elpa2.F90 70.4 KB
Newer Older
1
!   This file is part of ELPA.
2
3
4
5
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), fomerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
14
15
16
17
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
18
!    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
!    enhancements authored by Intel Corporation which is not part of
20
!    the ELPA consortium.
21
22
!
!    More information can be found here:
23
!    http://elpa.mpcdf.mpg.de/
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"
64
!> \brief Fortran module which provides the routines to use the 2-stage ELPA solver
65
66
67
68
module ELPA2

! Version 1.1.2, 2011-02-21

69
  use elpa_utilities
70
  use elpa1, only : elpa_print_times, time_evp_back, time_evp_fwd, time_evp_solve
71
  use elpa2_utilities
72

73
74
75
76
77
78
  implicit none

  PRIVATE ! By default, all routines contained are private

  ! The following routines are public:

79
80
81
82
  public :: solve_evp_real_2stage_double               !< old, deprecated interface: Driver routine for real double-precision eigenvalue problem. will be deleted at some point
  public :: solve_evp_complex_2stage_double            !< old, deprecated interface: Driver routine for complex double-precision eigenvalue problem. will be deleted at some point
  public :: elpa_solve_evp_real_2stage_double          !< Driver routine for real double-precision 2-stage eigenvalue problem
  public :: elpa_solve_evp_complex_2stage_double       !< Driver routine for complex double-precision 2-stage eigenvalue problem
83

84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
!-------------------------------------------------------------------------------
!>  \brief solve_evp_real_2stage: Old, deprecated interface for elpa_solve_evp_real_2stage_double
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \param use_qr (optional)                    use QR decomposition
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
124
125
126
127
  interface solve_evp_real_2stage
    module procedure solve_evp_real_2stage_double
  end interface

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
!-------------------------------------------------------------------------------
!>  \brief elpa_solve_evp_real_2stage_double: Fortran function to solve the real double-precision eigenvalue problem with a 2 stage approach. This is called by "elpa_solve_evp_real_double"
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \param use_qr (optional)                    use QR decomposition
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
167
168
169
170
  interface elpa_solve_evp_real_2stage_double
    module procedure solve_evp_real_2stage_double
  end interface

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
!-------------------------------------------------------------------------------
!>  \brief solve_evp_complex_2stage: Old, deprecated interface for elpa_solve_evp_complex_2stage_double
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
208
209
210
211
  interface solve_evp_complex_2stage
    module procedure solve_evp_complex_2stage_double
  end interface

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
!-------------------------------------------------------------------------------
!>  \brief elpa_solve_evp_complex_2stage_double: Fortran function to solve the complex double-precision eigenvalue problem with a 2 stage approach. This is called by "elpa_solve_evp_complex_double"
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
249
250
251
252
  interface elpa_solve_evp_complex_2stage_double
    module procedure solve_evp_complex_2stage_double
  end interface

253
254
#ifdef WANT_SINGLE_PRECISION_REAL
  public :: solve_evp_real_2stage_single
255
  public :: elpa_solve_evp_real_2stage_single
256
257
258
259
#endif

#ifdef WANT_SINGLE_PRECISION_COMPLEX
  public :: solve_evp_complex_2stage_single
260
  public :: elpa_solve_evp_complex_2stage_single
261
262
#endif

263
#ifdef WANT_SINGLE_PRECISION_REAL
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
!-------------------------------------------------------------------------------
!>  \brief elpa_solve_evp_real_2stage_single: Fortran function to solve the real single-precision eigenvalue problem with a 2 stage approach. This is called by "elpa_solve_evp_real_single"
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \param use_qr (optional)                    use QR decomposition
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
303
304
305
306
307
308
309
  interface elpa_solve_evp_real_2stage_single
    module procedure solve_evp_real_2stage_single
  end interface
#endif

#ifdef WANT_SINGLE_PRECISION_COMPLEX
  interface elpa_solve_evp_complex_2stage_single
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
!-------------------------------------------------------------------------------
!>  \brief elpa_solve_evp_complex_2stage_single: Fortran function to solve the complex double-precision eigenvalue problem with a 2 stage approach. This is called by "elpa_solve_evp_complex_single"
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
347
348
349
    module procedure solve_evp_complex_2stage_single
  end interface
#endif
350

351

352
contains
353
!-------------------------------------------------------------------------------
354
!>  \brief solve_evp_real_2stage_double: Fortran function to solve the double-precision real eigenvalue problem with a 2 stage approach
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \param use_qr (optional)                    use QR decomposition
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
392

393
394
395
396
397
398
399
400
401
402
#define DOUBLE_PRECISION_REAL

#ifdef DOUBLE_PRECISION_REAL
  function solve_evp_real_2stage_double(na, nev, a, lda, ev, q, ldq, nblk,        &
                               matrixCols,                               &
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
#else
  function solve_evp_real_2stage_single(na, nev, a, lda, ev, q, ldq, nblk,        &
403
                               matrixCols,                               &
404
405
406
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
407
#endif
408

409

410
#ifdef HAVE_DETAILED_TIMINGS
411
    use timings
412
#endif
413

414
415
416
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
417
418
   use cuda_functions
   use mod_check_for_gpu
419
   use iso_c_binding
420
   implicit none
Andreas Marek's avatar
Andreas Marek committed
421
422
   logical, intent(in), optional          :: useQR
   logical                                :: useQRActual, useQREnvironment
423
424
   integer(kind=c_int), intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
   integer(kind=c_int)                       :: THIS_REAL_ELPA_KERNEL
Andreas Marek's avatar
Andreas Marek committed
425

426
   integer(kind=c_int), intent(in)        :: na, nev, lda, ldq, matrixCols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
427
                                             mpi_comm_cols, mpi_comm_all
428
429
   integer(kind=c_int), intent(in)        :: nblk
   real(kind=c_double), intent(inout)     :: ev(na)
430
#ifdef USE_ASSUMED_SIZE
431
   real(kind=c_double), intent(inout)     :: a(lda,*), q(ldq,*)
432
#else
433
   real(kind=c_double), intent(inout)     :: a(lda,matrixCols), q(ldq,matrixCols)
434
#endif
435
   real(kind=c_double), allocatable       :: hh_trans_real(:,:)
Andreas Marek's avatar
Andreas Marek committed
436

437
438
439
   integer(kind=c_int)                    :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer(kind=c_int)                    :: nbw, num_blocks
   real(kind=c_double), allocatable       :: tmat(:,:,:), e(:)
440
   integer(kind=c_intptr_t)               :: tmat_dev, q_dev, a_dev
441
   real(kind=c_double)                    :: ttt0, ttt1, ttts  ! MPI_WTIME always needs double
442
   integer(kind=c_int)                    :: i
Andreas Marek's avatar
Andreas Marek committed
443
444
445
   logical                                :: success
   logical, save                          :: firstCall = .true.
   logical                                :: wantDebug
446
   integer(kind=c_int)                    :: istat
447
448
   character(200)                         :: errorMessage
   logical                                :: useGPU
449
   integer(kind=c_int)                    :: numberOfGPUDevices
Andreas Marek's avatar
Andreas Marek committed
450

451
#ifdef HAVE_DETAILED_TIMINGS
452
    call timer%start("solve_evp_real_2stage_double")
453
#endif
454

455
456
    call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
    call mpi_comm_size(mpi_comm_all,n_pes,mpierr)
457

458
459
460
461
    call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
    call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
    call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
    call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
462

463

464
465
466
467
468
469
    wantDebug = .false.
    if (firstCall) then
      ! are debug messages desired?
      wantDebug = debug_messages_via_environment_variable()
      firstCall = .false.
    endif
470

471
    success = .true.
472

473
474
    useQRActual = .false.
    useGPU      = .false.
475

476
477
478
479
480
    ! set usage of qr decomposition via API call
    if (present(useQR)) then
      if (useQR) useQRActual = .true.
        if (.not.(useQR)) useQRACtual = .false.
    endif
481

482
483
484
485
    ! overwrite this with environment variable settings
    if (qr_decomposition_via_environment_variable(useQREnvironment)) then
      useQRActual = useQREnvironment
    endif
486

487
    if (useQRActual) then
488
      if (mod(na,2) .ne. 0) then
489
490
491
492
493
494
495
496
        if (wantDebug) then
          write(error_unit,*) "solve_evp_real_2stage: QR-decomposition: blocksize does not fit with matrixsize"
        endif
        print *, "Do not use QR-decomposition for this matrix and blocksize."
        success = .false.
        return
      endif
    endif
497

498

499
500
501
502
    if (present(THIS_REAL_ELPA_KERNEL_API)) then
      ! user defined kernel via the optional argument in the API call
      THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
    else
503

504
505
506
507
      ! if kernel is not choosen via api
      ! check whether set by environment variable
      THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
    endif
Andreas Marek's avatar
Andreas Marek committed
508

509
    ! check whether choosen kernel is allowed: function returns true if NOT allowed! change this
510
511
512
513
514
515
516
517
518
519
520
521
522
    if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then

      if (my_pe == 0) then
        write(error_unit,*) " "
        write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
        write(error_unit,*) "is not in the list of the allowed kernels!"
        write(error_unit,*) " "
        write(error_unit,*) "Allowed kernels are:"
        do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
          if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
            write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
          endif
        enddo
Andreas Marek's avatar
Andreas Marek committed
523

524
        write(error_unit,*) " "
525
526
527
528
529
530
531
532
533
534
535
        ! check whether generic kernel is defined
         if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
           write(error_unit,*) "The default kernel REAL_ELPA_KERNEL_GENERIC will be used !"
         else
           write(error_unit,*) "As default kernel ",REAL_ELPA_KERNEL_NAMES(DEFAULT_REAL_ELPA_KERNEL)," will be used"
         endif
      endif  ! my_pe == 0
      if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
        THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
      else
        THIS_REAL_ELPA_KERNEL = DEFAULT_REAL_ELPA_KERNEL
536
537
538
539
      endif
    endif

    if (THIS_REAL_ELPA_KERNEL .eq. REAL_ELPA_KERNEL_GPU) then
540
      if (check_for_gpu(my_pe,numberOfGPUDevices, wantDebug=wantDebug)) then
541
542
543
544
        useGPU = .true.
      endif
      if (nblk .ne. 128) then
        print *,"At the moment GPU version needs blocksize 128"
545
        error stop
546
      endif
547

548
549
550
551
552
553
554
      ! set the neccessary parameters
      cudaMemcpyHostToDevice   = cuda_memcpyHostToDevice()
      cudaMemcpyDeviceToHost   = cuda_memcpyDeviceToHost()
      cudaMemcpyDeviceToDevice = cuda_memcpyDeviceToDevice()
      cudaHostRegisterPortable = cuda_hostRegisterPortable()
      cudaHostRegisterMapped   = cuda_hostRegisterMapped()
    endif
555

556
    ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32
557
558
559
560
    ! On older systems (IBM Bluegene/P, Intel Nehalem) a value of 32 was optimal.
    ! For Intel(R) Xeon(R) E5 v2 and v3, better use 64 instead of 32!
    ! For IBM Bluegene/Q this is not clear at the moment. We have to keep an eye
    ! on this and maybe allow a run-time optimization here
561
562
563
    if (useGPU) then
      nbw = nblk
    else
564
      nbw = (63/nblk+1)*nblk
565
    endif
566

567
    num_blocks = (na-1)/nbw + 1
568

569
570
571
572
573
    allocate(tmat(nbw,nbw,num_blocks), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_real_2stage: error when allocating tmat "//errorMessage
      stop
    endif
574

575
    ! Reduction full -> band
576

577
578
    ttt0 = MPI_Wtime()
    ttts = ttt0
579
#ifdef DOUBLE_PRECISION_REAL
580
581
    call bandred_real_double(na, a, a_dev, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                             tmat, tmat_dev, wantDebug, useGPU, success, useQRActual)
582
#else
583
584
    call bandred_real_single(na, a, a_dev, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                             tmat, tmat_dev, wantDebug, useGPU, success, useQRActual)
585
#endif
586
587
588
589
    if (.not.(success)) return
    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
590

591
     ! Reduction band -> tridiagonal
592

593
594
595
596
597
     allocate(e(na), stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when allocating e "//errorMessage
       stop
     endif
598

599
     ttt0 = MPI_Wtime()
600
601
#ifdef DOUBLE_PRECISION_REAL
     call tridiag_band_real_double(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
602
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
603
604
605
606
#else
     call tridiag_band_real_single(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
#endif
607

608
609
610
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
611

612
#ifdef WITH_MPI
613

614
#ifdef DOUBLE_PRECISION_REAL
615
616
     call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
     call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)
617
618
619
620
#else
     call mpi_bcast(ev,na,MPI_REAL4,0,mpi_comm_all,mpierr)
     call mpi_bcast(e,na,MPI_REAL4,0,mpi_comm_all,mpierr)
#endif
621

622
#endif /* WITH_MPI */
623
624
     ttt1 = MPI_Wtime()
     time_evp_fwd = ttt1-ttts
625

626
     ! Solve tridiagonal system
627

628
     ttt0 = MPI_Wtime()
629
630
#ifdef DOUBLE_PRECISION_REAL
     call solve_tridi_double(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
631
                      mpi_comm_cols, wantDebug, success)
632
633
634
635
#else
     call solve_tridi_single(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
                      mpi_comm_cols, wantDebug, success)
#endif
636
637
638
639
     if (.not.(success)) return

     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
640
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
641
642
     time_evp_solve = ttt1-ttt0
     ttts = ttt1
643

644
645
646
647
648
649
650
651
     deallocate(e, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating e "//errorMessage
       stop
     endif
     ! Backtransform stage 1

     ttt0 = MPI_Wtime()
652
#ifdef DOUBLE_PRECISION_REAL
653
     call trans_ev_tridi_to_band_real_double(na, nev, nblk, nbw, q, q_dev, ldq, matrixCols, hh_trans_real, &
654
655
656
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, useGPU, success,      &
                                    THIS_REAL_ELPA_KERNEL)
#else
657
     call trans_ev_tridi_to_band_real_single(na, nev, nblk, nbw, q, q_dev, ldq, matrixCols, hh_trans_real, &
658
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, useGPU, success,      &
659
                                    THIS_REAL_ELPA_KERNEL)
660
#endif
661

662
663
664
665
     if (.not.(success)) return
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
666

667
668
669
670
671
672
     ! We can now deallocate the stored householder vectors
     deallocate(hh_trans_real, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating hh_trans_real "//errorMessage
       stop
     endif
673
674


675
676
677
     ! Backtransform stage 2
     print *,"useGPU== ",useGPU
     ttt0 = MPI_Wtime()
678
#ifdef DOUBLE_PRECISION_REAL
Andreas Marek's avatar
Typo    
Andreas Marek committed
679
680
681
     call trans_ev_band_to_full_real_double(na, nev, nblk, nbw, a, a_dev, lda, tmat, tmat_dev, q, q_dev, ldq, &
                                            matrixCols, num_blocks, mpi_comm_rows, &
                                            mpi_comm_cols, useGPU, useQRActual)
682
#else
Andreas Marek's avatar
Typo    
Andreas Marek committed
683
684
685
     call trans_ev_band_to_full_real_single(na, nev, nblk, nbw, a, a_dev, lda, tmat, tmat_dev, q, q_dev, ldq, &
                                            matrixCols, num_blocks, mpi_comm_rows, &
                                            mpi_comm_cols, useGPU, useQRActual)
686
#endif
687

688
689
690
691
692
693
694
695
696
697
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
     time_evp_back = ttt1-ttts

     deallocate(tmat, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating tmat"//errorMessage
       stop
     endif
698

699
#ifdef HAVE_DETAILED_TIMINGS
700
     call timer%stop("solve_evp_real_2stage_double")
701
#endif
702
1    format(a,f10.3)
703

704
705
706
707
708
#ifdef DOUBLE_PRECISION_REAL
   end function solve_evp_real_2stage_double
#else
   end function solve_evp_real_2stage_single
#endif
709

710
711
712
713
#ifdef WANT_SINGLE_PRECISION_REAL
#undef DOUBLE_PRECISION_REAL
!-------------------------------------------------------------------------------
!>  \brief solve_evp_real_2stage_single: Fortran function to solve the single-precision real eigenvalue problem with a 2 stage approach
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
747
748
!>  \param use_qr (optional)                    use QR decomposition
!>
749
!>  \result success                             logical, false if error occured
750
!-------------------------------------------------------------------------------
751
752
753
754
755
756
757
758
759
760
761
762
763
764

#ifdef DOUBLE_PRECISION_REAL
  function solve_evp_real_2stage_double(na, nev, a, lda, ev, q, ldq, nblk,        &
                               matrixCols,                               &
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
#else
  function solve_evp_real_2stage_single(na, nev, a, lda, ev, q, ldq, nblk,        &
                               matrixCols,                               &
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
#endif
765

766
#ifdef HAVE_DETAILED_TIMINGS
767
    use timings
768
#endif
769

770
771
   use cuda_functions
   use mod_check_for_gpu
772
   use iso_c_binding
773
774
775
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
776
   implicit none
777
778
779
780
781
782
783
784
785
   logical, intent(in), optional             :: useQR
   logical                                   :: useQRActual, useQREnvironment
   integer(kind=c_int), intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
   integer(kind=c_int)                       :: THIS_REAL_ELPA_KERNEL

   integer(kind=c_int), intent(in)           :: na, nev, lda, ldq, matrixCols, mpi_comm_rows, &
                                                mpi_comm_cols, mpi_comm_all
   integer(kind=c_int), intent(in)           :: nblk
   real(kind=c_float), intent(inout)         :: ev(na)
786
#ifdef USE_ASSUMED_SIZE
787
   real(kind=c_float), intent(inout)         :: a(lda,*),  q(ldq,*)
788
789

#else
790
   real(kind=c_float), intent(inout)         :: a(lda,matrixCols),  q(ldq,matrixCols)
791
#endif
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
   real(kind=c_float), allocatable           :: hh_trans_real(:,:)

   integer(kind=c_int)                       :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer(kind=c_int)                       :: nbw, num_blocks
   real(kind=c_float), allocatable           :: tmat(:,:,:), e(:)
   integer(kind=c_intptr_t)                  :: tmat_dev, q_dev, a_dev
   real(kind=c_double)                       :: ttt0, ttt1, ttts  ! MPI_WTIME always needs double
   integer(kind=c_int)                       :: i
   logical                                   :: success
   logical, save                             :: firstCall = .true.
   logical                                   :: wantDebug
   integer(kind=c_int)                       :: istat
   character(200)                            :: errorMessage
   logical                                   :: useGPU
   integer(kind=c_int)                       :: numberOfGPUDevices
Andreas Marek's avatar
Andreas Marek committed
807

808
#ifdef HAVE_DETAILED_TIMINGS
809
    call timer%start("solve_evp_real_2stage_single")
810
#endif
811

812
813
814
815
816
817
818
819
820
821
822
823
824
825
    call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
    call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

    call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
    call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
    call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
    call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)

    wantDebug = .false.
    if (firstCall) then
      ! are debug messages desired?
      wantDebug = debug_messages_via_environment_variable()
      firstCall = .false.
    endif
826

827
    success = .true.
828

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
    useQRActual = .false.
    useGPU      = .false.

    ! set usage of qr decomposition via API call
    if (present(useQR)) then
      if (useQR) useQRActual = .true.
        if (.not.(useQR)) useQRACtual = .false.
    endif

    ! overwrite this with environment variable settings
    if (qr_decomposition_via_environment_variable(useQREnvironment)) then
      useQRActual = useQREnvironment
    endif

    if (useQRActual) then
844
      if (mod(na,2) .ne. 0) then
845
846
847
848
849
850
851
852
853
854
        if (wantDebug) then
          write(error_unit,*) "solve_evp_real_2stage: QR-decomposition: blocksize does not fit with matrixsize"
        endif
        print *, "Do not use QR-decomposition for this matrix and blocksize."
        success = .false.
        return
      endif
    endif

    if (present(THIS_REAL_ELPA_KERNEL_API)) then
855
      ! user defined kernel via the optional argument in the API call
856
      THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
857
    else
858

859
860
      ! if kernel is not choosen via api
      ! check whether set by environment variable
861
      THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
862
    endif
863

864
    ! check whether choosen kernel is allowed
865
    if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then
866
867
868

      if (my_pe == 0) then
        write(error_unit,*) " "
869
        write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
870
871
872
        write(error_unit,*) "is not in the list of the allowed kernels!"
        write(error_unit,*) " "
        write(error_unit,*) "Allowed kernels are:"
873
874
875
        do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
          if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
            write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
876
877
          endif
        enddo
878

879
        write(error_unit,*) " "
880
881
882
883
884
885
886
887
888
889
890
        ! check whether generic kernel is defined
         if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
           write(error_unit,*) "The default kernel REAL_ELPA_KERNEL_GENERIC will be used !"
         else
           write(error_unit,*) "As default kernel ",REAL_ELPA_KERNEL_NAMES(DEFAULT_REAL_ELPA_KERNEL)," will be used"
         endif
      endif  ! my_pe == 0
      if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
        THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
      else
        THIS_REAL_ELPA_KERNEL = DEFAULT_REAL_ELPA_KERNEL
891
892
      endif
    endif
893

894
895
896
    if (THIS_REAL_ELPA_KERNEL .eq. REAL_ELPA_KERNEL_GPU) then
      if (check_for_gpu(my_pe,numberOfGPUDevices, wantDebug=wantDebug)) then
        useGPU = .true.
897
898
899
      endif
      if (nblk .ne. 128) then
        print *,"At the moment GPU version needs blocksize 128"
900
        error stop
901
      endif
902
    ! some temporarilly checks until single precision works with all kernels
903

904
905
906
907
908
909
910
      ! set the neccessary parameters
      cudaMemcpyHostToDevice   = cuda_memcpyHostToDevice()
      cudaMemcpyDeviceToHost   = cuda_memcpyDeviceToHost()
      cudaMemcpyDeviceToDevice = cuda_memcpyDeviceToDevice()
      cudaHostRegisterPortable = cuda_hostRegisterPortable()
      cudaHostRegisterMapped   = cuda_hostRegisterMapped()
    endif
911

912
    ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32
913
914
915
916
917
918
919
920
921
    ! On older systems (IBM Bluegene/P, Intel Nehalem) a value of 32 was optimal.
    ! For Intel(R) Xeon(R) E5 v2 and v3, better use 64 instead of 32!
    ! For IBM Bluegene/Q this is not clear at the moment. We have to keep an eye
    ! on this and maybe allow a run-time optimization here
    if (useGPU) then
      nbw = nblk
    else
      nbw = (63/nblk+1)*nblk
    endif
922

923
924
925
926
    num_blocks = (na-1)/nbw + 1

    allocate(tmat(nbw,nbw,num_blocks), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
927
      print *,"solve_evp_real_2stage: error when allocating tmat "//errorMessage
928
929
      stop
    endif
930

931
    ! Reduction full -> band
932

933
934
    ttt0 = MPI_Wtime()
    ttts = ttt0
935
#ifdef DOUBLE_PRECISION_REAL
936
937
    call bandred_real_double(na, a, a_dev, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                      tmat, tmat_dev, wantDebug, useGPU, success, useQRActual)
938
#else
939
940
    call bandred_real_single(na, a, a_dev, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                      tmat, tmat_dev, wantDebug, useGPU, success, useQRActual)
941
#endif
942
    if (.not.(success)) return
943
944
    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
945
       write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
946

947
     ! Reduction band -> tridiagonal
948

949
950
951
952
953
     allocate(e(na), stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when allocating e "//errorMessage
       stop
     endif
954

955
956
957
958
959
960
961
962
     ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_REAL
     call tridiag_band_real_double(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
#else
     call tridiag_band_real_single(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
#endif
963

964
965
966
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
967

968
#ifdef WITH_MPI
969

970
971
972
#ifdef DOUBLE_PRECISION_REAL
     call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
     call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)
973
#else
974
975
     call mpi_bcast(ev,na,MPI_REAL4,0,mpi_comm_all,mpierr)
     call mpi_bcast(e,na,MPI_REAL4,0,mpi_comm_all,mpierr)
976
#endif
977

978
#endif /* WITH_MPI */
979
980
     ttt1 = MPI_Wtime()
     time_evp_fwd = ttt1-ttts
981

982
     ! Solve tridiagonal system
983

984
985
986
987
988
989
990
991
992
     ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_REAL
     call solve_tridi_double(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
                      mpi_comm_cols, wantDebug, success)
#else
     call solve_tridi_single(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
                      mpi_comm_cols, wantDebug, success)
#endif
     if (.not.(success)) return
993

994
995
996
997
998
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
     time_evp_solve = ttt1-ttt0
     ttts = ttt1
999

1000
1001
1002
1003
1004
1005
     deallocate(e, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating e "//errorMessage
       stop
     endif
     ! Backtransform stage 1
1006

1007
1008
     ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_REAL
1009
     call trans_ev_tridi_to_band_real_double(na, nev, nblk, nbw, q, q_dev, ldq, matrixCols, hh_trans_real, &
1010
1011
1012
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, useGPU, success,      &
                                    THIS_REAL_ELPA_KERNEL)
#else
1013
     call trans_ev_tridi_to_band_real_single(na, nev, nblk, nbw, q, q_dev, ldq, matrixCols, hh_trans_real, &
1014
1015
1016
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, useGPU, success,      &
                                    THIS_REAL_ELPA_KERNEL)
#endif
1017

1018
1019
1020
1021
     if (.not.(success)) return
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
1022

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
     ! We can now deallocate the stored householder vectors
     deallocate(hh_trans_real, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating hh_trans_real "//errorMessage
       stop
     endif


     ! Backtransform stage 2
     print *,"useGPU== ",useGPU
     ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_REAL
Andreas Marek's avatar
Typo    
Andreas Marek committed
1035
1036
     call trans_ev_band_to_full_real_double(na, nev, nblk, nbw, a, a_dev, lda, tmat, tmat_dev, q, q_dev, ldq, &
                                            matrixCols, num_blocks, mpi_comm_rows, &
1037
                                            mpi_comm_cols, useGPU, useQRActual)
1038
#else
Andreas Marek's avatar
Typo    
Andreas Marek committed
1039
1040
     call trans_ev_band_to_full_real_single(na, nev, nblk, nbw, a, a_dev, lda, tmat, tmat_dev, q, q_dev, ldq, &
                                            matrixCols, num_blocks, mpi_comm_rows, &
1041
                                            mpi_comm_cols, useGPU, useQRActual)
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
#endif

     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
     time_evp_back = ttt1-ttts

     deallocate(tmat, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating tmat"//errorMessage
       stop
     endif

#ifdef HAVE_DETAILED_TIMINGS
     call timer%stop("solve_evp_real_2stage_single")
#endif
1    format(a,f10.3)

#ifdef DOUBLE_PRECISION_REAL
   end function solve_evp_real_2stage_double
#else
   end function solve_evp_real_2stage_single
#endif

#endif /* WANT_SINGLE_PRECISION_REAL */

1068
!>  \brief solve_evp_complex_2stage_double: Fortran function to solve the double-precision complex eigenvalue problem with a 2 stage approach
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
#define DOUBLE_PRECISION_COMPLEX 1

#ifdef DOUBLE_PRECISION_COMPLEX
function solve_evp_complex_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
#else
function solve_evp_complex_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
#endif


#ifdef HAVE_DETAILED_TIMINGS
   use timings
#endif
1120
1121
1122
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
1123
1124
1125
1126
   use cuda_functions
   use mod_check_for_gpu
   use iso_c_binding
   implicit none
1127
1128
1129
1130
   integer(kind=c_int), intent(in), optional :: THIS_COMPLEX_ELPA_KERNEL_API
   integer(kind=c_int)                       :: THIS_COMPLEX_ELPA_KERNEL
   integer(kind=c_int), intent(in)           :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all
   real(kind=c_double), intent(inout)        :: ev(na)
1131
#ifdef USE_ASSUMED_SIZE
1132
   complex(kind=c_double), intent(inout)     :: a(lda,*), q(ldq,*)
1133
#else
1134
   complex(kind=c_double), intent(inout)     :: a(lda,matrixCols), q(ldq,matrixCols)
1135
#endif
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
   complex(kind=c_double), allocatable       :: hh_trans_complex(:,:)

   integer(kind=c_int)                       :: my_prow, my_pcol, np_rows, np_cols, mpierr, my_pe, n_pes
   integer(kind=c_int)                       :: l_cols, l_rows, l_cols_nev, nbw, num_blocks
   complex(kind=c_double), allocatable       :: tmat(:,:,:)
   real(kind=c_double), allocatable          :: q_real(:,:), e(:)
   real(kind=c_double)                       :: ttt0, ttt1, ttts  ! MPI_WTIME always needs double
   integer(kind=c_int)                       :: i

   logical                                   :: success, wantDebug
   logical, save                             :: firstCall = .true.
   integer(kind=c_int)                       :: istat
   character(200)                            :: errorMessage
   logical                                   :: useGPU
   integer(kind=c_int)                       :: numberOfGPUDevices
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

#ifdef HAVE_DETAILED_TIMINGS
    call timer%start("solve_evp_complex_2stage_double")
#endif

    call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
    call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

    call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
    call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
    call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
    call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)

    useGPU = .false.
    wantDebug = .false.
    if (firstCall) then
      ! are debug messages desired?
      wantDebug = debug_messages_via_environment_variable()
      firstCall = .false.
    endif


    success = .true.

    if (present(THIS_COMPLEX_ELPA_KERNEL_API)) then
      ! user defined kernel via the optional argument in the API call
      THIS_COMPLEX_ELPA_KERNEL = THIS_COMPLEX_ELPA_KERNEL_API
    else
      ! if kernel is not choosen via api
      ! check whether set by environment variable
      THIS_COMPLEX_ELPA_KERNEL = get_actual_complex_kernel()
    endif

    ! check whether choosen kernel is allowed
    if (check_allowed_complex_kernels(THIS_COMPLEX_ELPA_KERNEL)) then

      if (my_pe == 0) then
        write(error_unit,*) " "
        write(error_unit,*) "The choosen kernel ",COMPLEX_ELPA_KERNEL_NAMES(THIS_COMPLEX_ELPA_KERNEL)
        write(error_unit,*) "is not in the list of the allowed kernels!"
        write(error_unit,*) " "
        write(error_unit,*) "Allowed kernels are:"
        do i=1,size(COMPLEX_ELPA_KERNEL_NAMES(:))
          if (AVAILABLE_COMPLEX_ELPA_KERNELS(i) .ne. 0) then
            write(error_unit,*) COMPLEX_ELPA_KERNEL_NAMES(i)
          endif
        enddo

        write(error_unit,*) " "
        write(error_unit,*) "The defaul kernel COMPLEX_ELPA_KERNEL_GENERIC will be used !"
      endif
      THIS_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
    endif
1204

1205
1206
1207
1208
1209
1210
    if (THIS_COMPLEX_ELPA_KERNEL .eq. COMPLEX_ELPA_KERNEL_GPU) then
      if (check_for_gpu(my_pe, numberOfGPUDevices, wantDebug=wantDebug)) then
        useGPU=.true.
      endif
      if (nblk .ne. 128) then
        print *,"At the moment GPU version needs blocksize 128"
1211
        error stop
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
      endif

      ! set the neccessary parameters
      cudaMemcpyHostToDevice   = cuda_memcpyHostToDevice()
      cudaMemcpyDeviceToHost   = cuda_memcpyDeviceToHost()
      cudaMemcpyDeviceToDevice = cuda_memcpyDeviceToDevice()
      cudaHostRegisterPortable = cuda_hostRegisterPortable()
      cudaHostRegisterMapped   = cuda_hostRegisterMapped()
    endif

    ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

    nbw = (31/nblk+1)*nblk

    num_blocks = (na-1)/nbw + 1

    allocate(tmat(nbw,nbw,num_blocks), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_complex_2stage: error when allocating tmat"//errorMessage
      stop
    endif
    ! Reduction full -> band

    ttt0 = MPI_Wtime()
    ttts = ttt0
#ifdef DOUBLE_PRECISION_COMPLEX
    call bandred_complex_double(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                         tmat, wantDebug, useGPU, success)
#else
    call bandred_complex_single(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                         tmat, wantDebug, useGPU, success)
#endif
    if (.not.(success)) then

#ifdef HAVE_DETAILED_TIMINGS
      call timer%stop("solve_evp_complex_2stage_double")
#endif
      return
    endif
    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time bandred_complex               :',ttt1-ttt0

    ! Reduction band -> tridiagonal

    allocate(e(na), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_complex_2stage: error when allocating e"//errorMessage
      stop
    endif


    ttt0 =