagonal of tmat
548

549
550
           ! Transform remaining columns in current block with Householder vector
           ! Local dot product
551

552
           aux1 = 0
553

554
555
556
557
#ifdef WITH_OPENMP
           !Open up one omp region to avoid paying openmp overhead.
           !This does not help performance due to the addition of two openmp barriers around the MPI call,
           !But in the future this may be beneficial if these barriers are replaced with a faster implementation
558

559
560
           !$omp parallel private(mynlc, j, lcx, ii, pp ) shared(aux1)
           mynlc = 0 ! number of local columns
561

562
563
564
565
566
567
568
569
570
571
572
573
574
575
           !This loop does not have independent iterations,
           !'mynlc' is incremented each iteration, and it is difficult to remove this dependency
           !Thus each thread executes every iteration of the loop, except it only does the work if it 'owns' that iteration
           !That is, a thread only executes the work associated with an iteration if its thread id is congruent to
           !the iteration number modulo the number of threads
           do j=1,lc-1
             lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
             if (lcx>0 ) then
               mynlc = mynlc+1
               if ( mod((j-1), omp_get_num_threads()) .eq. omp_get_thread_num() ) then
                   if (lr>0) aux1(mynlc) = dot_product(vr(1:lr),a(1:lr,lcx))
               endif
             endif
           enddo
576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
           ! Get global dot products
           !$omp barrier
           !$omp single
           if (mynlc>0) call mpi_allreduce(aux1,aux2,mynlc,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
           !$omp end single
           !$omp barrier

           ! Transform
           transformChunkSize=32
           mynlc = 0
           do j=1,lc-1
             lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
             if (lcx>0) then
               mynlc = mynlc+1
               !This loop could be parallelized with an openmp pragma with static scheduling and chunk size 32
               !However, for some reason this is slower than doing it manually, so it is parallelized as below.
               do ii=omp_get_thread_num()*transformChunkSize,lr,omp_get_num_threads()*transformChunkSize
                  do pp = 1,transformChunkSize
                      if (pp + ii > lr) exit
                          a(ii+pp,lcx) = a(ii+pp,lcx) - tau*aux2(mynlc)*vr(ii+pp)
                  enddo
               enddo
             endif
           enddo
           !$omp end parallel
#else /* WITH_OPENMP */
           nlc = 0 ! number of local columns
           do j=1,lc-1
             lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
             if (lcx>0) then
               nlc = nlc+1
               if (lr>0) aux1(nlc) = dot_product(vr(1:lr),a(1:lr,lcx))
             endif
           enddo
611

612
613
           ! Get global dot products
           if (nlc>0) call mpi_allreduce(aux1,aux2,nlc,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
Andreas Marek's avatar
Andreas Marek committed
614

615
           ! Transform
Andreas Marek's avatar
Andreas Marek committed
616

617
618
619
620
621
622
623
624
625
626
           nlc = 0
           do j=1,lc-1
             lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
             if (lcx>0) then
               nlc = nlc+1
               a(1:lr,lcx) = a(1:lr,lcx) - tau*aux2(nlc)*vr(1:lr)
             endif
           enddo
#endif /* WITH_OPENMP */
         enddo ! lc
Andreas Marek's avatar
Andreas Marek committed
627
628

         if (useGPU) then
629
630
631
632
633
634
635
636
637
638
639
           ! store column tiles back to GPU
           cur_pcol = pcol(istep*nbw+1, nblk, np_cols)
           if (my_pcol == cur_pcol) then
             successCUDA = cuda_memcpy2d((a_dev+((lc_start-1)*lda*size_of_real_datatype)),          &
                                          lda*size_of_real_datatype, loc(a(1, lc_start)),           &
                                          lda*size_of_real_datatype,  lr_end*size_of_real_datatype, &
                                          (lc_end - lc_start+1),cudaMemcpyHostToDevice)
             if (.not.(successCUDA)) then
               print *,"bandred_real: error in cudaMemcpy2d"
               stop
             endif
640

641
           endif
Andreas Marek's avatar
Andreas Marek committed
642
643
         endif

644
645
         ! Calculate scalar products of stored Householder vectors.
         ! This can be done in different ways, we use dsyrk
Andreas Marek's avatar
Andreas Marek committed
646

647
         vav = 0
Andreas Marek's avatar
Andreas Marek committed
648

649
650
651
652
653
654
655
656
         if (useGPU) then
           if (l_rows>0) &
             call dsyrk('U','T',n_cols,l_rows,1.d0,vmrCUDA,cur_l_rows,0.d0,vav,ubound(vav,dim=1))
         else
           if (l_rows>0) &
             call dsyrk('U','T',n_cols,l_rows,1.d0,vmrCPU,ubound(vmrCPU,dim=1),0.d0,vav,ubound(vav,dim=1))
         endif
         call symm_matrix_allreduce(n_cols,vav, nbw, nbw,mpi_comm_rows)
Andreas Marek's avatar
Andreas Marek committed
657

658
         ! Calculate triangular matrix T for block Householder Transformation
Andreas Marek's avatar
Andreas Marek committed
659

660
661
662
663
664
         do lc=n_cols,1,-1
           tau = tmat(lc,lc,istep)
           if (lc<n_cols) then
             call dtrmv('U','T','N',n_cols-lc,tmat(lc+1,lc+1,istep),ubound(tmat,dim=1),vav(lc+1,lc),1)
             tmat(lc,lc+1:n_cols,istep) = -tau * vav(lc+1:n_cols,lc)
Andreas Marek's avatar
Andreas Marek committed
665
666
           endif
         enddo
667
       endif
Andreas Marek's avatar
Andreas Marek committed
668

669
       ! Transpose vmr -> vmc (stored in umc, second half)
Andreas Marek's avatar
Andreas Marek committed
670
671

       if (useGPU) then
672
673
674
675
676
677
678
         call elpa_transpose_vectors_real  (vmrCUDA, cur_l_rows, mpi_comm_rows, &
                                            umcCUDA(cur_l_cols * n_cols + 1), cur_l_cols, mpi_comm_cols, &
                                            1, istep*nbw, n_cols, nblk)
       else
         call elpa_transpose_vectors_real  (vmrCPU, ubound(vmrCPU,dim=1), mpi_comm_rows, &
                                            umcCPU(1,n_cols+1), ubound(umcCPU,dim=1), mpi_comm_cols, &
                                            1, istep*nbw, n_cols, nblk)
Andreas Marek's avatar
Andreas Marek committed
679
680
       endif

681
682
683
684
685
686
687
       ! Calculate umc = A**T * vmr
       ! Note that the distributed A has to be transposed
       ! Opposed to direct tridiagonalization there is no need to use the cache locality
       ! of the tiles, so we can use strips of the matrix

       ! here the GPU version and CPU version diverged substantially, due to the newest
       ! optimizations due to Intel. The GPU version has to be re-written
Andreas Marek's avatar
Andreas Marek committed
688
       if (useGPU) then
689
690
         umcCUDA(1 : l_cols * n_cols) = 0.d0
         vmrCUDA(cur_l_rows * n_cols + 1 : cur_l_rows * n_cols * 2) = 0
Andreas Marek's avatar
Andreas Marek committed
691

692
693
694
695
696
697
         if (l_cols>0 .and. l_rows>0) then
           successCUDA = cuda_memcpy(vmr_dev, loc(vmrCUDA(1)), vmr_size*size_of_real_datatype,cudaMemcpyHostToDevice)
           if (.not.(successCUDA)) then
             print *,"bandred_real: error in cudaMemcpy"
             stop
           endif
Andreas Marek's avatar
Andreas Marek committed
698

699
700
701
702
703
           successCUDA = cuda_memcpy(umc_dev, loc(umcCUDA(1)), umc_size*size_of_real_datatype,cudaMemcpyHostToDevice)
           if (.not.(successCUDA)) then
             print *,"bandred_real: error in cudaMemcpy"
             stop
           endif
Andreas Marek's avatar
Andreas Marek committed
704

705
           do i=0,(istep*nbw-1)/tile_size
Andreas Marek's avatar
Andreas Marek committed
706

707
708
709
             lcs = i*l_cols_tile+1
             lce = min(l_cols,(i+1)*l_cols_tile)
             if (lce<lcs) cycle
Andreas Marek's avatar
Andreas Marek committed
710

711
             lre = min(l_rows,(i+1)*l_rows_tile)
Andreas Marek's avatar
Andreas Marek committed
712

713
714
715
             call cublas_dgemm('T','N',lce-lcs+1,n_cols,lre, &
                               1.d0, (a_dev + ((lcs-1)*lda*size_of_real_datatype)), lda, vmr_dev,cur_l_rows, &
                               1.d0, (umc_dev+ (lcs-1)*size_of_real_datatype), cur_l_cols)
Andreas Marek's avatar
Andreas Marek committed
716

717
718
             if(i==0) cycle
             lre = min(l_rows,i*l_rows_tile)
Andreas Marek's avatar
Andreas Marek committed
719

720
721
722
723
724
             call cublas_dgemm('N','N',lre,n_cols,lce-lcs+1,&
                               1.d0, (a_dev+ ((lcs-1)*lda*size_of_real_datatype)),lda,                  &
                               (umc_dev+(cur_l_cols * n_cols+lcs-1)*size_of_real_datatype), cur_l_cols, &
                               1.d0, (vmr_dev+(cur_l_rows * n_cols)*size_of_real_datatype), cur_l_rows)
           enddo
Andreas Marek's avatar
Andreas Marek committed
725

726
727
728
729
730
           successCUDA = cuda_memcpy(loc(vmrCUDA(1)), vmr_dev,vmr_size*size_of_real_datatype,cudaMemcpyDeviceToHost)
           if (.not.(successCUDA)) then
             print *,"bandred_real: error in cudaMemcpy"
             stop
           endif
Andreas Marek's avatar
Andreas Marek committed
731

732
733
734
735
736
           successCUDA = cuda_memcpy(loc(umcCUDA(1)), umc_dev, umc_size*size_of_real_datatype,cudaMemcpyDeviceToHost)
           if (.not.(successCUDA)) then
             print *,"bandred_real: error in cudaMemcpy"
             stop
           endif
Andreas Marek's avatar
Andreas Marek committed
737

738
         endif ! l_cols>0 .and. l_rows>0
Andreas Marek's avatar
Andreas Marek committed
739

740
741
       else ! do not useGPU version
         !Code for Algorithm 4
Andreas Marek's avatar
Andreas Marek committed
742

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
         n_way = 1
#ifdef WITH_OPENMP
         n_way = omp_get_max_threads()
#endif
         !umc(1:l_cols,1:n_cols) = 0.d0
         !vmr(1:l_rows,n_cols+1:2*n_cols) = 0
#ifdef WITH_OPENMP
         !$omp parallel private( i,lcs,lce,lrs,lre)
#endif
         if (n_way > 1) then
           !$omp do
           do i=1,min(l_cols_tile, l_cols)
             umcCPU(i,1:n_cols) = 0.d0
           enddo
           !$omp do
           do i=1,l_rows
             vmrCPU(i,n_cols+1:2*n_cols) = 0.d0
           enddo
           if (l_cols>0 .and. l_rows>0) then

             !SYMM variant 4
             !Partitioned Matrix Expression:
             ! Ct = Atl Bt + Atr Bb
             ! Cb = Atr' Bt + Abl Bb
             !
             !Loop invariant:
             ! Ct = Atl Bt + Atr Bb
             !
             !Update:
             ! C1 = A10'B0 + A11B1 + A21 B2
             !
             !This algorithm chosen because in this algoirhtm, the loop around the dgemm calls
             !is easily parallelized, and regardless of choise of algorithm,
             !the startup cost for parallelizing the dgemms inside the loop is too great

             !$omp do schedule(static,1)
             do i=0,(istep*nbw-1)/tile_size
               lcs = i*l_cols_tile+1                   ! local column start
               lce = min(l_cols, (i+1)*l_cols_tile)    ! local column end

               lrs = i*l_rows_tile+1                   ! local row start
               lre = min(l_rows, (i+1)*l_rows_tile)    ! local row end

               !C1 += [A11 A12] [B1
               !                 B2]
               if ( lre > lrs .and. l_cols > lcs ) then
                 call DGEMM('N','N', lre-lrs+1, n_cols, l_cols-lcs+1,          &
                            1.d0, a(lrs,lcs), ubound(a,dim=1),                 &
                                  umcCPU(lcs,n_cols+1), ubound(umcCPU,dim=1),  &
                            0.d0, vmrCPU(lrs,n_cols+1), ubound(vmrCPU,dim=1))
               endif
Andreas Marek's avatar
Andreas Marek committed
794

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
               ! C1 += A10' B0
               if ( lce > lcs .and. i > 0 ) then
                 call DGEMM('T','N', lce-lcs+1, n_cols, lrs-1,           &
                            1.d0, a(1,lcs),   ubound(a,dim=1),           &
                                  vmrCPU(1,1),   ubound(vmrCPU,dim=1),   &
                            0.d0, umcCPU(lcs,1), ubound(umcCPU,dim=1))
               endif
             enddo
           endif ! l_cols>0 .and. l_rows>0
         else ! n_way > 1
           umcCPU(1:l_cols,1:n_cols) = 0.d0
           vmrCPU(1:l_rows,n_cols+1:2*n_cols) = 0
           if (l_cols>0 .and. l_rows>0) then
             do i=0,(istep*nbw-1)/tile_size

               lcs = i*l_cols_tile+1
               lce = min(l_cols,(i+1)*l_cols_tile)
               if (lce<lcs) cycle

               lre = min(l_rows,(i+1)*l_rows_tile)
               call DGEMM('T','N',lce-lcs+1,n_cols,lre,1.d0,a(1,lcs),ubound(a,dim=1), &
                            vmrCPU,ubound(vmrCPU,dim=1),1.d0,umcCPU(lcs,1),ubound(umcCPU,dim=1))

               if (i==0) cycle
                 lre = min(l_rows,i*l_rows_tile)
                 call DGEMM('N','N',lre,n_cols,lce-lcs+1,1.d0,a(1,lcs),lda, &
                            umcCPU(lcs,n_cols+1),ubound(umcCPU,dim=1),1.d0,vmrCPU(1,n_cols+1),ubound(vmrCPU,dim=1))
             enddo
           endif
         endif ! n_way > 1
#ifdef WITH_OPENMP
        !$omp end parallel
827
#endif
828
       endif ! do not useGPU version
Andreas Marek's avatar
Andreas Marek committed
829

830
831
832
833
       ! Sum up all ur(:) parts along rows and add them to the uc(:) parts
       ! on the processors containing the diagonal
       ! This is only necessary if ur has been calculated, i.e. if the
       ! global tile size is smaller than the global remaining matrix
Andreas Marek's avatar
Andreas Marek committed
834

835
836
       if (useGPU) then
         ! here the GPU version and CPU version divereged due to the same reasons as above
Andreas Marek's avatar
Andreas Marek committed
837

838
839
840
841
842
         if (tile_size < istep*nbw) then
           call elpa_reduce_add_vectors_real  (vmrCUDA(cur_l_rows * n_cols + 1),cur_l_rows,mpi_comm_rows, &
                                               umcCUDA, cur_l_cols, mpi_comm_cols, &
                                               istep*nbw, n_cols, nblk)
         endif
Andreas Marek's avatar
Andreas Marek committed
843

844
845
846
847
848
849
         if (l_cols>0) then
           allocate(tmpCUDA(l_cols * n_cols), stat=istat, errmsg=errorMessage)
           if (istat .ne. 0) then
             print *,"bandred_real: error when allocating tmpCUDA "//errorMessage
             stop
           endif
Andreas Marek's avatar
Andreas Marek committed
850

851
852
           call mpi_allreduce(umcCUDA,tmpCUDA,l_cols*n_cols,MPI_REAL8,MPI_SUM,mpi_comm_rows,ierr)
           umcCUDA(1 : l_cols * n_cols) = tmpCUDA(1 : l_cols * n_cols)
Andreas Marek's avatar
Andreas Marek committed
853

854
855
856
857
858
859
860
861
           if (allocated(tmpCUDA)) then
             deallocate(tmpCUDA, stat=istat, errmsg=errorMessage)
             if (istat .ne. 0) then
               print *,"bandred_real: error when deallocating tmpCUDA "//errorMessage
               stop
             endif
           endif
         endif ! l_cols
Andreas Marek's avatar
Andreas Marek committed
862

863
864
865
866
867
868
         ! U = U * Tmat**T
         successCUDA = cuda_memcpy(umc_dev, loc(umcCUDA(1)), umc_size*size_of_real_datatype, cudaMemcpyHostToDevice)
         if (.not.(successCUDA)) then
           print *,"bandred_real: error in cudaMemcpy"
           stop
         endif
Andreas Marek's avatar
Andreas Marek committed
869

870
871
872
873
874
         successCUDA = cuda_memcpy(tmat_dev,loc(tmat(1,1,istep)),nbw*nbw*size_of_real_datatype,cudaMemcpyHostToDevice)
         if (.not.(successCUDA)) then
           print *,"bandred_real: error in cudaMemcpy"
           stop
         endif
Andreas Marek's avatar
Andreas Marek committed
875

876
877
         call cublas_dtrmm('Right','Upper','Trans','Nonunit',l_cols,n_cols, &
                           1.d0, tmat_dev,nbw,umc_dev,cur_l_cols)
Andreas Marek's avatar
Andreas Marek committed
878

879
         ! VAV = Tmat * V**T * A * V * Tmat**T = (U*Tmat**T)**T * V * Tmat**T
Andreas Marek's avatar
Andreas Marek committed
880

881
882
883
884
885
         successCUDA = cuda_memcpy(vav_dev,loc(vav(1,1)), nbw*nbw*size_of_real_datatype,cudaMemcpyHostToDevice)
         if (.not.(successCUDA)) then
           print *,"bandred_real: error in cudaMemcpy"
           stop
         endif
Andreas Marek's avatar
Andreas Marek committed
886

887
888
889
         call cublas_dgemm('T','N',n_cols,n_cols,l_cols, &
                           1.d0, umc_dev,cur_l_cols,(umc_dev+(cur_l_cols * n_cols )*size_of_real_datatype),cur_l_cols, &
                           0.d0, vav_dev,nbw)
Andreas Marek's avatar
Andreas Marek committed
890

891
892
         call cublas_dtrmm('Right','Upper','Trans','Nonunit',n_cols,n_cols, &
                           1.d0, tmat_dev,nbw, vav_dev, nbw)
Andreas Marek's avatar
Andreas Marek committed
893
894


895
896
897
898
899
         successCUDA = cuda_memcpy(loc(vav(1,1)), vav_dev, nbw*nbw*size_of_real_datatype, cudaMemcpyDeviceToHost)
         if (.not.(successCUDA)) then
           print *,"bandred_real: error in cudaMemcpy"
           stop
         endif
Andreas Marek's avatar
Andreas Marek committed
900

901
         call symm_matrix_allreduce(n_cols,vav, nbw,nbw,mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
902

903
904
905
906
907
         successCUDA = cuda_memcpy(vav_dev, loc(vav(1,1)), nbw*nbw*size_of_real_datatype,cudaMemcpyHostToDevice)
         if (.not.(successCUDA)) then
           print *,"bandred_real: error in cudaMemcpy"
           stop
         endif
Andreas Marek's avatar
Andreas Marek committed
908

909
910
911
912
         ! U = U - 0.5 * V * VAV
         call cublas_dgemm('N','N',l_cols,n_cols,n_cols,&
                           -0.5d0, (umc_dev+(cur_l_cols * n_cols )*size_of_real_datatype),cur_l_cols, vav_dev,nbw,&
                           1.0d0, umc_dev,cur_l_cols)
Andreas Marek's avatar
Andreas Marek committed
913

914
915
916
917
918
         successCUDA = cuda_memcpy(loc(umcCUDA(1)), umc_dev, umc_size*size_of_real_datatype, cudaMemcpyDeviceToHost)
         if (.not.(successCUDA)) then
           print *,"bandred_real: error in cudaMemcpy"
           stop
         endif
Andreas Marek's avatar
Andreas Marek committed
919

920
         ! Transpose umc -> umr (stored in vmr, second half)
Andreas Marek's avatar
Andreas Marek committed
921

922
923
924
925
926
927
928
929
         call elpa_transpose_vectors_real  (umcCUDA, cur_l_cols, mpi_comm_cols, &
                                            vmrCUDA(cur_l_rows * n_cols + 1), cur_l_rows, mpi_comm_rows, &
                                            1, istep*nbw, n_cols, nblk)
         successCUDA = cuda_memcpy(vmr_dev, loc(vmrCUDA(1)), vmr_size*size_of_real_datatype, cudaMemcpyHostToDevice)
         if (.not.(successCUDA)) then
           print *,"bandred_real: error in cudaMemcpy"
           stop
         endif
Andreas Marek's avatar
Andreas Marek committed
930

931
932
933
934
935
         successCUDA = cuda_memcpy(umc_dev, loc(umcCUDA(1)), umc_size*size_of_real_datatype, cudaMemcpyHostToDevice)
         if (.not.(successCUDA)) then
           print *,"bandred_real: error in cudaMemcpy"
           stop
         endif
Andreas Marek's avatar
Andreas Marek committed
936

937
938
939
940
941
942
         ! A = A - V*U**T - U*V**T
         do i=0,(istep*nbw-1)/tile_size
           lcs = i*l_cols_tile+1
           lce = min(l_cols,(i+1)*l_cols_tile)
           lre = min(l_rows,(i+1)*l_rows_tile)
           if (lce<lcs .or. lre<1) cycle
Andreas Marek's avatar
Andreas Marek committed
943

944
945
946
947
948
949
950
951
952
953
954
           call cublas_dgemm('N', 'T', lre, lce-lcs+1, 2*n_cols, -1.d0, &
                             vmr_dev,cur_l_rows,(umc_dev +(lcs-1)*size_of_real_datatype),cur_l_cols, &
                             1.d0,(a_dev+(lcs-1)*lda*size_of_real_datatype),lda)
         enddo
       else ! do not useGPU
         ! Or if we used the Algorithm 4
         if (tile_size < istep*nbw .or. n_way > 1) then
         call elpa_reduce_add_vectors_real  (vmrCPU(1,n_cols+1),ubound(vmrCPU,dim=1),mpi_comm_rows, &
                                             umcCPU, ubound(umcCPU,dim=1), mpi_comm_cols, &
                                             istep*nbw, n_cols, nblk)
         endif
Andreas Marek's avatar
Andreas Marek committed
955

956
957
958
959
960
961
         if (l_cols>0) then
           allocate(tmpCPU(l_cols,n_cols), stat=istat, errmsg=errorMessage)
           if (istat .ne. 0) then
             print *,"bandred_real: error when allocating tmpCPU "//errorMessage
             stop
           endif
Andreas Marek's avatar
Andreas Marek committed
962

963
964
           call mpi_allreduce(umcCPU,tmpCPU,l_cols*n_cols,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
           umcCPU(1:l_cols,1:n_cols) = tmpCPU(1:l_cols,1:n_cols)
Andreas Marek's avatar
Andreas Marek committed
965

966
967
968
969
970
971
           deallocate(tmpCPU, stat=istat, errmsg=errorMessage)
           if (istat .ne. 0) then
             print *,"bandred_real: error when deallocating tmpCPU "//errorMessage
             stop
           endif
         endif
Andreas Marek's avatar
Andreas Marek committed
972

973
         ! U = U * Tmat**T
Andreas Marek's avatar
Andreas Marek committed
974

975
976
         call dtrmm('Right','Upper','Trans','Nonunit',l_cols,n_cols,1.d0,tmat(1,1,istep),ubound(tmat,dim=1), &
                    umcCPU,ubound(umcCPU,dim=1))
Andreas Marek's avatar
Andreas Marek committed
977

978
         ! VAV = Tmat * V**T * A * V * Tmat**T = (U*Tmat**T)**T * V * Tmat**T
Andreas Marek's avatar
Andreas Marek committed
979

980
981
         call dgemm('T','N',n_cols,n_cols,l_cols,1.d0,umcCPU,ubound(umcCPU,dim=1),umcCPU(1,n_cols+1), &
                    ubound(umcCPU,dim=1),0.d0,vav,ubound(vav,dim=1))
Andreas Marek's avatar
Andreas Marek committed
982

983
984
985
986
         call dtrmm('Right','Upper','Trans','Nonunit',n_cols,n_cols,1.d0,tmat(1,1,istep),    &
                    ubound(tmat,dim=1),vav,ubound(vav,dim=1))

         call symm_matrix_allreduce(n_cols,vav, nbw, nbw ,mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
987

988
989
990
         ! U = U - 0.5 * V * VAV
         call dgemm('N','N',l_cols,n_cols,n_cols,-0.5d0,umcCPU(1,n_cols+1),ubound(umcCPU,dim=1),vav, &
                     ubound(vav,dim=1),1.d0,umcCPU,ubound(umcCPU,dim=1))
Andreas Marek's avatar
Andreas Marek committed
991

992
         ! Transpose umc -> umr (stored in vmr, second half)
Andreas Marek's avatar
Andreas Marek committed
993

994
         call elpa_transpose_vectors_real(umcCPU, ubound(umcCPU,dim=1), mpi_comm_cols, &
Andreas Marek's avatar
Andreas Marek committed
995
996
997
                                         vmrCPU(1,n_cols+1), ubound(vmrCPU,dim=1), mpi_comm_rows, &
                                         1, istep*nbw, n_cols, nblk)

998
999
1000
1001
1002
1003
1004
1005
1006
         ! A = A - V*U**T - U*V**T
#ifdef WITH_OPENMP
         !$omp parallel private( ii, i, lcs, lce, lre, n_way, m_way, m_id, n_id, work_per_thread, mystart, myend  )
         n_threads = omp_get_num_threads()
         if (mod(n_threads, 2) == 0) then
           n_way = 2
         else
           n_way = 1
         endif
Andreas Marek's avatar
Andreas Marek committed
1007

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
         m_way = n_threads / n_way

         m_id = mod(omp_get_thread_num(),  m_way)
         n_id = omp_get_thread_num() / m_way

         do ii=n_id*tile_size,(istep*nbw-1),tile_size*n_way
           i = ii / tile_size
           lcs = i*l_cols_tile+1
           lce = min(l_cols,(i+1)*l_cols_tile)
           lre = min(l_rows,(i+1)*l_rows_tile)
           if (lce<lcs .or. lre<1) cycle

           !Figure out this thread's range
           work_per_thread = lre / m_way
           if (work_per_thread * m_way < lre) work_per_thread = work_per_thread + 1
           mystart = m_id * work_per_thread + 1
           myend   = mystart + work_per_thread - 1
           if ( myend > lre ) myend = lre
           if ( myend-mystart+1 < 1) cycle

           call dgemm('N','T',myend-mystart+1, lce-lcs+1, 2*n_cols, -1.d0, &
                      vmrCPU(mystart, 1), ubound(vmrCPU,1), umcCPU(lcs,1), ubound(umcCPU,1), &
                       1.d0,a(mystart,lcs),ubound(a,1))
         enddo
         !$omp end parallel
Andreas Marek's avatar
Andreas Marek committed
1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
#else /* WITH_OPENMP */
         do i=0,(istep*nbw-1)/tile_size
           lcs = i*l_cols_tile+1
           lce = min(l_cols,(i+1)*l_cols_tile)
           lre = min(l_rows,(i+1)*l_rows_tile)
           if (lce<lcs .or. lre<1) cycle
           call dgemm('N','T',lre,lce-lcs+1,2*n_cols,-1.d0, &
                       vmrCPU,ubound(vmrCPU,dim=1),umcCPU(lcs,1),ubound(umcCPU,dim=1), &
                       1.d0,a(1,lcs),lda)
         enddo
#endif /* WITH_OPENMP */
Andreas Marek's avatar
Andreas Marek committed
1045

1046
       endif ! useGPU
Andreas Marek's avatar
Andreas Marek committed
1047

1048
1049
1050
1051
1052
1053
1054
1055
       if (.not.(useGPU)) then
         if (allocated(vr)) then
           deallocate(vr, stat=istat, errmsg=errorMessage)
           if (istat .ne. 0) then
             print *,"bandred_real: error when deallocating vr "//errorMessage
             stop
           endif
         endif
Andreas Marek's avatar
Andreas Marek committed
1056

1057
1058
1059
1060
1061
1062
1063
         if (allocated(umcCPU)) then
           deallocate(umcCPU, stat=istat, errmsg=errorMessage)
           if (istat .ne. 0) then
             print *,"bandred_real: error when deallocating vmrCPU "//errorMessage
             stop
           endif
         endif
Andreas Marek's avatar
Andreas Marek committed
1064

1065
1066
1067
1068
1069
1070
1071
         if (allocated(vmrCPU)) then
           deallocate(vmrCPU, stat=istat, errmsg=errorMessage)
           if (istat .ne. 0) then
             print *,"bandred_real: error when deallocating vmrCPU "//errorMessage
             stop
           endif
         endif
Andreas Marek's avatar
Andreas Marek committed
1072

1073
       endif !useGPU
Andreas Marek's avatar
Andreas Marek committed
1074

1075
     enddo ! istep
Andreas Marek's avatar
Andreas Marek committed
1076

1077
1078
1079
1080
1081
1082
     if (useGPU) then
       successCUDA = cuda_memcpy ( loc (a), a_dev, lda*na_cols*size_of_real_datatype,cudaMemcpyDeviceToHost)
       if (.not.(successCUDA)) then
         print *,"bandred_real: error in cudaMemcpy"
         stop
       endif
Andreas Marek's avatar
Andreas Marek committed
1083