elpa_impl.F90 139 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
53
54
55
56
57
58
59
60
61
  use precision
  use elpa2_impl
  use elpa1_impl
  use elpa1_auxiliary_impl
#ifdef WITH_MPI
  use elpa_mpi
#endif
  use elpa_generated_fortran_interfaces
  use elpa_utilities, only : error_unit

62
  use elpa_abstract_impl
63
  use elpa_autotune_impl
64
  use, intrinsic :: iso_c_binding
65
  implicit none
66

67
68
  private
  public :: elpa_impl_allocate
69

70
!> \brief Definition of the extended elpa_impl_t type
71
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
72
   private
73
   integer :: communicators_owned
74

75
   !> \brief methods available with the elpa_impl_t type
76
   contains
77
     !> \brief the puplic methods
78
     ! con-/destructor
79
80
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
81

82
     ! KV store
83
84
85
86
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
87

88
89
90
91

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
92
93
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
94
95


96
97
98
99
100
101
102
103
104
105
106
107
108
109
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

Pavel Kus's avatar
Pavel Kus committed
110
111
112
113
114
115
     procedure, public :: elpa_generalized_eigenvectors_d      !< public methods to implement the solve step for generalized 
                                                               !< eigenproblem and real/complex double/single matrices
     procedure, public :: elpa_generalized_eigenvectors_f
     procedure, public :: elpa_generalized_eigenvectors_dc
     procedure, public :: elpa_generalized_eigenvectors_fc

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
137

Pavel Kus's avatar
Pavel Kus committed
138
     procedure, private :: elpa_transform_generalized_d
139
     procedure, private :: elpa_transform_back_generalized_d
Pavel Kus's avatar
Pavel Kus committed
140
     procedure, private :: elpa_transform_generalized_dc
141
     procedure, private :: elpa_transform_back_generalized_dc
Pavel Kus's avatar
Pavel Kus committed
142
143
#ifdef WANT_SINGLE_PRECISION_REAL
     procedure, private :: elpa_transform_generalized_f
144
     procedure, private :: elpa_transform_back_generalized_f
Pavel Kus's avatar
Pavel Kus committed
145
146
147
#endif
#ifdef WANT_SINGLE_PRECISION_COMPLEX
     procedure, private :: elpa_transform_generalized_fc
148
     procedure, private :: elpa_transform_back_generalized_fc
Pavel Kus's avatar
Pavel Kus committed
149
#endif
150

151
     procedure, public :: autotune_setup => elpa_autotune_setup
152
153
     procedure, public :: autotune_step => elpa_autotune_step
     procedure, public :: autotune_set_best => elpa_autotune_set_best
154

155
     procedure, private :: construct_scalapack_descriptor => elpa_construct_scalapack_descriptor
156
  end type elpa_impl_t
157
158

  !> \brief the implementation of the generic methods
159
  contains
160
161


162
163
164
165
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
166
167
168
169
170
    function elpa_impl_allocate(error) result(obj)
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
171

Andreas Marek's avatar
Andreas Marek committed
172
      ! check whether init has ever been called
173
      if ( elpa_initialized() .ne. ELPA_OK) then
174
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
175
176
        if(present(error)) then
          error = ELPA_ERROR
177
        endif
Andreas Marek's avatar
Andreas Marek committed
178
179
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
180

181
      obj%index = elpa_index_instance_c()
182
183

      ! Associate some important integer pointers for convenience
184
185
186
187
188
189
190
191
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
192
193
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
194

195
196
197
198
199
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
200
    !c> elpa_t elpa_allocate();
201
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
202
203
204
205
206
207
208
209
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

210
211
212
213
214
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
215
    !c> void elpa_deallocate(elpa_t handle);
216
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
217
218
219
220
221
222
223
224
225
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


226
227
228
229
230
    !c> /*! \brief C interface for the implementation of the elpa_autotune_deallocate method
    !c> *
    !c> *  \param  elpa_autotune_impl_t  handle of ELPA autotune object to be deallocated
    !c> *  \result void
    !c> */
231
232
233
    !c> void elpa_autotune_deallocate(elpa_autotune_t handle);
    subroutine elpa_autotune_impl_deallocate_c( autotune_handle) bind(C, name="elpa_autotune_deallocate")
      type(c_ptr), value                  :: autotune_handle
234

235
236
237
      type(elpa_autotune_impl_t), pointer :: self

      call c_f_pointer(autotune_handle, self)
238
239
240
241
242
      call self%destroy()
      deallocate(self)
    end subroutine


243
244
245
246
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
247
    function elpa_setup(self) result(error)
248
249
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
250

251
#ifdef WITH_MPI
252
253
254
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
255
#endif
256

257
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
258
      call self%get("timings",timings, error)
259
260
261
262
263
264
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
265

266
267
#ifdef WITH_MPI
      ! Create communicators ourselves
268
269
270
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
271

Andreas Marek's avatar
Andreas Marek committed
272
273
274
        call self%get("mpi_comm_parent", mpi_comm_parent, error)
        call self%get("process_row", process_row, error)
        call self%get("process_col", process_col, error)
275
276
277
278
279
280
281

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
282

283
284
285
286
287
288
289
290
291
292
293
294
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
295

Andreas Marek's avatar
Andreas Marek committed
296
297
298
299
300
301
302
303
304
305
        call self%set("mpi_comm_rows", mpi_comm_rows,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
        call self%set("mpi_comm_cols", mpi_comm_cols,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
306

307
308
309
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

310
        error = ELPA_OK
311
        return
312
      endif
313

314
      ! Externally supplied communicators
315
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
316
        self%communicators_owned = 0
317
        error = ELPA_OK
318
        return
319
      endif
320

321
322
      ! Otherwise parameters are missing
      error = ELPA_ERROR
323
#endif
324

325
    end function
326

327
328
329
330
331
332
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
333
    !c> int elpa_setup(elpa_t handle);
334
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
335
336
337
338
339
340
341
342
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    function elpa_construct_scalapack_descriptor(self, sc_desc) result(error)
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, blacs_ctx
      integer, intent(out)                :: sc_desc(SC_DESC_LEN)

#ifdef WITH_MPI
      if (self%is_set("blacs_context") == 0) then
        print *,"BLACS context has not been set beforehand. Aborting..."
        stop
      endif
      call self%get("blacs_context", blacs_ctx, error)

      sc_desc(1) = 1
      sc_desc(2) = blacs_ctx
      sc_desc(3) = self%na
      sc_desc(4) = self%na
      sc_desc(5) = self%nblk
      sc_desc(6) = self%nblk
      sc_desc(7) = 0
      sc_desc(8) = 0
      sc_desc(9) = self%local_nrows
#else
      sc_desc = 0
#endif
      error = ELPA_OK
    end function
369

370
371
372
373
374
375
376
377
378
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
379
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
380
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
Andreas Marek's avatar
Andreas Marek committed
381
382
383
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
384
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
385
386
387
388
389
390
391
      integer(kind=c_int), intent(in), value        :: value

#ifdef USE_FORTRAN2008
      integer(kind=c_int) , intent(in), optional    :: error
#else
      integer(kind=c_int) , intent(in)              :: error
#endif
392
393
394
395
396
397
398

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


399
400
401
402
403
404
405
406
407
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
408
409
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
410
411
412
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
413
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
414
415
416
417
418
419
      integer(kind=c_int)                           :: value
#ifdef ISE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
420
421
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
422
423
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
424
425


426
427
428
429
430
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
431
432
    function elpa_is_set(self, name) result(state)
      class(elpa_impl_t)       :: self
433
      character(*), intent(in) :: name
434
      integer                  :: state
435

436
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
437
438
    end function

439
440
441
442
443
444
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
445
446
447
448
449
450
451
452
453
454
    function elpa_can_set(self, name, value) result(error)
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


455
456
457
458
459
460
    !> \brief function to convert a value to an human readable string
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   option_name string: the name of the options, whose value should be converted
    !> \param   error       integer: errpr code
    !> \result  string      string: the humanreadable string   
461
    function elpa_value_to_string(self, option_name, error) result(string)
462
463
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
464
465
466
467
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
468

469
470
      nullify(string)

471
      call self%get(option_name, val, actual_error)
472
473
474
475
476
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
477
478
      endif

479
480
481
482
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
483

484
485
486
487
      if (present(error)) then
        error = actual_error
      endif
    end function
488

Andreas Marek's avatar
Andreas Marek committed
489

490
491
492
493
494
495
496
497
498
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
499
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
500
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
Andreas Marek's avatar
Andreas Marek committed
501
502
503
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
504
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
505
506
507
508
509
510
      real(kind=c_double), intent(in), value        :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(in), optional     :: error
#else
      integer(kind=c_int), intent(in)               :: error
#endif
511
512
513
514
515
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

516

517
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
518
519
520
521
522
523
524
525
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
526
527
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
528
529
530
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
531
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
532
533
534
535
536
537
      real(kind=c_double)                           :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
538
539
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
540
541
      call elpa_get_double(self, name, value, error)
    end subroutine
542
 
Andreas Marek's avatar
Andreas Marek committed
543

544
545
546
547
548
    !> \brief function to associate a pointer with an integer value
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   name        string: the name of the entry
    !> \result  value       integer, pointer: the value for the entry
549
    function elpa_associate_int(self, name) result(value)
550
      class(elpa_impl_t)             :: self
551
552
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
553

554
555
      type(c_ptr)                    :: value_p

556
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
557
558
559
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
560
561
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
562

563

564
565
566
567
568
569
570
    !> \brief function to querry the timing information at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 6 nested levels can be queried
    !> \result  s               double: the timer metric for the region. Might be seconds,
    !>                                  or any other supported metric
571
572
573
574
575
576
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

577
#ifdef HAVE_DETAILED_TIMINGS
578
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
579
580
581
#else
      s = -1.0
#endif
582
583
584
    end function


585
586
587
588
589
    !> \brief function to print the timing tree below at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 4 nested levels can be specified
590
    subroutine elpa_print_times(self, name1, name2, name3, name4)
591
      class(elpa_impl_t), intent(in) :: self
592
      character(len=*), intent(in), optional :: name1, name2, name3, name4
593
#ifdef HAVE_DETAILED_TIMINGS
594
      call self%timer%print(name1, name2, name3, name4)
595
#endif
596
597
    end subroutine

598

599
600
601
602
    !> \brief function to start the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: a chosen identifier name for the code region
603
604
605
606
607
608
609
610
611
    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


612
613
614
615
    !> \brief function to stop the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: identifier name for the code region to stop
616
617
618
619
620
621
622
623
624
    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


625
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
626
    !>
627
628
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
650
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
651
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
652

653
654
655
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
656
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
657
#endif
658
      real(kind=c_double) :: ev(self%na)
659

Andreas Marek's avatar
Andreas Marek committed
660
#ifdef USE_FORTRAN2008
661
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
662
663
664
665
#else
      integer             :: error
#endif
      integer             :: error2
666
      integer(kind=c_int) :: solver
667
      logical             :: success_l
668

669

Andreas Marek's avatar
Andreas Marek committed
670
671
672
673
674
675
676
677
678
679
680
681
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
        print *,"Problem setting option. Aborting..."
        stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
682
      if (solver .eq. ELPA_SOLVER_1STAGE) then
683
        call self%autotune_timer%start("accumulator")
684
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
685
        call self%autotune_timer%stop("accumulator")
686

687
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
688
        call self%autotune_timer%start("accumulator")
689
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
690
691
        call self%autotune_timer%stop("accumulator")

692
693
694
695
      else
        print *,"unknown solver"
        stop
      endif
696

Andreas Marek's avatar
Andreas Marek committed
697
#ifdef USE_FORTRAN2008
698
      if (present(error)) then
699
        if (success_l) then
700
          error = ELPA_OK
701
        else
702
          error = ELPA_ERROR
703
704
705
706
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
707
708
709
710
711
712
713
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
714
715
    end subroutine

716
717
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
Andreas Marek's avatar
Andreas Marek committed
718
719
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
720
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
721
722
723
#else
      integer(kind=c_int), intent(in)           :: error
#endif
724

Andreas Marek's avatar
Andreas Marek committed
725
726
      real(kind=c_double), pointer              :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
727
728
729
730
731
732

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

733
      call elpa_eigenvectors_d(self, a, ev, q, error)
734
735
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
736

737
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
738
    !>
739
740
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
762
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
763
      class(elpa_impl_t)  :: self
764
765
766
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
767
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
768
#endif
769
      real(kind=c_float)  :: ev(self%na)
770

Andreas Marek's avatar
Andreas Marek committed
771
#ifdef USE_FORTRAN2008
772
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
773
774
775
776
#else
      integer             :: error
#endif
      integer             :: error2
777
      integer(kind=c_int) :: solver
778
#ifdef WANT_SINGLE_PRECISION_REAL
779
      logical             :: success_l
780

Andreas Marek's avatar
Andreas Marek committed
781
782
783
784
785
786
787
788
789
790
791
792
      call self%get("solver",solver, error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#if USE_FORTRAN2008                   
      if (present(error)) then        
        error  = error2               
      endif
#else
      error  = error2
#endif
793
      if (solver .eq. ELPA_SOLVER_1STAGE) then
794
        call self%autotune_timer%start("accumulator")
795
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
796
        call self%autotune_timer%stop("accumulator")
797

798
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
799
        call self%autotune_timer%start("accumulator")
800
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
801
802
        call self%autotune_timer%stop("accumulator")

803
804
805
806
      else
        print *,"unknown solver"
        stop
      endif
807

Andreas Marek's avatar
Andreas Marek committed
808
#ifdef USE_FORTRAN2008
809
      if (present(error)) then
810
        if (success_l) then
811
          error = ELPA_OK
812
        else
813
          error = ELPA_ERROR
814
815
816
817
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
818
819
820
821
822
823
824
825
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

826
#else
827
      print *,"This installation of the ELPA library has not been build with single-precision support"
828
      error = ELPA_ERROR
829
830
831
#endif
    end subroutine

832

833
834
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
Andreas Marek's avatar
Andreas Marek committed
835
836
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
837
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
838
839
840
#else
      integer(kind=c_int), intent(in)           :: error
#endif
841

Andreas Marek's avatar
Andreas Marek committed
842
843
      real(kind=c_float), pointer               :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
844
845
846
847
848
849

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

850
      call elpa_eigenvectors_f(self, a, ev, q, error)
851
852
853
    end subroutine


854
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
855
    !>
856
857
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
879
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
880
      class(elpa_impl_t)             :: self
881

882
883
884
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
885
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
886
#endif
887
      real(kind=c_double)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
888
#ifdef USE_FORTRAN2008
889
      integer, optional              :: error
Andreas Marek's avatar
Andreas Marek committed
890
891
892
893
#else
      integer                        :: error
#endif
      integer                        :: error2
894
      integer(kind=c_int)            :: solver
895
      logical                        :: success_l
896

Andreas Marek's avatar
Andreas Marek committed
897
898
899
900
901
902
903
904
905
906
907
908
909
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif

910
      if (solver .eq. ELPA_SOLVER_1STAGE) then
911
        call self%autotune_timer%start("accumulator")
912
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
913
        call self%autotune_timer%stop("accumulator")
914

915
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
916
        call self%autotune_timer%start("accumulator")
917
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
918
919
        call self%autotune_timer%stop("accumulator")

920
921
922
923
      else
        print *,"unknown solver"
        stop
      endif
924

Andreas Marek's avatar
Andreas Marek committed
925
#ifdef USE_FORTRAN2008
926
      if (present(error)) then
927
        if (success_l) then
928
          error = ELPA_OK
929
        else
930
          error = ELPA_ERROR
931
932
933
934
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
935
936
937
938
939
940
941
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
942
943
944
    end subroutine


945
946
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
Andreas Marek's avatar
Andreas Marek committed
947
948
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
949
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
950
951
952
#else
      integer(kind=c_int), intent(in)           :: error
#endif
953

Andreas Marek's avatar
Andreas Marek committed
954
955
956
      complex(kind=c_double_complex), pointer   :: a(:, :), q(:, :)
      real(kind=c_double), pointer              :: ev(:)
      type(elpa_impl_t), pointer                :: self
957
958
959
960
961
962

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

963
      call elpa_eigenvectors_dc(self, a, ev, q, error)
964
965
966
    end subroutine


967
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
968
    !>
969
970
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
992
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
993
      class(elpa_impl_t)            :: self
994
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
995
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
996
#else
Andreas Marek's avatar
Andreas Marek committed
997
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
998
#endif
Andreas Marek's avatar
Andreas Marek committed
999
      real(kind=c_float)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
1000
#ifdef USE_FORTRAN2008
1001
      integer, optional             :: error
Andreas Marek's avatar
Andreas Marek committed
1002
1003
1004
1005
#else
      integer                       :: error
#endif
      integer                       :: error2
1006
      integer(kind=c_int)           :: solver
1007
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1008
      logical                       :: success_l
1009

Andreas Marek's avatar
Andreas Marek committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
1022
      if (solver .eq. ELPA_SOLVER_1STAGE) then
1023
        call self%autotune_timer%start("accumulator")
1024
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
1025
        call self%autotune_timer%stop("accumulator")
1026

1027
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
1028
        call self%autotune_timer%start("accumulator")
1029
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
1030
1031
        call self%autotune_timer%stop("accumulator")

1032
1033
1034
1035
      else
        print *,"unknown solver"
        stop
      endif
Andreas Marek's avatar
Andreas Marek committed
1036
#ifdef USE_FORTRAN2008
1037
      if (present(error)) then
Andreas Marek's avatar
Andreas Marek committed
1038
1039
1040
1041
1042
       if (success_l) then
         error = ELPA_OK
       else
         error = ELPA_ERROR
       endif
1043
1044
1045
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
1046
1047
1048
1049
1050
1051
1052
1053
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

1054
#else
1055
      print *,"This installation of the ELPA library has not been build with single-precision support"
1056
      error = ELPA_ERROR
1057
1058
1059
#endif
    end subroutine

1060

1061
1062
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
Andreas Marek's avatar
Andreas Marek committed
1063
1064
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
1065
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
1066
1067
1068
1069
1070
1071
#else
      integer(kind=c_int), intent(in)           :: error
#endif
      complex(kind=c_float_complex), pointer    :: a(:, :), q(:, :)
      real(kind=c_float), pointer               :: ev(:)
      type(elpa_impl_t), pointer                :: self