elpa_impl.F90 139 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
53
54
55
56
57
58
59
60
61
  use precision
  use elpa2_impl
  use elpa1_impl
  use elpa1_auxiliary_impl
#ifdef WITH_MPI
  use elpa_mpi
#endif
  use elpa_generated_fortran_interfaces
  use elpa_utilities, only : error_unit

62
  use elpa_abstract_impl
63
  use elpa_autotune_impl
64
  use, intrinsic :: iso_c_binding
65
  implicit none
66

67
68
  private
  public :: elpa_impl_allocate
69

70
!> \brief Definition of the extended elpa_impl_t type
71
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
72
   private
73
   integer :: communicators_owned
74

75
   !> \brief methods available with the elpa_impl_t type
76
   contains
77
     !> \brief the puplic methods
78
     ! con-/destructor
79
80
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
81

82
     ! KV store
83
84
85
86
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
87

88
89
90
91

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
92
93
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
94
95


96
97
98
99
100
101
102
103
104
105
106
107
108
109
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

110
#if 0
Pavel Kus's avatar
Pavel Kus committed
111
112
113
114
115
     procedure, public :: elpa_generalized_eigenvectors_d      !< public methods to implement the solve step for generalized 
                                                               !< eigenproblem and real/complex double/single matrices
     procedure, public :: elpa_generalized_eigenvectors_f
     procedure, public :: elpa_generalized_eigenvectors_dc
     procedure, public :: elpa_generalized_eigenvectors_fc
116
#endif
Pavel Kus's avatar
Pavel Kus committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
139

140
#if 0
Pavel Kus's avatar
Pavel Kus committed
141
     procedure, private :: elpa_transform_generalized_d
142
     procedure, private :: elpa_transform_back_generalized_d
Pavel Kus's avatar
Pavel Kus committed
143
     procedure, private :: elpa_transform_generalized_dc
144
     procedure, private :: elpa_transform_back_generalized_dc
Pavel Kus's avatar
Pavel Kus committed
145
146
#ifdef WANT_SINGLE_PRECISION_REAL
     procedure, private :: elpa_transform_generalized_f
147
     procedure, private :: elpa_transform_back_generalized_f
Pavel Kus's avatar
Pavel Kus committed
148
149
150
#endif
#ifdef WANT_SINGLE_PRECISION_COMPLEX
     procedure, private :: elpa_transform_generalized_fc
151
     procedure, private :: elpa_transform_back_generalized_fc
152
#endif
Pavel Kus's avatar
Pavel Kus committed
153
#endif
154

155
     procedure, public :: autotune_setup => elpa_autotune_setup
156
157
     procedure, public :: autotune_step => elpa_autotune_step
     procedure, public :: autotune_set_best => elpa_autotune_set_best
158

159
  end type elpa_impl_t
160
161

  !> \brief the implementation of the generic methods
162
  contains
163
164


165
166
167
168
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
169
170
171
172
173
    function elpa_impl_allocate(error) result(obj)
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
174

Andreas Marek's avatar
Andreas Marek committed
175
      ! check whether init has ever been called
176
      if ( elpa_initialized() .ne. ELPA_OK) then
177
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
178
179
        if(present(error)) then
          error = ELPA_ERROR
180
        endif
Andreas Marek's avatar
Andreas Marek committed
181
182
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
183

184
      obj%index = elpa_index_instance_c()
185
186

      ! Associate some important integer pointers for convenience
187
188
189
190
191
192
193
194
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
195
196
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
197

198
199
200
201
202
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
203
    !c> elpa_t elpa_allocate();
204
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
205
206
207
208
209
210
211
212
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

213
214
215
216
217
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
218
    !c> void elpa_deallocate(elpa_t handle);
219
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
220
221
222
223
224
225
226
227
228
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


229
230
231
232
233
    !c> /*! \brief C interface for the implementation of the elpa_autotune_deallocate method
    !c> *
    !c> *  \param  elpa_autotune_impl_t  handle of ELPA autotune object to be deallocated
    !c> *  \result void
    !c> */
234
235
236
    !c> void elpa_autotune_deallocate(elpa_autotune_t handle);
    subroutine elpa_autotune_impl_deallocate_c( autotune_handle) bind(C, name="elpa_autotune_deallocate")
      type(c_ptr), value                  :: autotune_handle
237

238
239
240
      type(elpa_autotune_impl_t), pointer :: self

      call c_f_pointer(autotune_handle, self)
241
242
243
244
245
      call self%destroy()
      deallocate(self)
    end subroutine


246
247
248
249
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
250
    function elpa_setup(self) result(error)
251
252
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
253

254
#ifdef WITH_MPI
255
256
257
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
258
#endif
259

260
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
261
      call self%get("timings",timings, error)
262
263
264
265
266
267
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
268

269
270
#ifdef WITH_MPI
      ! Create communicators ourselves
271
272
273
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
274

Andreas Marek's avatar
Andreas Marek committed
275
276
277
        call self%get("mpi_comm_parent", mpi_comm_parent, error)
        call self%get("process_row", process_row, error)
        call self%get("process_col", process_col, error)
278
279
280
281
282
283
284

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
285

286
287
288
289
290
291
292
293
294
295
296
297
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
298

Andreas Marek's avatar
Andreas Marek committed
299
300
301
302
303
304
305
306
307
308
        call self%set("mpi_comm_rows", mpi_comm_rows,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
        call self%set("mpi_comm_cols", mpi_comm_cols,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
309

310
311
312
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

313
        error = ELPA_OK
314
        return
315
      endif
316

317
      ! Externally supplied communicators
318
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
319
        self%communicators_owned = 0
320
        error = ELPA_OK
321
        return
322
      endif
323

324
325
      ! Otherwise parameters are missing
      error = ELPA_ERROR
326
#endif
327

328
    end function
329

330
331
332
333
334
335
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
336
    !c> int elpa_setup(elpa_t handle);
337
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
338
339
340
341
342
343
344
345
346
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


347
348
349
350
351
352
353
354
355
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
356
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
357
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
Andreas Marek's avatar
Andreas Marek committed
358
359
360
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
361
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
362
363
364
365
366
367
368
      integer(kind=c_int), intent(in), value        :: value

#ifdef USE_FORTRAN2008
      integer(kind=c_int) , intent(in), optional    :: error
#else
      integer(kind=c_int) , intent(in)              :: error
#endif
369
370
371
372
373
374
375

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


376
377
378
379
380
381
382
383
384
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
385
386
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
387
388
389
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
390
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
391
392
393
394
395
396
      integer(kind=c_int)                           :: value
#ifdef ISE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
397
398
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
399
400
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
401
402


403
404
405
406
407
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
408
409
    function elpa_is_set(self, name) result(state)
      class(elpa_impl_t)       :: self
410
      character(*), intent(in) :: name
411
      integer                  :: state
412

413
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
414
415
    end function

416
417
418
419
420
421
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
422
423
424
425
426
427
428
429
430
431
    function elpa_can_set(self, name, value) result(error)
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


432
433
434
435
436
437
    !> \brief function to convert a value to an human readable string
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   option_name string: the name of the options, whose value should be converted
    !> \param   error       integer: errpr code
    !> \result  string      string: the humanreadable string   
438
    function elpa_value_to_string(self, option_name, error) result(string)
439
440
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
441
442
443
444
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
445

446
447
      nullify(string)

448
      call self%get(option_name, val, actual_error)
449
450
451
452
453
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
454
455
      endif

456
457
458
459
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
460

461
462
463
464
      if (present(error)) then
        error = actual_error
      endif
    end function
465

Andreas Marek's avatar
Andreas Marek committed
466

467
468
469
470
471
472
473
474
475
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
476
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
477
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
Andreas Marek's avatar
Andreas Marek committed
478
479
480
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
481
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
482
483
484
485
486
487
      real(kind=c_double), intent(in), value        :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(in), optional     :: error
#else
      integer(kind=c_int), intent(in)               :: error
#endif
488
489
490
491
492
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

493

494
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
495
496
497
498
499
500
501
502
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
503
504
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
505
506
507
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
508
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
509
510
511
512
513
514
      real(kind=c_double)                           :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
515
516
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
517
518
      call elpa_get_double(self, name, value, error)
    end subroutine
519
 
Andreas Marek's avatar
Andreas Marek committed
520

521
522
523
524
525
    !> \brief function to associate a pointer with an integer value
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   name        string: the name of the entry
    !> \result  value       integer, pointer: the value for the entry
526
    function elpa_associate_int(self, name) result(value)
527
      class(elpa_impl_t)             :: self
528
529
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
530

531
532
      type(c_ptr)                    :: value_p

533
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
534
535
536
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
537
538
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
539

540

541
542
543
544
545
546
547
    !> \brief function to querry the timing information at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 6 nested levels can be queried
    !> \result  s               double: the timer metric for the region. Might be seconds,
    !>                                  or any other supported metric
548
549
550
551
552
553
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

554
#ifdef HAVE_DETAILED_TIMINGS
555
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
556
557
558
#else
      s = -1.0
#endif
559
560
561
    end function


562
563
564
565
566
    !> \brief function to print the timing tree below at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 4 nested levels can be specified
567
    subroutine elpa_print_times(self, name1, name2, name3, name4)
568
      class(elpa_impl_t), intent(in) :: self
569
      character(len=*), intent(in), optional :: name1, name2, name3, name4
570
#ifdef HAVE_DETAILED_TIMINGS
571
      call self%timer%print(name1, name2, name3, name4)
572
#endif
573
574
    end subroutine

575

576
577
578
579
    !> \brief function to start the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: a chosen identifier name for the code region
580
581
582
583
584
585
586
587
588
    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


589
590
591
592
    !> \brief function to stop the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: identifier name for the code region to stop
593
594
595
596
597
598
599
600
601
    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


602
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
603
    !>
604
605
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
627
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
628
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
629

630
631
632
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
633
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
634
#endif
635
      real(kind=c_double) :: ev(self%na)
636

Andreas Marek's avatar
Andreas Marek committed
637
#ifdef USE_FORTRAN2008
638
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
639
640
641
642
#else
      integer             :: error
#endif
      integer             :: error2
643
      integer(kind=c_int) :: solver
644
      logical             :: success_l
645

646

Andreas Marek's avatar
Andreas Marek committed
647
648
649
650
651
652
653
654
655
656
657
658
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
        print *,"Problem setting option. Aborting..."
        stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
659
      if (solver .eq. ELPA_SOLVER_1STAGE) then
660
        call self%autotune_timer%start("accumulator")
661
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
662
        call self%autotune_timer%stop("accumulator")
663

664
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
665
        call self%autotune_timer%start("accumulator")
666
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
667
668
        call self%autotune_timer%stop("accumulator")

669
670
671
672
      else
        print *,"unknown solver"
        stop
      endif
673

Andreas Marek's avatar
Andreas Marek committed
674
#ifdef USE_FORTRAN2008
675
      if (present(error)) then
676
        if (success_l) then
677
          error = ELPA_OK
678
        else
679
          error = ELPA_ERROR
680
681
682
683
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
684
685
686
687
688
689
690
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
691
692
    end subroutine

693
694
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
Andreas Marek's avatar
Andreas Marek committed
695
696
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
697
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
698
699
700
#else
      integer(kind=c_int), intent(in)           :: error
#endif
701

Andreas Marek's avatar
Andreas Marek committed
702
703
      real(kind=c_double), pointer              :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
704
705
706
707
708
709

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

710
      call elpa_eigenvectors_d(self, a, ev, q, error)
711
712
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
713

714
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
715
    !>
716
717
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
739
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
740
      class(elpa_impl_t)  :: self
741
742
743
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
744
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
745
#endif
746
      real(kind=c_float)  :: ev(self%na)
747

Andreas Marek's avatar
Andreas Marek committed
748
#ifdef USE_FORTRAN2008
749
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
750
751
752
753
#else
      integer             :: error
#endif
      integer             :: error2
754
      integer(kind=c_int) :: solver
755
#ifdef WANT_SINGLE_PRECISION_REAL
756
      logical             :: success_l
757

Andreas Marek's avatar
Andreas Marek committed
758
759
760
761
762
763
764
765
766
767
768
769
      call self%get("solver",solver, error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#if USE_FORTRAN2008                   
      if (present(error)) then        
        error  = error2               
      endif
#else
      error  = error2
#endif
770
      if (solver .eq. ELPA_SOLVER_1STAGE) then
771
        call self%autotune_timer%start("accumulator")
772
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
773
        call self%autotune_timer%stop("accumulator")
774

775
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
776
        call self%autotune_timer%start("accumulator")
777
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
778
779
        call self%autotune_timer%stop("accumulator")

780
781
782
783
      else
        print *,"unknown solver"
        stop
      endif
784

Andreas Marek's avatar
Andreas Marek committed
785
#ifdef USE_FORTRAN2008
786
      if (present(error)) then
787
        if (success_l) then
788
          error = ELPA_OK
789
        else
790
          error = ELPA_ERROR
791
792
793
794
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
795
796
797
798
799
800
801
802
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

803
#else
804
      print *,"This installation of the ELPA library has not been build with single-precision support"
805
      error = ELPA_ERROR
806
807
808
#endif
    end subroutine

809

810
811
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
Andreas Marek's avatar
Andreas Marek committed
812
813
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
814
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
815
816
817
#else
      integer(kind=c_int), intent(in)           :: error
#endif
818

Andreas Marek's avatar
Andreas Marek committed
819
820
      real(kind=c_float), pointer               :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
821
822
823
824
825
826

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

827
      call elpa_eigenvectors_f(self, a, ev, q, error)
828
829
830
    end subroutine


831
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
832
    !>
833
834
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
856
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
857
      class(elpa_impl_t)             :: self
858

859
860
861
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
862
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
863
#endif
864
      real(kind=c_double)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
865
#ifdef USE_FORTRAN2008
866
      integer, optional              :: error
Andreas Marek's avatar
Andreas Marek committed
867
868
869
870
#else
      integer                        :: error
#endif
      integer                        :: error2
871
      integer(kind=c_int)            :: solver
872
      logical                        :: success_l
873

Andreas Marek's avatar
Andreas Marek committed
874
875
876
877
878
879
880
881
882
883
884
885
886
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif

887
      if (solver .eq. ELPA_SOLVER_1STAGE) then
888
        call self%autotune_timer%start("accumulator")
889
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
890
        call self%autotune_timer%stop("accumulator")
891

892
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
893
        call self%autotune_timer%start("accumulator")
894
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
895
896
        call self%autotune_timer%stop("accumulator")

897
898
899
900
      else
        print *,"unknown solver"
        stop
      endif
901

Andreas Marek's avatar
Andreas Marek committed
902
#ifdef USE_FORTRAN2008
903
      if (present(error)) then
904
        if (success_l) then
905
          error = ELPA_OK
906
        else
907
          error = ELPA_ERROR
908
909
910
911
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
912
913
914
915
916
917
918
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
919
920
921
    end subroutine


922
923
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
Andreas Marek's avatar
Andreas Marek committed
924
925
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
926
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
927
928
929
#else
      integer(kind=c_int), intent(in)           :: error
#endif
930

Andreas Marek's avatar
Andreas Marek committed
931
932
933
      complex(kind=c_double_complex), pointer   :: a(:, :), q(:, :)
      real(kind=c_double), pointer              :: ev(:)
      type(elpa_impl_t), pointer                :: self
934
935
936
937
938
939

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

940
      call elpa_eigenvectors_dc(self, a, ev, q, error)
941
942
943
    end subroutine


944
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
945
    !>
946
947
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
969
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
970
      class(elpa_impl_t)            :: self
971
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
972
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
973
#else
Andreas Marek's avatar
Andreas Marek committed
974
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
975
#endif
Andreas Marek's avatar
Andreas Marek committed
976
      real(kind=c_float)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
977
#ifdef USE_FORTRAN2008
978
      integer, optional             :: error
Andreas Marek's avatar
Andreas Marek committed
979
980
981
982
#else
      integer                       :: error
#endif
      integer                       :: error2
983
      integer(kind=c_int)           :: solver
984
#ifdef WANT_SINGLE_PRECISION_COMPLEX
985
      logical                       :: success_l
986

Andreas Marek's avatar
Andreas Marek committed
987
988
989
990
991
992
993
994
995
996
997
998
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
999
      if (solver .eq. ELPA_SOLVER_1STAGE) then
1000
        call self%autotune_timer%start("accumulator")
1001
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
1002
        call self%autotune_timer%stop("accumulator")
1003

1004
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
1005
        call self%autotune_timer%start("accumulator")
1006
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
1007
1008
        call self%autotune_timer%stop("accumulator")

1009
1010
1011
1012
      else
        print *,"unknown solver"
        stop
      endif
Andreas Marek's avatar
Andreas Marek committed
1013
#ifdef USE_FORTRAN2008
1014
      if (present(error)) then
Andreas Marek's avatar
Andreas Marek committed
1015
1016
1017
1018
1019
       if (success_l) then
         error = ELPA_OK
       else
         error = ELPA_ERROR
       endif
1020
1021
1022
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
1023
1024
1025
1026
1027
1028
1029
1030
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

1031
#else
1032
      print *,"This installation of the ELPA library has not been build with single-precision support"
1033
      error = ELPA_ERROR
1034
1035
1036
#endif
    end subroutine

1037

1038
1039
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
Andreas Marek's avatar
Andreas Marek committed
1040
1041
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
1042
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
1043
1044
1045
1046
1047
1048
#else
      integer(kind=c_int), intent(in)           :: error
#endif
      complex(kind=c_float_complex), pointer    :: a(:, :), q(:, :)
      real(kind=c_float), pointer               :: ev(:)
      type(elpa_impl_t), pointer                :: self
1049
1050
1051
1052
1053
1054

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

1055
      call elpa_eigenvectors_fc(self, a, ev, q, error)
1056
1057
    end subroutine