test.F90 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
#include "config-f90.h"

! Define one of TEST_REAL or TEST_COMPLEX
! Define one of TEST_SINGLE or TEST_DOUBLE
! Define one of TEST_SOLVER_1STAGE or TEST_SOLVER_2STAGE
! Define TEST_GPU \in [0, 1]
49
! Define either TEST_ALL_KERNELS or a TEST_KERNEL \in [any valid kernel]
50
51
52
53
54
55
56
57
58
59
60
61
62

#if !(defined(TEST_REAL) ^ defined(TEST_COMPLEX))
error: define exactly one of TEST_REAL or TEST_COMPLEX
#endif

#if !(defined(TEST_SINGLE) ^ defined(TEST_DOUBLE))
error: define exactly one of TEST_SINGLE or TEST_DOUBLE
#endif

#if !(defined(TEST_SOLVER_1STAGE) ^ defined(TEST_SOLVER_2STAGE))
error: define exactly one of TEST_SOLVER_1STAGE or TEST_SOLVER_2STAGE
#endif

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#ifdef TEST_SOLVER_1STAGE
#ifdef TEST_ALL_KERNELS
error: TEST_ALL_KERNELS cannot be defined for TEST_SOLVER_1STAGE
#endif
#ifdef TEST_KERNEL
error: TEST_KERNEL cannot be defined for TEST_SOLVER_1STAGE
#endif
#endif

#ifdef TEST_SOLVER_2STAGE
#if !(defined(TEST_KERNEL) ^ defined(TEST_ALL_KERNELS))
error: define either TEST_ALL_KERNELS or a valid TEST_KERNEL
#endif
#endif


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#ifdef TEST_SINGLE
#  define EV_TYPE real(kind=C_FLOAT)
#  ifdef TEST_REAL
#    define MATRIX_TYPE real(kind=C_FLOAT)
#  else
#    define MATRIX_TYPE complex(kind=C_FLOAT_COMPLEX)
#  endif
#else
#  define EV_TYPE real(kind=C_DOUBLE)
#  ifdef TEST_REAL
#    define MATRIX_TYPE real(kind=C_DOUBLE)
#  else
#    define MATRIX_TYPE complex(kind=C_DOUBLE_COMPLEX)
#  endif
#endif

95
96
97
98
99
100
101
#ifdef TEST_REAL
#define KERNEL_KEY "real_kernel"
#endif
#ifdef TEST_COMPLEX
#define KERNEL_KEY "complex_kernel"
#endif

102
103
104
105
#include "assert.h"

program test
   use elpa
106
107
108
109
110
111
112

   use test_util
   use test_setup_mpi
   use test_prepare_matrix
   use test_read_input_parameters
   use test_blacs_infrastructure
   use test_check_correctness
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

   implicit none

   ! matrix dimensions
   integer :: na, nev, nblk

   ! mpi
   integer :: myid, nprocs
   integer :: na_cols, na_rows  ! local matrix size
   integer :: np_cols, np_rows  ! number of MPI processes per column/row
   integer :: my_prow, my_pcol  ! local MPI task position (my_prow, my_pcol) in the grid (0..np_cols -1, 0..np_rows -1)
   integer :: mpierr

   ! blacs
   integer :: my_blacs_ctxt, sc_desc(9), info, nprow, npcol

   ! The Matrix
   MATRIX_TYPE, allocatable :: a(:,:), as(:,:)
   ! eigenvectors
   MATRIX_TYPE, allocatable :: z(:,:)
   ! eigenvalues
   EV_TYPE, allocatable :: ev(:)
135
136
137
138
139
140
141
142
143
144
145
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
   EV_TYPE, allocatable :: d(:), sd(:), ev_analytic(:), ds(:), sds(:)
   EV_TYPE              :: diagonalELement, subdiagonalElement, tmp, maxerr
#ifdef TEST_DOUBLE
   EV_TYPE, parameter   :: pi = 3.141592653589793238462643383279_rk8
#else
   EV_TYPE, parameter   :: pi = 3.1415926535897932_rk4
#endif
   integer              :: loctmp ,rowLocal, colLocal, j,ii
#endif

146

147
   integer :: error, status
148
149
150

   type(output_t) :: write_to_file
   class(elpa_t), pointer :: e
151
#ifdef TEST_ALL_KERNELS
152
   integer :: i
153
#endif
154
   integer :: kernel
155

156
157
158
#if defined(TEST_COMPLEX) && defined(__SOLVE_TRIDIAGONAL)
   stop 77
#endif
159
   call read_input_parameters_traditional(na, nev, nblk, write_to_file)
160
161
162
163
164
165
166
167
   call setup_mpi(myid, nprocs)

   do np_cols = NINT(SQRT(REAL(nprocs))),2,-1
      if(mod(nprocs,np_cols) == 0 ) exit
   enddo

   np_rows = nprocs/np_cols

168
169
170
171
172
173
174
175
176
   if (myid == 0) then
     print '((a,i0))', 'Matrix size: ', na
     print '((a,i0))', 'Num eigenvectors: ', nev
     print '((a,i0))', 'Blocksize: ', nblk
     print '((a,i0))', 'Num MPI proc: ', nprocs
     print '(3(a,i0))','Number of processor rows=',np_rows,', cols=',np_cols,', total=',nprocs
     print *,''
   endif

177
178
179
180
181
182
183
184
185
186
   call set_up_blacsgrid(mpi_comm_world, my_blacs_ctxt, np_rows, np_cols, &
                         nprow, npcol, my_prow, my_pcol)

   call set_up_blacs_descriptor(na, nblk, my_prow, my_pcol, np_rows, np_cols, &
                                na_rows, na_cols, sc_desc, my_blacs_ctxt, info)

   allocate(a (na_rows,na_cols), as(na_rows,na_cols))
   allocate(z (na_rows,na_cols))
   allocate(ev(na))

187
188
189
190
191
192
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
   allocate(d (na), ds(na))
   allocate(sd (na), sds(na))
   allocate(ev_analytic(na))
#endif

193
194
195
196
   a(:,:) = 0.0
   z(:,:) = 0.0
   ev(:) = 0.0

197
#ifdef __EIGENVECTORS
198
   call prepare_matrix(na, myid, sc_desc, a, z, as)
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#endif

#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
   ! set up simple toeplitz matrix
#ifdef TEST_DOUBLE
   diagonalElement = 0.45_rk8
   subdiagonalElement =  0.78_rk8
#else
   diagonalElement = 0.45_rk4
   subdiagonalElement =  0.78_rk4
#endif

   d(:) = diagonalElement
   sd(:) = subdiagonalElement

   ! set up the diagonal and subdiagonals (for general solver test)
   do ii=1, na ! for diagonal elements
     if (map_global_array_index_to_local_index(ii, ii, rowLocal, colLocal, nblk, np_rows, np_cols, my_prow, my_pcol)) then
       a(rowLocal,colLocal) = diagonalElement
     endif
   enddo
   do ii=1, na-1
     if (map_global_array_index_to_local_index(ii, ii+1, rowLocal, colLocal, nblk, np_rows, np_cols, my_prow, my_pcol)) then
       a(rowLocal,colLocal) = subdiagonalElement
     endif
   enddo

   do ii=2, na
     if (map_global_array_index_to_local_index(ii, ii-1, rowLocal, colLocal, nblk, np_rows, np_cols, my_prow, my_pcol)) then
       a(rowLocal,colLocal) = subdiagonalElement
     endif
   enddo
   ds = d
   sds = sd
   as = a
#endif
235
236
237
238
239
240
241
242

   if (elpa_init(CURRENT_API_VERSION) /= ELPA_OK) then
     print *, "ELPA API version not supported"
     stop 1
   endif

   e => elpa_allocate()

243
244
245
246
247
248
249
250
251
252
   call e%set("na", na, error)
   assert_elpa_ok(error)
   call e%set("nev", nev, error)
   assert_elpa_ok(error)
   call e%set("local_nrows", na_rows, error)
   assert_elpa_ok(error)
   call e%set("local_ncols", na_cols, error)
   assert_elpa_ok(error)
   call e%set("nblk", nblk, error)
   assert_elpa_ok(error)
253
254

#ifdef WITH_MPI
255
256
257
258
259
260
   call e%set("mpi_comm_parent", MPI_COMM_WORLD, error)
   assert_elpa_ok(error)
   call e%set("process_row", my_prow, error)
   assert_elpa_ok(error)
   call e%set("process_col", my_pcol, error)
   assert_elpa_ok(error)
261
#endif
262

Andreas Marek's avatar
Andreas Marek committed
263
264
   call e%set("timings",1)

265
266
267
268
269
270
271
   assert_elpa_ok(e%setup())

#ifdef TEST_SOLVER_1STAGE
   call e%set("solver", ELPA_SOLVER_1STAGE)
#else
   call e%set("solver", ELPA_SOLVER_2STAGE)
#endif
272
   assert_elpa_ok(error)
273

274
275
   call e%set("gpu", TEST_GPU, error)
   assert_elpa_ok(error)
276

277
278
279
#ifdef TEST_ALL_KERNELS
   do i = 0, elpa_option_cardinality(KERNEL_KEY)
     kernel = elpa_option_enumerate(KERNEL_KEY, i)
280
#endif
281
#ifdef TEST_KERNEL
282
     kernel = TEST_KERNEL
283
#endif
284
285

#ifdef TEST_SOLVER_2STAGE
286
     call e%set(KERNEL_KEY, kernel, error)
287
288
289
#ifdef TEST_KERNEL
     assert_elpa_ok(error)
#else
290
291
292
     if (error /= ELPA_OK) then
       cycle
     endif
293
#endif
294
     if (myid == 0) print *, elpa_int_value_to_string(KERNEL_KEY, kernel), " kernel"
295
296
297

     call e%timer_start(elpa_int_value_to_string(KERNEL_KEY, kernel))
#else
298
299

#ifdef __EIGENVECTORS
300
     call e%timer_start("e%eigenvectors()")
301
302
303
304
305
306
307
#endif
#ifdef __EIGENVALUES
     call e%timer_start("e%eigenvalues()")
#endif
#ifdef __SOLVE_TRIDIAGONAL
     call e%timer_start("e%solve_tridiagonal()")
#endif
308
#endif
309

310
     ! The actual solve step
311
#ifdef __EIGENVECTORS
312
     call e%eigenvectors(a, ev, z, error)
313
314
315
316
317
318
319
320
321
#endif
#ifdef __EIGENVALUES
     call e%eigenvalues(a, ev, error)
#endif
#if defined(__SOLVE_TRIDIAGONAL) && !defined(TEST_COMPLEX)
     call e%solve_tridiagonal(d, sd, z, error)
     ev(:) = d(:)
#endif

322
323
     assert_elpa_ok(error)

324
325
326
#ifdef TEST_SOLVER_2STAGE
     call e%timer_stop(elpa_int_value_to_string(KERNEL_KEY, kernel))
#else
327
#ifdef __EIGENVECTORS
328
     call e%timer_stop("e%eigenvectors()")
329
330
331
332
333
334
335
#endif
#ifdef __EIGENVALUES
     call e%timer_stop("e%eigenvalues()")
#endif
#ifdef __SOLVE_TRIDIAGONAL
     call e%timer_stop("e%solve_tridiagonal()")
#endif
336
337
#endif

338
     if (myid .eq. 0) then
339
340
341
#ifdef TEST_SOLVER_2STAGE
       call e%print_times(elpa_int_value_to_string(KERNEL_KEY, kernel))
#else
342
#ifdef __EIGENVECTORS
343
       call e%print_times("e%eigenvectors()")
344
345
346
347
348
349
350
#endif
#ifdef __EIGENVALUES
       call e%print_times("e%eigenvalues()")
#endif
#ifdef __SOLVE_TRIDIAGONAL
     call e%print_times("e%solve_tridiagonal()")
#endif
351
#endif
352
     endif
353
354

#ifdef __EIGENVECTORS
355
356
     status = check_correctness(na, nev, as, z, ev, sc_desc, myid)
     if (status /= 0) then
Andreas Marek's avatar
Andreas Marek committed
357
       if (myid == 0) print *, "Result incorrect!"
358
359
       call exit(status)
     endif
Andreas Marek's avatar
Andreas Marek committed
360
     if (myid == 0) print *, ""
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#endif
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
     status = 0
     ! analytic solution
     do ii=1, na
#ifdef TEST_DOUBLE
       ev_analytic(ii) = diagonalElement + 2.0 * subdiagonalElement *cos( pi*real(ii,kind=rk8)/ real(na+1,kind=rk8) )
#else
       ev_analytic(ii) = diagonalElement + 2.0 * subdiagonalElement *cos( pi*real(ii,kind=rk4)/ real(na+1,kind=rk4) )
#endif
     enddo

     ! sort analytic solution:

     ! this hack is neihter elegant, nor optimized: for huge matrixes it might be expensive
     ! a proper sorting algorithmus might be implemented here

     tmp    = minval(ev_analytic)
     loctmp = minloc(ev_analytic, 1)

     ev_analytic(loctmp) = ev_analytic(1)
     ev_analytic(1) = tmp

     do ii=2, na
       tmp = ev_analytic(ii)
       do j= ii, na
         if (ev_analytic(j) .lt. tmp) then
           tmp    = ev_analytic(j)
           loctmp = j
         endif
       enddo
       ev_analytic(loctmp) = ev_analytic(ii)
       ev_analytic(ii) = tmp
     enddo

     ! compute a simple error max of eigenvalues
     maxerr = 0.0
     maxerr = maxval( (ev(:) - ev_analytic(:))/ev_analytic(:) , 1)

#ifdef TEST_DOUBLE
     if (maxerr .gt. 8.e-13) then
#else
     if (maxerr .gt. 8.e-4) then
#endif
       status = 1
       if (myid .eq. 0) then
         print *,"Eigenvalues differ from analytic solution: maxerr = ",maxerr
       endif
     endif

     if (status /= 0) then
       call exit(status)
     endif
#ifdef __SOLVE_TRIDIAGONAL
     ! check eigenvectors
     status = check_correctness(na, nev, as, z, ev, sc_desc, myid)
     if (status /= 0) then
       if (myid == 0) print *, "Result incorrect!"
       call exit(status)
     endif
     if (myid == 0) print *, ""
#endif

#endif
425
426
427

#ifdef TEST_ALL_KERNELS
     a(:,:) = as(:,:)
428
429
430
431
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
     d = ds
     sd = sds
#endif
432
433
   end do
#endif
Andreas Marek's avatar
Andreas Marek committed
434

435
436
437
438
439
440
441
442
   call elpa_deallocate(e)
   call elpa_uninit()

   deallocate(a)
   deallocate(as)
   deallocate(z)
   deallocate(ev)

443
444
445
446
447
448
#ifdef __EIGENVALUES
   deallocate(d, ds)
   deallocate(sd, sds)
   deallocate(ev_analytic)
#endif

449
450
451
452
453
454
455
#ifdef WITH_MPI
   call blacs_gridexit(my_blacs_ctxt)
   call mpi_finalize(mpierr)
#endif

   call exit(status)

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
   contains

     !Processor col for global col number
     pure function pcol(global_col, nblk, np_cols) result(local_col)
       implicit none
       integer(kind=c_int), intent(in) :: global_col, nblk, np_cols
       integer(kind=c_int)             :: local_col
       local_col = MOD((global_col-1)/nblk,np_cols)
     end function

     !Processor row for global row number
     pure function prow(global_row, nblk, np_rows) result(local_row)
       implicit none
       integer(kind=c_int), intent(in) :: global_row, nblk, np_rows
       integer(kind=c_int)             :: local_row
       local_row = MOD((global_row-1)/nblk,np_rows)
     end function

     function map_global_array_index_to_local_index(iGLobal, jGlobal, iLocal, jLocal , nblk, np_rows, np_cols, my_prow, my_pcol) &
       result(possible)
       implicit none

       integer(kind=c_int)              :: pi, pj, li, lj, xi, xj
       integer(kind=c_int), intent(in)  :: iGlobal, jGlobal, nblk, np_rows, np_cols, my_prow, my_pcol
       integer(kind=c_int), intent(out) :: iLocal, jLocal
       logical                       :: possible

       possible = .true.
       iLocal = 0
       jLocal = 0

       pi = prow(iGlobal, nblk, np_rows)

       if (my_prow .ne. pi) then
         possible = .false.
         return
       endif

       pj = pcol(jGlobal, nblk, np_cols)

       if (my_pcol .ne. pj) then
         possible = .false.
         return
       endif
       li = (iGlobal-1)/(np_rows*nblk) ! block number for rows
       lj = (jGlobal-1)/(np_cols*nblk) ! block number for columns

       xi = mod( (iGlobal-1),nblk)+1   ! offset in block li
       xj = mod( (jGlobal-1),nblk)+1   ! offset in block lj

       iLocal = li * nblk + xi
       jLocal = lj * nblk + xj

     end function
#endif
512
end program