elpa_impl.F90 139 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
53
54
55
56
57
58
59
60
61
  use precision
  use elpa2_impl
  use elpa1_impl
  use elpa1_auxiliary_impl
#ifdef WITH_MPI
  use elpa_mpi
#endif
  use elpa_generated_fortran_interfaces
  use elpa_utilities, only : error_unit

62
  use elpa_abstract_impl
63
  use elpa_autotune_impl
64
  use, intrinsic :: iso_c_binding
65
  implicit none
66

67
68
  private
  public :: elpa_impl_allocate
69

70
!> \brief Definition of the extended elpa_impl_t type
71
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
72
   private
73
   integer :: communicators_owned
74

75
   !> \brief methods available with the elpa_impl_t type
76
   contains
77
     !> \brief the puplic methods
78
     ! con-/destructor
79
80
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
81

82
     ! KV store
83
84
85
86
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
87

88
89
90
91

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
92
93
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
94
95


96
97
98
99
100
101
102
103
104
105
106
107
108
109
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

110
#if 0
Pavel Kus's avatar
Pavel Kus committed
111
112
113
114
115
     procedure, public :: elpa_generalized_eigenvectors_d      !< public methods to implement the solve step for generalized 
                                                               !< eigenproblem and real/complex double/single matrices
     procedure, public :: elpa_generalized_eigenvectors_f
     procedure, public :: elpa_generalized_eigenvectors_dc
     procedure, public :: elpa_generalized_eigenvectors_fc
116
#endif
Pavel Kus's avatar
Pavel Kus committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
139

140
#if 0
Pavel Kus's avatar
Pavel Kus committed
141
     procedure, private :: elpa_transform_generalized_d
142
     procedure, private :: elpa_transform_back_generalized_d
Pavel Kus's avatar
Pavel Kus committed
143
     procedure, private :: elpa_transform_generalized_dc
144
     procedure, private :: elpa_transform_back_generalized_dc
Pavel Kus's avatar
Pavel Kus committed
145
146
#ifdef WANT_SINGLE_PRECISION_REAL
     procedure, private :: elpa_transform_generalized_f
147
     procedure, private :: elpa_transform_back_generalized_f
Pavel Kus's avatar
Pavel Kus committed
148
149
150
#endif
#ifdef WANT_SINGLE_PRECISION_COMPLEX
     procedure, private :: elpa_transform_generalized_fc
151
     procedure, private :: elpa_transform_back_generalized_fc
152
#endif
Pavel Kus's avatar
Pavel Kus committed
153
#endif
154

155
     procedure, public :: autotune_setup => elpa_autotune_setup
156
157
     procedure, public :: autotune_step => elpa_autotune_step
     procedure, public :: autotune_set_best => elpa_autotune_set_best
158

159
     procedure, private :: construct_scalapack_descriptor => elpa_construct_scalapack_descriptor
160
  end type elpa_impl_t
161
162

  !> \brief the implementation of the generic methods
163
  contains
164
165


166
167
168
169
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
170
171
172
173
174
    function elpa_impl_allocate(error) result(obj)
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
175

Andreas Marek's avatar
Andreas Marek committed
176
      ! check whether init has ever been called
177
      if ( elpa_initialized() .ne. ELPA_OK) then
178
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
179
180
        if(present(error)) then
          error = ELPA_ERROR
181
        endif
Andreas Marek's avatar
Andreas Marek committed
182
183
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
184

185
      obj%index = elpa_index_instance_c()
186
187

      ! Associate some important integer pointers for convenience
188
189
190
191
192
193
194
195
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
196
197
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
198

199
200
201
202
203
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
204
    !c> elpa_t elpa_allocate();
205
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
206
207
208
209
210
211
212
213
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

214
215
216
217
218
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
219
    !c> void elpa_deallocate(elpa_t handle);
220
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
221
222
223
224
225
226
227
228
229
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


230
231
232
233
234
    !c> /*! \brief C interface for the implementation of the elpa_autotune_deallocate method
    !c> *
    !c> *  \param  elpa_autotune_impl_t  handle of ELPA autotune object to be deallocated
    !c> *  \result void
    !c> */
235
236
237
    !c> void elpa_autotune_deallocate(elpa_autotune_t handle);
    subroutine elpa_autotune_impl_deallocate_c( autotune_handle) bind(C, name="elpa_autotune_deallocate")
      type(c_ptr), value                  :: autotune_handle
238

239
240
241
      type(elpa_autotune_impl_t), pointer :: self

      call c_f_pointer(autotune_handle, self)
242
243
244
245
246
      call self%destroy()
      deallocate(self)
    end subroutine


247
248
249
250
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
251
    function elpa_setup(self) result(error)
252
253
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
254

255
#ifdef WITH_MPI
256
257
258
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
259
#endif
260

261
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
262
      call self%get("timings",timings, error)
263
264
265
266
267
268
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
269

270
271
#ifdef WITH_MPI
      ! Create communicators ourselves
272
273
274
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
275

Andreas Marek's avatar
Andreas Marek committed
276
277
278
        call self%get("mpi_comm_parent", mpi_comm_parent, error)
        call self%get("process_row", process_row, error)
        call self%get("process_col", process_col, error)
279
280
281
282
283
284
285

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
286

287
288
289
290
291
292
293
294
295
296
297
298
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
299

Andreas Marek's avatar
Andreas Marek committed
300
301
302
303
304
305
306
307
308
309
        call self%set("mpi_comm_rows", mpi_comm_rows,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
        call self%set("mpi_comm_cols", mpi_comm_cols,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
310

311
312
313
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

314
        error = ELPA_OK
315
        return
316
      endif
317

318
      ! Externally supplied communicators
319
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
320
        self%communicators_owned = 0
321
        error = ELPA_OK
322
        return
323
      endif
324

325
326
      ! Otherwise parameters are missing
      error = ELPA_ERROR
327
#endif
328

329
    end function
330

331
332
333
334
335
336
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
337
    !c> int elpa_setup(elpa_t handle);
338
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
339
340
341
342
343
344
345
346
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    function elpa_construct_scalapack_descriptor(self, sc_desc) result(error)
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, blacs_ctx
      integer, intent(out)                :: sc_desc(SC_DESC_LEN)

#ifdef WITH_MPI
      if (self%is_set("blacs_context") == 0) then
        print *,"BLACS context has not been set beforehand. Aborting..."
        stop
      endif
      call self%get("blacs_context", blacs_ctx, error)

      sc_desc(1) = 1
      sc_desc(2) = blacs_ctx
      sc_desc(3) = self%na
      sc_desc(4) = self%na
      sc_desc(5) = self%nblk
      sc_desc(6) = self%nblk
      sc_desc(7) = 0
      sc_desc(8) = 0
      sc_desc(9) = self%local_nrows
#else
      sc_desc = 0
#endif
      error = ELPA_OK
    end function
373

374
375
376
377
378
379
380
381
382
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
383
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
384
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
Andreas Marek's avatar
Andreas Marek committed
385
386
387
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
388
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
389
390
391
392
393
394
395
      integer(kind=c_int), intent(in), value        :: value

#ifdef USE_FORTRAN2008
      integer(kind=c_int) , intent(in), optional    :: error
#else
      integer(kind=c_int) , intent(in)              :: error
#endif
396
397
398
399
400
401
402

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


403
404
405
406
407
408
409
410
411
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
412
413
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
414
415
416
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
417
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
418
419
420
421
422
423
      integer(kind=c_int)                           :: value
#ifdef ISE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
424
425
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
426
427
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
428
429


430
431
432
433
434
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
435
436
    function elpa_is_set(self, name) result(state)
      class(elpa_impl_t)       :: self
437
      character(*), intent(in) :: name
438
      integer                  :: state
439

440
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
441
442
    end function

443
444
445
446
447
448
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
449
450
451
452
453
454
455
456
457
458
    function elpa_can_set(self, name, value) result(error)
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


459
460
461
462
463
464
    !> \brief function to convert a value to an human readable string
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   option_name string: the name of the options, whose value should be converted
    !> \param   error       integer: errpr code
    !> \result  string      string: the humanreadable string   
465
    function elpa_value_to_string(self, option_name, error) result(string)
466
467
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
468
469
470
471
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
472

473
474
      nullify(string)

475
      call self%get(option_name, val, actual_error)
476
477
478
479
480
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
481
482
      endif

483
484
485
486
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
487

488
489
490
491
      if (present(error)) then
        error = actual_error
      endif
    end function
492

Andreas Marek's avatar
Andreas Marek committed
493

494
495
496
497
498
499
500
501
502
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
503
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
504
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
Andreas Marek's avatar
Andreas Marek committed
505
506
507
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
508
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
509
510
511
512
513
514
      real(kind=c_double), intent(in), value        :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(in), optional     :: error
#else
      integer(kind=c_int), intent(in)               :: error
#endif
515
516
517
518
519
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

520

521
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
522
523
524
525
526
527
528
529
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
530
531
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
532
533
534
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
535
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
536
537
538
539
540
541
      real(kind=c_double)                           :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
542
543
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
544
545
      call elpa_get_double(self, name, value, error)
    end subroutine
546
 
Andreas Marek's avatar
Andreas Marek committed
547

548
549
550
551
552
    !> \brief function to associate a pointer with an integer value
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   name        string: the name of the entry
    !> \result  value       integer, pointer: the value for the entry
553
    function elpa_associate_int(self, name) result(value)
554
      class(elpa_impl_t)             :: self
555
556
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
557

558
559
      type(c_ptr)                    :: value_p

560
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
561
562
563
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
564
565
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
566

567

568
569
570
571
572
573
574
    !> \brief function to querry the timing information at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 6 nested levels can be queried
    !> \result  s               double: the timer metric for the region. Might be seconds,
    !>                                  or any other supported metric
575
576
577
578
579
580
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

581
#ifdef HAVE_DETAILED_TIMINGS
582
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
583
584
585
#else
      s = -1.0
#endif
586
587
588
    end function


589
590
591
592
593
    !> \brief function to print the timing tree below at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 4 nested levels can be specified
594
    subroutine elpa_print_times(self, name1, name2, name3, name4)
595
      class(elpa_impl_t), intent(in) :: self
596
      character(len=*), intent(in), optional :: name1, name2, name3, name4
597
#ifdef HAVE_DETAILED_TIMINGS
598
      call self%timer%print(name1, name2, name3, name4)
599
#endif
600
601
    end subroutine

602

603
604
605
606
    !> \brief function to start the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: a chosen identifier name for the code region
607
608
609
610
611
612
613
614
615
    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


616
617
618
619
    !> \brief function to stop the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: identifier name for the code region to stop
620
621
622
623
624
625
626
627
628
    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


629
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
630
    !>
631
632
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
654
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
655
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
656

657
658
659
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
660
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
661
#endif
662
      real(kind=c_double) :: ev(self%na)
663

Andreas Marek's avatar
Andreas Marek committed
664
#ifdef USE_FORTRAN2008
665
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
666
667
668
669
#else
      integer             :: error
#endif
      integer             :: error2
670
      integer(kind=c_int) :: solver
671
      logical             :: success_l
672

673

Andreas Marek's avatar
Andreas Marek committed
674
675
676
677
678
679
680
681
682
683
684
685
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
        print *,"Problem setting option. Aborting..."
        stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
686
      if (solver .eq. ELPA_SOLVER_1STAGE) then
687
        call self%autotune_timer%start("accumulator")
688
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
689
        call self%autotune_timer%stop("accumulator")
690

691
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
692
        call self%autotune_timer%start("accumulator")
693
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
694
695
        call self%autotune_timer%stop("accumulator")

696
697
698
699
      else
        print *,"unknown solver"
        stop
      endif
700

Andreas Marek's avatar
Andreas Marek committed
701
#ifdef USE_FORTRAN2008
702
      if (present(error)) then
703
        if (success_l) then
704
          error = ELPA_OK
705
        else
706
          error = ELPA_ERROR
707
708
709
710
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
711
712
713
714
715
716
717
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
718
719
    end subroutine

720
721
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
Andreas Marek's avatar
Andreas Marek committed
722
723
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
724
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
725
726
727
#else
      integer(kind=c_int), intent(in)           :: error
#endif
728

Andreas Marek's avatar
Andreas Marek committed
729
730
      real(kind=c_double), pointer              :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
731
732
733
734
735
736

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

737
      call elpa_eigenvectors_d(self, a, ev, q, error)
738
739
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
740

741
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
742
    !>
743
744
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
766
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
767
      class(elpa_impl_t)  :: self
768
769
770
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
771
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
772
#endif
773
      real(kind=c_float)  :: ev(self%na)
774

Andreas Marek's avatar
Andreas Marek committed
775
#ifdef USE_FORTRAN2008
776
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
777
778
779
780
#else
      integer             :: error
#endif
      integer             :: error2
781
      integer(kind=c_int) :: solver
782
#ifdef WANT_SINGLE_PRECISION_REAL
783
      logical             :: success_l
784

Andreas Marek's avatar
Andreas Marek committed
785
786
787
788
789
790
791
792
793
794
795
796
      call self%get("solver",solver, error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#if USE_FORTRAN2008                   
      if (present(error)) then        
        error  = error2               
      endif
#else
      error  = error2
#endif
797
      if (solver .eq. ELPA_SOLVER_1STAGE) then
798
        call self%autotune_timer%start("accumulator")
799
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
800
        call self%autotune_timer%stop("accumulator")
801

802
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
803
        call self%autotune_timer%start("accumulator")
804
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
805
806
        call self%autotune_timer%stop("accumulator")

807
808
809
810
      else
        print *,"unknown solver"
        stop
      endif
811

Andreas Marek's avatar
Andreas Marek committed
812
#ifdef USE_FORTRAN2008
813
      if (present(error)) then
814
        if (success_l) then
815
          error = ELPA_OK
816
        else
817
          error = ELPA_ERROR
818
819
820
821
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
822
823
824
825
826
827
828
829
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

830
#else
831
      print *,"This installation of the ELPA library has not been build with single-precision support"
832
      error = ELPA_ERROR
833
834
835
#endif
    end subroutine

836

837
838
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
Andreas Marek's avatar
Andreas Marek committed
839
840
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
841
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
842
843
844
#else
      integer(kind=c_int), intent(in)           :: error
#endif
845

Andreas Marek's avatar
Andreas Marek committed
846
847
      real(kind=c_float), pointer               :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
848
849
850
851
852
853

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

854
      call elpa_eigenvectors_f(self, a, ev, q, error)
855
856
857
    end subroutine


858
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
859
    !>
860
861
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
883
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
884
      class(elpa_impl_t)             :: self
885

886
887
888
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
889
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
890
#endif
891
      real(kind=c_double)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
892
#ifdef USE_FORTRAN2008
893
      integer, optional              :: error
Andreas Marek's avatar
Andreas Marek committed
894
895
896
897
#else
      integer                        :: error
#endif
      integer                        :: error2
898
      integer(kind=c_int)            :: solver
899
      logical                        :: success_l
900

Andreas Marek's avatar
Andreas Marek committed
901
902
903
904
905
906
907
908
909
910
911
912
913
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif

914
      if (solver .eq. ELPA_SOLVER_1STAGE) then
915
        call self%autotune_timer%start("accumulator")
916
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
917
        call self%autotune_timer%stop("accumulator")
918

919
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
920
        call self%autotune_timer%start("accumulator")
921
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
922
923
        call self%autotune_timer%stop("accumulator")

924
925
926
927
      else
        print *,"unknown solver"
        stop
      endif
928

Andreas Marek's avatar
Andreas Marek committed
929
#ifdef USE_FORTRAN2008
930
      if (present(error)) then
931
        if (success_l) then
932
          error = ELPA_OK
933
        else
934
          error = ELPA_ERROR
935
936
937
938
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
939
940
941
942
943
944
945
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
946
947
948
    end subroutine


949
950
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
Andreas Marek's avatar
Andreas Marek committed
951
952
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
953
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
954
955
956
#else
      integer(kind=c_int), intent(in)           :: error
#endif
957

Andreas Marek's avatar
Andreas Marek committed
958
959
960
      complex(kind=c_double_complex), pointer   :: a(:, :), q(:, :)
      real(kind=c_double), pointer              :: ev(:)
      type(elpa_impl_t), pointer                :: self
961
962
963
964
965
966

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

967
      call elpa_eigenvectors_dc(self, a, ev, q, error)
968
969
970
    end subroutine


971
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
972
    !>
973
974
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
996
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
997
      class(elpa_impl_t)            :: self
998
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
999
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
1000
#else
Andreas Marek's avatar
Andreas Marek committed
1001
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
1002
#endif
Andreas Marek's avatar
Andreas Marek committed
1003
      real(kind=c_float)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
1004
#ifdef USE_FORTRAN2008
1005
      integer, optional             :: error
Andreas Marek's avatar
Andreas Marek committed
1006
1007
1008
1009
#else
      integer                       :: error
#endif
      integer                       :: error2
1010
      integer(kind=c_int)           :: solver
1011
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1012
      logical                       :: success_l
1013

Andreas Marek's avatar
Andreas Marek committed
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
1026
      if (solver .eq. ELPA_SOLVER_1STAGE) then
1027
        call self%autotune_timer%start("accumulator")
1028
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
1029
        call self%autotune_timer%stop("accumulator")
1030

1031
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
1032
        call self%autotune_timer%start("accumulator")
1033
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
1034
1035
        call self%autotune_timer%stop("accumulator")

1036
1037
1038
1039
      else
        print *,"unknown solver"
        stop
      endif
Andreas Marek's avatar