elpa_c_interface.F90 98.9 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
Andreas Marek's avatar
Andreas Marek committed
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
Andreas Marek's avatar
Andreas Marek committed
14
15
16
17
18
19
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
20
!    http://elpa.mpcdf.mpg.de/
Andreas Marek's avatar
Andreas Marek committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
42
! Author: Andreas Marek, MCPDF
Andreas Marek's avatar
Andreas Marek committed
43
#include "config-f90.h"
Andreas Marek's avatar
Andreas Marek committed
44
  !c> #include <complex.h>
Andreas Marek's avatar
Andreas Marek committed
45

46
  !c> /*! \brief C old, deprecated interface, will be deleted. Use "elpa_get_communicators"
47
48
49
50
51
52
53
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
54
  !c> int get_elpa_row_col_comms(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
55
  function get_elpa_row_col_comms_wrapper_c_name1(mpi_comm_world, my_prow, my_pcol, &
Andreas Marek's avatar
Andreas Marek committed
56
                                          mpi_comm_rows, mpi_comm_cols)     &
57
                                          result(mpierr) bind(C,name="get_elpa_row_col_comms")
Andreas Marek's avatar
Andreas Marek committed
58
59
60
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

Andreas Marek's avatar
Andreas Marek committed
61
    implicit none
Andreas Marek's avatar
Andreas Marek committed
62
63
64
65
66
67
68
69
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function
70
71
  !c> #include <complex.h>

72
  !c> /*! \brief C old, deprecated interface, will be deleted. Use "elpa_get_communicators"
73
74
75
76
77
78
79
80
81
82
83
84
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
  !c> int get_elpa_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
  function get_elpa_row_col_comms_wrapper_c_name2(mpi_comm_world, my_prow, my_pcol, &
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="get_elpa_communicators")
    use, intrinsic :: iso_c_binding
85
    use elpa1, only : get_elpa_communicators
86
87
88
89
90
91

    implicit none
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

92
    mpierr = get_elpa_communicators(mpi_comm_world, my_prow, my_pcol, &
93
94
95
96
                                    mpi_comm_rows, mpi_comm_cols)

  end function

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  !c> #include <complex.h>

  !c> /*! \brief C interface to create ELPA communicators
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
  !c> int elpa_get_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
  function elpa_get_communicators_wrapper_c(mpi_comm_world, my_prow, my_pcol, &
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="elpa_get_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : elpa_get_communicators

    implicit none
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = elpa_get_communicators(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function
123
124


125
  !c>  /*! \brief C interface to solve the double-precision real eigenvalue problem with 1-stage solver
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  !c>  *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c>*/
147
#define DOUBLE_PRECISION_REAL 1
148
#ifdef DOUBLE_PRECISION_REAL
149
  !c> int elpa_solve_evp_real_1stage_double_precision(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all);
150
#else
151
  !c> int elpa_solve_evp_real_1stage_single_precision(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all);
152
#endif
153

154
#ifdef DOUBLE_PRECISION_REAL
155
  function solve_elpa1_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk, &
156
157
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)      &
158
159
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage_double_precision")
#else
160
  function solve_elpa1_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk, &
161
162
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)      &
163
164
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage_single_precision")
#endif
165

Andreas Marek's avatar
Andreas Marek committed
166
    use, intrinsic :: iso_c_binding
167
    use elpa1
Andreas Marek's avatar
Andreas Marek committed
168

Andreas Marek's avatar
Andreas Marek committed
169
    implicit none
Andreas Marek's avatar
Andreas Marek committed
170
    integer(kind=c_int)                    :: success
171
172
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
173
#ifdef DOUBLE_PRECISION_REAL
174
    real(kind=c_double)                    :: ev(1:na)
175
#ifdef USE_ASSUMED_SIZE
176
177
178
    real(kind=c_double)                    :: a(lda,*), q(ldq,*)
#else
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
179
180
181
182
183
#endif

#else /* SINGLE_PRECISION */
    real(kind=c_float)                     :: ev(1:na)

184
#ifdef USE_ASSUMED_SIZE
185
    real(kind=c_float)                     :: a(lda,*), q(ldq,*)
186
187
#else
    real(kind=c_float)                     :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
188
189
#endif

190
#endif
Andreas Marek's avatar
Andreas Marek committed
191
192
    logical                                :: successFortran

193
194
    write(*,*) "in the wrapper"
    
195
#ifdef DOUBLE_PRECISION_REAL
196
197
198
    successFortran = elpa_solve_evp_real_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)
199
#else
200
201
202
    successFortran = elpa_solve_evp_real_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#endif
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_REAL
#undef DOUBLE_PRECISION_REAL
  !c>  /*! \brief C interface to solve the single-precision real eigenvalue problem with 1-stage solver
  !c>  *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c>*/
#ifdef DOUBLE_PRECISION_REAL
237
  !c> int elpa_solve_evp_real_1stage_double_precision(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all);
238
#else
239
  !c> int elpa_solve_evp_real_1stage_single_precision(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all);
240
241
242
243
#endif

#ifdef DOUBLE_PRECISION_REAL
  function solve_elpa1_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk, &
244
245
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)      &
246
247
248
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage_double_precision")
#else
  function solve_elpa1_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk, &
249
250
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)      &
251
252
253
254
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage_single_precision")
#endif
    use, intrinsic :: iso_c_binding
    use elpa1
255
    
256
257
    implicit none
    integer(kind=c_int)                    :: success
258
259
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
260
261
262
263
264
265
#ifdef DOUBLE_PRECISION_REAL
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
#else
    real(kind=c_float)                     :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
#endif
    logical                                :: successFortran
266
    
267
#ifdef DOUBLE_PRECISION_REAL
268
269
270
    successFortran = elpa_solve_evp_real_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)
271
#else
272
273
274
    successFortran = elpa_solve_evp_real_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)
275
#endif
Andreas Marek's avatar
Andreas Marek committed
276
277
278
279
280
281
282
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
283

284
285
#endif /* WANT_SINGLE_PRECISION_REAL */

286

287
288

  !c> /*! \brief C interface to solve the double-precision complex eigenvalue problem with 1-stage solver
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
  !c> *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
310
#define DOUBLE_PRECISION_COMPLEX 1
311
#ifdef DOUBLE_PRECISION_COMPLEX
312
  !c> int elpa_solve_evp_complex_1stage_double_precision(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all);
313
#else
314
  !c> int elpa_solve_evp_complex_1stage_single_precision(int na, int nev,  complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all);
315
316
317
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
318
  function solve_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk, &
319
320
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)      &
321
322
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage_double_precision")
#else
323
  function solve_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk, &
324
325
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)      &
326
327
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage_single_precision")
#endif
Andreas Marek's avatar
Andreas Marek committed
328
    use, intrinsic :: iso_c_binding
329
    use elpa1
Andreas Marek's avatar
Andreas Marek committed
330

Andreas Marek's avatar
Andreas Marek committed
331
    implicit none
Andreas Marek's avatar
Andreas Marek committed
332
    integer(kind=c_int)                    :: success
333
334
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
335
#ifdef DOUBLE_PRECISION_COMPLEX
Andreas Marek's avatar
Andreas Marek committed
336
    real(kind=c_double)                    :: ev(1:na)
337
#ifdef USE_ASSUMED_SIZE
338
    complex(kind=c_double_complex)         :: a(lda,*), q(ldq,*)
339
#else
340
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
341
#endif
342
343

#else /* SINGLE_PRECISION */
344
    real(kind=c_float)                     :: ev(1:na)
345
#ifdef USE_ASSUMED_SIZE
346
347
348
349
350
    complex(kind=c_float_complex)          :: a(lda,*), q(ldq,*)
#else
    complex(kind=c_float_complex)          :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif

351
#endif
Andreas Marek's avatar
Andreas Marek committed
352
353
354

    logical                                :: successFortran

355
#ifdef DOUBLE_PRECISION_COMPLEX
356
357
358
    successFortran = elpa_solve_evp_complex_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)
359
#else
360
361
362
    successFortran = elpa_solve_evp_complex_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#endif
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_COMPLEX

  !c> /*! \brief C interface to solve the single-precision complex eigenvalue problem with 1-stage solver
  !c> *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
#undef DOUBLE_PRECISION_COMPLEX
#ifdef DOUBLE_PRECISION_COMPLEX
398
  !c> int elpa_solve_evp_complex_1stage_double_precision(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all);
399
#else
400
  !c> int elpa_solve_evp_complex_1stage_single_precision(int na, int nev,  complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all);
401
402
403
404
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
  function solve_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk, &
405
406
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)      &
407
408
409
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage_double_precision")
#else
  function solve_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk, &
410
411
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)      &
412
413
414
415
416
417
418
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage_single_precision")
#endif
    use, intrinsic :: iso_c_binding
    use elpa1

    implicit none
    integer(kind=c_int)                    :: success
419
420
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
421
422
423
424
425
426
427
428
429
#ifdef DOUBLE_PRECISION_COMPLEX
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
    real(kind=c_double)                    :: ev(1:na)
#else
    complex(kind=c_float_complex)          :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
    real(kind=c_float)                     :: ev(1:na)
#endif

    logical                                :: successFortran
Andreas Marek's avatar
Andreas Marek committed
430

431
#ifdef DOUBLE_PRECISION_COMPLEX
432
433
434
    successFortran = elpa_solve_evp_complex_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)
435
#else
436
437
438
    successFortran = elpa_solve_evp_complex_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,  &
                                  THIS_COMPLEX_ELPA_KERNEL_API)
439
#endif
Andreas Marek's avatar
Andreas Marek committed
440
441
442
443
444
445
446
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
447
448
449
450
451

#endif /* WANT_SINGLE_PRECISION_COMPLEX */


  !c> /*! \brief C interface to solve the double-precision real eigenvalue problem with 2-stage solver
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
476
#define DOUBLE_PRECISION_REAL 1
477
478
479
480
481
482
#ifdef DOUBLE_PRECISION_REAL
  !c> int elpa_solve_evp_real_2stage_double_precision(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
#else
  !c> int elpa_solve_evp_real_2stage_single_precision(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
#endif

483
484
#ifdef DOUBLE_PRECISION_REAL
  function solve_elpa2_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
485
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
Andreas Marek's avatar
Andreas Marek committed
486
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
487
488
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_double_precision")
#else
489
490
491
492
493
  function solve_elpa2_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_double_precision")

494
495
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_single_precision")
#endif
Andreas Marek's avatar
Andreas Marek committed
496
    use, intrinsic :: iso_c_binding
497
    use elpa2
Andreas Marek's avatar
Andreas Marek committed
498

Andreas Marek's avatar
Andreas Marek committed
499
    implicit none
Andreas Marek's avatar
Andreas Marek committed
500
    integer(kind=c_int)                    :: success
501
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
502
503
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_REAL_ELPA_KERNEL_API, useQR
504
#ifdef DOUBLE_PRECISION_REAL
505
    real(kind=c_double)                    :: ev(1:na)
506
507
#ifdef USE_ASSUMED_SIZE
    real(kind=c_double)                    :: a(lda,*), q(ldq,*)
508
#else
509
510
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
511
512
513
514

#else /* SINGLE_PRECISION */

    real(kind=c_float)                     :: ev(1:na)
515
#ifdef USE_ASSUMED_SIZE
516
517
518
519
520
    real(kind=c_float)                     :: a(1:lda,*), q(1:ldq,*)
#else
    real(kind=c_float)                     :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif

521
#endif
Andreas Marek's avatar
Andreas Marek committed
522
523
524
525
526
527
528
529
530

    logical                                :: successFortran, useQRFortran

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

531
#ifdef DOUBLE_PRECISION_REAL
532
    successFortran = elpa_solve_evp_real_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
533
                                           mpi_comm_cols, mpi_comm_all,                                  &
Andreas Marek's avatar
Andreas Marek committed
534
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
535
#else
536
    successFortran = elpa_solve_evp_real_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
537
538
539
540
541
542
543
544
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
#endif
    if (successFortran) then
      success = 1
    else
      success = 0
    endif
Andreas Marek's avatar
Andreas Marek committed
545

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
  end function

#ifdef WANT_SINGLE_PRECISION_REAL

  !c> /*! \brief C interface to solve the single-precision real eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
#undef DOUBLE_PRECISION_REAL
#ifdef DOUBLE_PRECISION_REAL
  !c> int elpa_solve_evp_real_2stage_double_precision(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
#else
  !c> int elpa_solve_evp_real_2stage_single_precision(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
#endif

#ifdef DOUBLE_PRECISION_REAL
  function solve_elpa2_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_double_precision")
#else
  function solve_elpa2_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage_single_precision")
#endif
    use, intrinsic :: iso_c_binding
    use elpa2

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_REAL_ELPA_KERNEL_API, useQR
#ifdef DOUBLE_PRECISION_REAL
602
    real(kind=c_double)                    ::  ev(1:na)
603
#ifdef USE_ASSUMED_SIZE
604
    real(kind=c_double)                    :: a(1:lda,*), q(1:ldq,*)
605
#else
606
607
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
Andreas Marek's avatar
Andreas Marek committed
608

609
610
611
#else /* SINGLE_PRECISION */

    real(kind=c_float)                     :: ev(1:na)
612
#ifdef USE_ASSUMED_SIZE
613
614
615
    real(kind=c_float)                     :: a(1:lda,*), q(1:ldq,*)
#else
    real(kind=c_float)                     :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
616
617
#endif

618
#endif
619
620
621
622
623
624
625
626
627
    logical                                :: successFortran, useQRFortran

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

#ifdef DOUBLE_PRECISION_REAL
628
    successFortran = elpa_solve_evp_real_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
629
630
631
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
#else
632
    successFortran = elpa_solve_evp_real_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
633
634
635
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
#endif
Andreas Marek's avatar
Andreas Marek committed
636
637
638
639
640
641
642
643
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

644
#endif /* WANT_SINGLE_PRECISION_REAL */
645

646
  !c> /*! \brief C interface to solve the double-precision complex eigenvalue problem with 2-stage solver
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
666
  !c> *  \param THIS_COMPLEX_ELPA_KERNEL_API  specify used ELPA2 kernel via API
667
668
669
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
670
671
#define DOUBLE_PRECISION_COMPLEX 1

672
673
674
675
676
#ifdef DOUBLE_PRECISION_COMPLEX
  !c> int elpa_solve_evp_complex_2stage_double_precision(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
#else
  !c> int elpa_solve_evp_complex_2stage_single_precision(int na, int nev, complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
#endif
677
678
679

#ifdef DOUBLE_PRECISION_COMPLEX
  function solve_elpa2_evp_complex_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
680
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
Andreas Marek's avatar
Andreas Marek committed
681
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
682
683
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage_double_precision")
#else
684
685
686
  function solve_elpa2_evp_complex_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
687
688
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage_single_precision")
#endif
Andreas Marek's avatar
Andreas Marek committed
689
690

    use, intrinsic :: iso_c_binding
691
    use elpa2
Andreas Marek's avatar
Andreas Marek committed
692

Andreas Marek's avatar
Andreas Marek committed
693
    implicit none
Andreas Marek's avatar
Andreas Marek committed
694
    integer(kind=c_int)                    :: success
695
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
696
697
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
698
#ifdef DOUBLE_PRECISION_COMPLEX
Andreas Marek's avatar
Andreas Marek committed
699
    real(kind=c_double)                    :: ev(1:na)
700
#ifdef USE_ASSUMED_SIZE
701
    complex(kind=c_double_complex)         :: a(lda,*), q(ldq,*)
702
#else
703
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
704
#endif
705
706

#else /* SINGLE_PRECISION */
707
    real(kind=c_float)                     :: ev(1:na)
708
#ifdef USE_ASSUMED_SIZE
709
710
711
712
713
    complex(kind=c_float_complex)          ::  a(lda,*), q(ldq,*)
#else
    complex(kind=c_float_complex)          :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif

714
#endif
Andreas Marek's avatar
Andreas Marek committed
715
716
    logical                                :: successFortran

717
#ifdef DOUBLE_PRECISION_COMPLEX
718
719
    successFortran = elpa_solve_evp_complex_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, &
                                                          mpi_comm_rows, mpi_comm_cols, &
Andreas Marek's avatar
Andreas Marek committed
720
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
721
#else
722
723
    successFortran = elpa_solve_evp_complex_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, &
                                                          mpi_comm_rows, mpi_comm_cols, &
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
#endif
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_COMPLEX

  !c> /*! \brief C interface to solve the single-precision complex eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
#undef DOUBLE_PRECISION_COMPLEX
Andreas Marek's avatar
Andreas Marek committed
762

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
#ifdef DOUBLE_PRECISION_COMPLEX
  !c> int elpa_solve_evp_complex_2stage_double_precision(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
#else
  !c> int elpa_solve_evp_complex_2stage_single_precision(int na, int nev, complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
  function solve_elpa2_evp_complex_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage_double_precision")
#else
  function solve_elpa2_evp_complex_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage_single_precision")
#endif

    use, intrinsic :: iso_c_binding
    use elpa2

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
#ifdef DOUBLE_PRECISION_COMPLEX
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
    real(kind=c_double)                    :: ev(1:na)
#else
    complex(kind=c_float_complex)          :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
    real(kind=c_float)                     :: ev(1:na)
#endif
    logical                                :: successFortran

#ifdef DOUBLE_PRECISION_COMPLEX
799
800
    successFortran = elpa_solve_evp_complex_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, &
                                                          mpi_comm_rows, mpi_comm_cols, &
801
802
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
#else
803
804
    successFortran = elpa_solve_evp_complex_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, &
                                                          mpi_comm_rows, mpi_comm_cols, &
805
806
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
#endif
Andreas Marek's avatar
Andreas Marek committed
807
808
809
810
811
812
813
    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
#endif /* WANT_SINGLE_PRECISION_COMPLEX */

  !c> /*! \brief C interface to driver function "elpa_solve_evp_real_double"
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *  \param method                      choose whether to use ELPA 1stage or 2stage solver
  !c> *                                     possible values: "1stage" => use ELPA 1stage solver
  !c> *                                                      "2stage" => use ELPA 2stage solver
  !c> *                                                       "auto"   => (at the moment) use ELPA 2stage solver
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
  !c> int elpa_solve_evp_real_double(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR, char *method);
  function elpa_solve_evp_real_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR, method)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_double")

    use, intrinsic :: iso_c_binding
    use elpa, only : elpa_solve_evp_real_double

    implicit none
    integer(kind=c_int)                      :: success
    integer(kind=c_int), value, intent(in)   :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                                mpi_comm_all
    integer(kind=c_int), value, intent(in)   :: THIS_REAL_ELPA_KERNEL_API, useQR
    real(kind=c_double)                      :: ev(1:na)
#ifdef USE_ASSUMED_SIZE
    real(kind=c_double)                      :: a(lda,*), q(ldq,*)
#else
    real(kind=c_double)                      :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
    logical                                  :: successFortran, useQRFortran
    character(kind=c_char,len=1), intent(in) :: method(*)
    character(len=6)                         :: methodFortran
    integer(kind=c_int)                      :: charCount

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

    charCount = 1
    do
      if (method(charCount) == c_null_char) exit
      charCount = charCount + 1
    enddo
    charCount = charCount - 1

    if (charCount .ge. 1)  then
      methodFortran(1:charCount) = transfer(method(1:charCount), methodFortran)

      successFortran = elpa_solve_evp_real_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran, methodFortran)
    else
      successFortran = elpa_solve_evp_real_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
    endif

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
Andreas Marek's avatar
Andreas Marek committed
902

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
#ifdef WANT_SINGLE_PRECISION_REAL
  !c> /*! \brief C interface to driver function "elpa_solve_evp_real_single"
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *  \param method                      choose whether to use ELPA 1stage or 2stage solver
  !c> *                                     possible values: "1stage" => use ELPA 1stage solver
  !c> *                                                      "2stage" => use ELPA 2stage solver
  !c> *                                                       "auto"   => (at the moment) use ELPA 2stage solver
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
  !c> int elpa_solve_evp_real_single(int na, int nev, float *a, int lda, float *ev, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR, char *method);
  function elpa_solve_evp_real_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR, method)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_single")

    use, intrinsic :: iso_c_binding
    use elpa, only : elpa_solve_evp_real_single

    implicit none
    integer(kind=c_int)                      :: success
    integer(kind=c_int), value, intent(in)   :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                                mpi_comm_all
    integer(kind=c_int), value, intent(in)   :: THIS_REAL_ELPA_KERNEL_API, useQR
    real(kind=c_float)                       :: ev(1:na)
#ifdef USE_ASSUMED_SIZE
    real(kind=c_float)                       :: a(lda,*), q(ldq,*)
#else
    real(kind=c_float)                       :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
    logical                                  :: successFortran, useQRFortran
    character(kind=c_char,len=1), intent(in) :: method(*)
    character(len=6)                         :: methodFortran
    integer(kind=c_int)                      :: charCount

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

    charCount = 1
    do
      if (method(charCount) == c_null_char) exit
      charCount = charCount + 1
    enddo
    charCount = charCount - 1

    if (charCount .ge. 1)  then
      methodFortran(1:charCount) = transfer(method(1:charCount), methodFortran)

      successFortran = elpa_solve_evp_real_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran, methodFortran)
    else
      successFortran = elpa_solve_evp_real_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
    endif

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
#endif /* WANT_SINGLE_PRECISION_REAL */

  !c> /*! \brief C interface to driver function "elpa_solve_evp_complex_double"
  !c> *
  !c> *  \param  na                           Order of matrix a
  !c> *  \param  nev                          Number of eigenvalues needed.
  !c> *                                       The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                            Distributed matrix for which eigenvalues are to be computed.
  !c> *                                       Distribution is like in Scalapack.
  !c> *                                       The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                           Leading dimension of a
  !c> *  \param ev(na)                        On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                             On output: Eigenvectors of a
  !c> *                                       Distribution is like in Scalapack.
  !c> *                                       Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                       even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                           Leading dimension of q
  !c> *  \param nblk                          blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                    distributed number of matrix columns
  !c> *  \param mpi_comm_rows                 MPI-Communicator for rows
  !c> *  \param mpi_comm_cols                 MPI-Communicator for columns
  !c> *  \param mpi_coll_all                  MPI communicator for the total processor set
  !c> *  \param THIS_COMPLEX_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param method                        choose whether to use ELPA 1stage or 2stage solver
  !c> *                                       possible values: "1stage" => use ELPA 1stage solver
  !c> *                                                        "2stage" => use ELPA 2stage solver
  !c> *                                                         "auto"   => (at the moment) use ELPA 2stage solver
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
  !c> int elpa_solve_evp_complex_double(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API, char *method);
  function elpa_solve_evp_complex_wrapper_double(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API, method)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_double")

    use, intrinsic :: iso_c_binding
    use elpa, only : elpa_solve_evp_complex_double

    implicit none
    integer(kind=c_int)                      :: success
    integer(kind=c_int), value, intent(in)   :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                                mpi_comm_all
    integer(kind=c_int), value, intent(in)   :: THIS_COMPLEX_ELPA_KERNEL_API
#ifdef USE_ASSUMED_SIZE
    complex(kind=c_double_complex)           :: a(lda,*), q(ldq,*)
#else
    complex(kind=c_double_complex)           :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
    real(kind=c_double)                      :: ev(1:na)
    character(kind=c_char,len=1), intent(in) :: method(*)
    character(len=6)                         :: methodFortran
    integer(kind=c_int)                      :: charCount

    logical                                  :: successFortran


    charCount = 1
    do
      if (method(charCount) == c_null_char) exit
      charCount = charCount + 1
    enddo
    charCount = charCount - 1

    if (charCount .ge. 1)  then
      methodFortran(1:charCount) = transfer(method(1:charCount), methodFortran)
      successFortran = elpa_solve_evp_complex_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API, methodFortran)
    else
      successFortran = elpa_solve_evp_complex_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
    endif

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_COMPLEX
  !c> /*! \brief C interface to driver function "elpa_solve_evp_complex_single"
  !c> *
  !c> *  \param  na                           Order of matrix a
  !c> *  \param  nev                          Number of eigenvalues needed.
  !c> *                                       The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                            Distributed matrix for which eigenvalues are to be computed.
  !c> *                                       Distribution is like in Scalapack.
  !c> *                                       The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                           Leading dimension of a
  !c> *  \param ev(na)                        On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                             On output: Eigenvectors of a
  !c> *                                       Distribution is like in Scalapack.
  !c> *                                       Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                       even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                           Leading dimension of q
  !c> *  \param nblk                          blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                    distributed number of matrix columns
  !c> *  \param mpi_comm_rows                 MPI-Communicator for rows
  !c> *  \param mpi_comm_cols                 MPI-Communicator for columns
  !c> *  \param mpi_coll_all                  MPI communicator for the total processor set
  !c> *  \param THIS_COMPLEX_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param method                        choose whether to use ELPA 1stage or 2stage solver
  !c> *                                       possible values: "1stage" => use ELPA 1stage solver
  !c> *                                                        "2stage" => use ELPA 2stage solver
  !c> *                                                         "auto"   => (at the moment) use ELPA 2stage solver
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
  !c> int elpa_solve_evp_complex_single(int na, int nev, complex *a, int lda, float *ev, complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API, char *method);
  function elpa_solve_evp_complex_wrapper_single(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API, method)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_single")

    use, intrinsic :: iso_c_binding
    use elpa, only : elpa_solve_evp_complex_single

    implicit none
    integer(kind=c_int)                      :: success
    integer(kind=c_int), value, intent(in)   :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                                mpi_comm_all
    integer(kind=c_int), value, intent(in)   :: THIS_COMPLEX_ELPA_KERNEL_API
#ifdef USE_ASSUMED_SIZE
    complex(kind=c_float_complex)            :: a(lda,*), q(ldq,*)
#else
    complex(kind=c_float_complex)            :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
    real(kind=c_float)                       :: ev(1:na)
    character(kind=c_char,len=1), intent(in) :: method(*)
    character(len=6)                         :: methodFortran
    integer(kind=c_int)                      :: charCount

    logical                                  :: successFortran


    charCount = 1
    do
      if (method(charCount) == c_null_char) exit
      charCount = charCount + 1
    enddo
    charCount = charCount - 1

    if (charCount .ge. 1)  then
      methodFortran(1:charCount) = transfer(method(1:charCount), methodFortran)
      successFortran = elpa_solve_evp_complex_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API, methodFortran)
    else
      successFortran = elpa_solve_evp_complex_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
    endif

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
1150
1151
#endif /* WANT_SINGLE_PRECISION_COMPLEX */

1152
  !c> /*
1153
  !c> \brief  C interface to solve double-precision tridiagonal eigensystem with divide and conquer method
1154
1155
  !c> \details
  !c>
Andreas Marek's avatar
Andreas Marek committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
  !c> *\param na                    Matrix dimension
  !c> *\param nev                   number of eigenvalues/vectors to be computed
  !c> *\param d                     array d(na) on input diagonal elements of tridiagonal matrix, on
  !c> *                             output the eigenvalues in ascending order
  !c> *\param e                     array e(na) on input subdiagonal elements of matrix, on exit destroyed
  !c> *\param q                     on exit : matrix q(ldq,matrixCols) contains the eigenvectors
  !c> *\param ldq                   leading dimension of matrix q
  !c> *\param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *\param matrixCols            columns of matrix q
  !c> *\param mpi_comm_rows         MPI communicator for rows
  !c> *\param mpi_comm_cols         MPI communicator for columns
  !c> *\param wantDebug             give more debug information if 1, else 0
  !c> *\result success              int 1 on success, else 0
1169
  !c> */
1170
1171
1172
  !c> int elpa_solve_tridi_double(int na, int nev, double *d, double *e, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_solve_tridi_wrapper_double(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
           result(success) bind(C,name="elpa_solve_tridi_double")
1173
1174

    use, intrinsic :: iso_c_binding
1175
    use elpa1_auxiliary, only : elpa_solve_tridi_double
1176
1177
1178
1179
1180

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, ldq, nblk, matrixCols,  mpi_comm_cols, mpi_comm_rows
    integer(kind=c_int), value             :: wantDebug
1181
    real(kind=c_double)                    :: d(1:na), e(1:na)
1182
#ifdef USE_ASSUMED_SIZE
1183
1184
1185
1186
    real(kind=c_double)                    :: q(ldq,*)
#else
    real(kind=c_double)                    :: q(1:ldq, 1:matrixCols)
#endif
1187
1188
1189
1190
1191
1192
1193
1194
    logical                                :: successFortran, wantDebugFortran

    if (wantDebug .ne. 0) then
      wantDebugFortran = .true.
    else
      wantDebugFortran = .false.
    endif

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
    successFortran = elpa_solve_tridi_double(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                      wantDebugFortran)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

#ifdef WANT_SINGLE_PRECISION_REAL

  !c> /*
  !c> \brief  C interface to solve single-precision tridiagonal eigensystem with divide and conquer method
  !c> \details
  !c>
  !c> \param na                    Matrix dimension
  !c> \param nev                   number of eigenvalues/vectors to be computed
  !c> \param d                     array d(na) on input diagonal elements of tridiagonal matrix, on
  !c>                              output the eigenvalues in ascending order
  !c> \param e                     array e(na) on input subdiagonal elements of matrix, on exit destroyed
  !c> \param q                     on exit : matrix q(ldq,matrixCols) contains the eigenvectors
  !c> \param ldq                   leading dimension of matrix q
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param matrixCols            columns of matrix q
  !c> \param mpi_comm_rows         MPI communicator for rows
  !c> \param mpi_comm_cols         MPI communicator for columns
  !c> \param wantDebug             give more debug information if 1, else 0
  !c> \result success              int 1 on success, else 0
  !c> */
  !c> int elpa_solve_tridi_single(int na, int nev, float *d, float *e, float *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_solve_tridi_wrapper_single(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
           result(success) bind(C,name="elpa_solve_tridi_single")

    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_solve_tridi_single

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, ldq, nblk, matrixCols,  mpi_comm_cols, mpi_comm_rows
    integer(kind=c_int), value             :: wantDebug
    real(kind=c_float)                     :: d(1:na), e(1:na), q(1:ldq, 1:matrixCols)
    logical                                :: successFortran, wantDebugFortran

    if (wantDebug .ne. 0) then
      wantDebugFortran = .true.
    else
      wantDebugFortran = .false.
    endif

1246
1247
    successFortran = elpa_solve_tridi_single(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                             mpi_comm_cols, wantDebugFortran)
1248
1249
1250
1251
1252
1253
1254
1255
1256

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

1257
1258
#endif /* WANT_SINGLE_PRECISION_REAL */

1259
  !c> /*
1260
  !c> \brief  C interface for elpa_mult_at_b_real_double: Performs C : = A**T * B for double-precision matrices
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
  !c>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c>                 B is a (na,ncb) matrix
  !c>                 C is a (na,ncb) matrix where optionally only the upper or lower
  !c>                   triangle may be computed
  !c> \details
  !c> \param  uplo_a               'U' if A is upper triangular
  !c>                              'L' if A is lower triangular
  !c>                              anything else if A is a full matrix
  !c>                              Please note: This pertains to the original A (as set in the calling program)
  !c>                                           whereas the transpose of A is used for calculations
  !c>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c>                              i.e. it may contain arbitrary numbers
  !c> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !c>                              'L' if only the upper diagonal part of C is needed
  !c>                              anything else if the full matrix C is needed
  !c>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> \param na                    Number of rows/columns of A, number of rows of B and C
  !c> \param ncb                   Number of columns  of B and C
  !c> \param a                     matrix a
  !c> \param lda                   leading dimension of matrix a
1282
  !c> \param ldaCols               columns of matrix a
1283
1284
  !c> \param b                     matrix b
  !c> \param ldb                   leading dimension of matrix b
1285
  !c> \param ldbCols               columns of matrix b
1286
1287
1288
1289
1290
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param c                     matrix c
  !c> \param ldc                   leading dimension of matrix c
1291
  !c> \param ldcCols               columns of matrix c
1292
1293
1294
  !c> \result success              int report success (1) or failure (0)
  !c> */

1295
1296
1297
  !c> int elpa_mult_at_b_real_double(char uplo_a, char uplo_c, int na, int ncb, double *a, int lda, int ldaCols, double *b, int ldb, int ldbCols, int nlbk, int mpi_comm_rows, int mpi_comm_cols, double *c, int ldc, int ldcCols);
  function elpa_mult_at_b_real_wrapper_double(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                              nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols) &
1298
                                              bind(C,name="elpa_mult_at_b_real_double") result(success)
1299
    use, intrinsic :: iso_c_binding
1300
    use elpa1_auxiliary, only : elpa_mult_at_b_real_double
1301
1302
1303
1304

    implicit none

    character(1,C_CHAR), value  :: uplo_a, uplo_c
1305
1306
    integer(kind=c_int), value  :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc, &
                                   ldaCols, ldbCols, ldcCols
1307
    integer(kind=c_int)         :: success
1308
#ifdef USE_ASSUMED_SIZE
1309
    real(kind=c_double)         :: a(lda,*), b(ldb,*), c(ldc,*)
1310
1311
1312
#else
    real(kind=c_double)         :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
1313
1314
    logical                     :: successFortran

1315
1316
    successFortran = elpa_mult_at_b_real_double(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                                nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)
1317
1318
1319
1320
1321
1322
1323
1324
1325

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

1326
#ifdef WANT_SINGLE_PRECISION_REAL
1327
  !c> /*