elpa_impl.F90 139 KB
Newer Older
1 2 3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52 53 54 55 56 57 58 59 60 61
  use precision
  use elpa2_impl
  use elpa1_impl
  use elpa1_auxiliary_impl
#ifdef WITH_MPI
  use elpa_mpi
#endif
  use elpa_generated_fortran_interfaces
  use elpa_utilities, only : error_unit

62
  use elpa_abstract_impl
63
  use elpa_autotune_impl
64
  use, intrinsic :: iso_c_binding
65
  implicit none
66

67 68
  private
  public :: elpa_impl_allocate
69

70
!> \brief Definition of the extended elpa_impl_t type
71
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
72
   private
73
   integer :: communicators_owned
74

75
   !> \brief methods available with the elpa_impl_t type
76
   contains
77
     !> \brief the puplic methods
78
     ! con-/destructor
79 80
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
81

82
     ! KV store
83 84 85 86
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
87

88 89 90 91

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
92 93
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
94 95


96 97 98 99 100 101 102 103 104 105 106 107 108 109
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

Pavel Kus's avatar
Pavel Kus committed
110 111 112 113 114 115
     procedure, public :: elpa_generalized_eigenvectors_d      !< public methods to implement the solve step for generalized 
                                                               !< eigenproblem and real/complex double/single matrices
     procedure, public :: elpa_generalized_eigenvectors_f
     procedure, public :: elpa_generalized_eigenvectors_dc
     procedure, public :: elpa_generalized_eigenvectors_fc

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
137

Pavel Kus's avatar
Pavel Kus committed
138
     procedure, private :: elpa_transform_generalized_d
139
     procedure, private :: elpa_transform_back_generalized_d
Pavel Kus's avatar
Pavel Kus committed
140
     procedure, private :: elpa_transform_generalized_dc
141
     procedure, private :: elpa_transform_back_generalized_dc
Pavel Kus's avatar
Pavel Kus committed
142 143
#ifdef WANT_SINGLE_PRECISION_REAL
     procedure, private :: elpa_transform_generalized_f
144
     procedure, private :: elpa_transform_back_generalized_f
Pavel Kus's avatar
Pavel Kus committed
145 146 147
#endif
#ifdef WANT_SINGLE_PRECISION_COMPLEX
     procedure, private :: elpa_transform_generalized_fc
148
     procedure, private :: elpa_transform_back_generalized_fc
Pavel Kus's avatar
Pavel Kus committed
149
#endif
150

151
     procedure, public :: autotune_setup => elpa_autotune_setup
152 153
     procedure, public :: autotune_step => elpa_autotune_step
     procedure, public :: autotune_set_best => elpa_autotune_set_best
154

155
     procedure, private :: construct_scalapack_descriptor => elpa_construct_scalapack_descriptor
156
  end type elpa_impl_t
157 158

  !> \brief the implementation of the generic methods
159
  contains
160 161


162 163 164 165
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
166 167 168 169 170
    function elpa_impl_allocate(error) result(obj)
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
171

Andreas Marek's avatar
Andreas Marek committed
172
      ! check whether init has ever been called
173
      if ( elpa_initialized() .ne. ELPA_OK) then
174
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
175 176
        if(present(error)) then
          error = ELPA_ERROR
177
        endif
Andreas Marek's avatar
Andreas Marek committed
178 179
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
180

181
      obj%index = elpa_index_instance_c()
182 183

      ! Associate some important integer pointers for convenience
184 185 186 187 188 189 190 191
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
192 193
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
194

195 196 197 198 199
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
200
    !c> elpa_t elpa_allocate();
201
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
202 203 204 205 206 207 208 209
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

210 211 212 213 214
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
215
    !c> void elpa_deallocate(elpa_t handle);
216
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
217 218 219 220 221 222 223 224 225
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


226 227 228 229 230
    !c> /*! \brief C interface for the implementation of the elpa_autotune_deallocate method
    !c> *
    !c> *  \param  elpa_autotune_impl_t  handle of ELPA autotune object to be deallocated
    !c> *  \result void
    !c> */
231 232 233
    !c> void elpa_autotune_deallocate(elpa_autotune_t handle);
    subroutine elpa_autotune_impl_deallocate_c( autotune_handle) bind(C, name="elpa_autotune_deallocate")
      type(c_ptr), value                  :: autotune_handle
234

235 236 237
      type(elpa_autotune_impl_t), pointer :: self

      call c_f_pointer(autotune_handle, self)
238 239 240 241 242
      call self%destroy()
      deallocate(self)
    end subroutine


243 244 245 246
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
247
    function elpa_setup(self) result(error)
248 249
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
250

251
#ifdef WITH_MPI
252 253 254
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
255
#endif
256

257
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
258
      call self%get("timings",timings, error)
259 260 261 262 263 264
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
265

266 267
#ifdef WITH_MPI
      ! Create communicators ourselves
268 269 270
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
271

Andreas Marek's avatar
Andreas Marek committed
272 273 274
        call self%get("mpi_comm_parent", mpi_comm_parent, error)
        call self%get("process_row", process_row, error)
        call self%get("process_col", process_col, error)
275 276 277 278 279 280 281

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
282

283 284 285 286 287 288 289 290 291 292 293 294
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
295

Andreas Marek's avatar
Andreas Marek committed
296 297 298 299 300 301 302 303 304 305
        call self%set("mpi_comm_rows", mpi_comm_rows,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
        call self%set("mpi_comm_cols", mpi_comm_cols,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
306

307 308 309
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

310
        error = ELPA_OK
311
        return
312
      endif
313

314
      ! Externally supplied communicators
315
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
316
        self%communicators_owned = 0
317
        error = ELPA_OK
318
        return
319
      endif
320

321 322
      ! Otherwise parameters are missing
      error = ELPA_ERROR
323
#endif
324

325
    end function
326

327 328 329 330 331 332
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
333
    !c> int elpa_setup(elpa_t handle);
334
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
335 336 337 338 339 340 341 342
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    function elpa_construct_scalapack_descriptor(self, sc_desc) result(error)
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, blacs_ctx
      integer, intent(out)                :: sc_desc(SC_DESC_LEN)

#ifdef WITH_MPI
      if (self%is_set("blacs_context") == 0) then
        print *,"BLACS context has not been set beforehand. Aborting..."
        stop
      endif
      call self%get("blacs_context", blacs_ctx, error)

      sc_desc(1) = 1
      sc_desc(2) = blacs_ctx
      sc_desc(3) = self%na
      sc_desc(4) = self%na
      sc_desc(5) = self%nblk
      sc_desc(6) = self%nblk
      sc_desc(7) = 0
      sc_desc(8) = 0
      sc_desc(9) = self%local_nrows
#else
      sc_desc = 0
#endif
      error = ELPA_OK
    end function
369

370 371 372 373 374 375 376 377 378
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
379
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
380
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
Andreas Marek's avatar
Andreas Marek committed
381 382 383
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
384
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
385 386 387 388 389 390 391
      integer(kind=c_int), intent(in), value        :: value

#ifdef USE_FORTRAN2008
      integer(kind=c_int) , intent(in), optional    :: error
#else
      integer(kind=c_int) , intent(in)              :: error
#endif
392 393 394 395 396 397 398

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


399 400 401 402 403 404 405 406 407
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
408 409
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
410 411 412
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
413
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
414 415 416 417 418 419
      integer(kind=c_int)                           :: value
#ifdef ISE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
420 421
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
422 423
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
424 425


426 427 428 429 430
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
431 432
    function elpa_is_set(self, name) result(state)
      class(elpa_impl_t)       :: self
433
      character(*), intent(in) :: name
434
      integer                  :: state
435

436
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
437 438
    end function

439 440 441 442 443 444
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
445 446 447 448 449 450 451 452 453 454
    function elpa_can_set(self, name, value) result(error)
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


455 456 457 458 459 460
    !> \brief function to convert a value to an human readable string
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   option_name string: the name of the options, whose value should be converted
    !> \param   error       integer: errpr code
    !> \result  string      string: the humanreadable string   
461
    function elpa_value_to_string(self, option_name, error) result(string)
462 463
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
464 465 466 467
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
468

469 470
      nullify(string)

471
      call self%get(option_name, val, actual_error)
472 473 474 475 476
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
477 478
      endif

479 480 481 482
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
483

484 485 486 487
      if (present(error)) then
        error = actual_error
      endif
    end function
488

Andreas Marek's avatar
Andreas Marek committed
489

490 491 492 493 494 495 496 497 498
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
499
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
500
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
Andreas Marek's avatar
Andreas Marek committed
501 502 503
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
504
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
505 506 507 508 509 510
      real(kind=c_double), intent(in), value        :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(in), optional     :: error
#else
      integer(kind=c_int), intent(in)               :: error
#endif
511 512 513 514 515
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

516

517
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
518 519 520 521 522 523 524 525
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
526 527
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
528 529 530
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
531
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
532 533 534 535 536 537
      real(kind=c_double)                           :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
538 539
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
540 541
      call elpa_get_double(self, name, value, error)
    end subroutine
542
 
Andreas Marek's avatar
Andreas Marek committed
543

544 545 546 547 548
    !> \brief function to associate a pointer with an integer value
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   name        string: the name of the entry
    !> \result  value       integer, pointer: the value for the entry
549
    function elpa_associate_int(self, name) result(value)
550
      class(elpa_impl_t)             :: self
551 552
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
553

554 555
      type(c_ptr)                    :: value_p

556
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
557 558 559
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
560 561
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
562

563

564 565 566 567 568 569 570
    !> \brief function to querry the timing information at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 6 nested levels can be queried
    !> \result  s               double: the timer metric for the region. Might be seconds,
    !>                                  or any other supported metric
571 572 573 574 575 576
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

577
#ifdef HAVE_DETAILED_TIMINGS
578
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
579 580 581
#else
      s = -1.0
#endif
582 583 584
    end function


585 586 587 588 589
    !> \brief function to print the timing tree below at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 4 nested levels can be specified
590
    subroutine elpa_print_times(self, name1, name2, name3, name4)
591
      class(elpa_impl_t), intent(in) :: self
592
      character(len=*), intent(in), optional :: name1, name2, name3, name4
593
#ifdef HAVE_DETAILED_TIMINGS
594
      call self%timer%print(name1, name2, name3, name4)
595
#endif
596 597
    end subroutine

598

599 600 601 602
    !> \brief function to start the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: a chosen identifier name for the code region
603 604 605 606 607 608 609 610 611
    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


612 613 614 615
    !> \brief function to stop the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: identifier name for the code region to stop
616 617 618 619 620 621 622 623 624
    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


625
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
626
    !>
627 628
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
650
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
651
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
652

653 654 655
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
656
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
657
#endif
658
      real(kind=c_double) :: ev(self%na)
659

Andreas Marek's avatar
Andreas Marek committed
660
#ifdef USE_FORTRAN2008
661
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
662 663 664 665
#else
      integer             :: error
#endif
      integer             :: error2
666
      integer(kind=c_int) :: solver
667
      logical             :: success_l
668

669

Andreas Marek's avatar
Andreas Marek committed
670 671 672 673 674 675 676 677 678 679 680 681
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
        print *,"Problem setting option. Aborting..."
        stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
682
      if (solver .eq. ELPA_SOLVER_1STAGE) then
683
        call self%autotune_timer%start("accumulator")
684
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
685
        call self%autotune_timer%stop("accumulator")
686

687
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
688
        call self%autotune_timer%start("accumulator")
689
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
690 691
        call self%autotune_timer%stop("accumulator")

692 693 694 695
      else
        print *,"unknown solver"
        stop
      endif
696

Andreas Marek's avatar
Andreas Marek committed
697
#ifdef USE_FORTRAN2008
698
      if (present(error)) then
699
        if (success_l) then
700
          error = ELPA_OK
701
        else
702
          error = ELPA_ERROR
703 704 705 706
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
707 708 709 710 711 712 713
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
714 715
    end subroutine

716 717
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
Andreas Marek's avatar
Andreas Marek committed
718 719
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
720
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
721 722 723
#else
      integer(kind=c_int), intent(in)           :: error
#endif
724

Andreas Marek's avatar
Andreas Marek committed
725 726
      real(kind=c_double), pointer              :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
727 728 729 730 731 732

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

733
      call elpa_eigenvectors_d(self, a, ev, q, error)
734 735
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
736

737
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
738
    !>
739 740
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
762
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
763
      class(elpa_impl_t)  :: self
764 765 766
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
767
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
768
#endif
769
      real(kind=c_float)  :: ev(self%na)
770

Andreas Marek's avatar
Andreas Marek committed
771
#ifdef USE_FORTRAN2008
772
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
773 774 775 776
#else
      integer             :: error
#endif
      integer             :: error2
777
      integer(kind=c_int) :: solver
778
#ifdef WANT_SINGLE_PRECISION_REAL
779
      logical             :: success_l
780

Andreas Marek's avatar
Andreas Marek committed
781 782 783 784 785 786 787 788 789 790 791 792
      call self%get("solver",solver, error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#if USE_FORTRAN2008                   
      if (present(error)) then        
        error  = error2               
      endif
#else
      error  = error2
#endif
793
      if (solver .eq. ELPA_SOLVER_1STAGE) then
794
        call self%autotune_timer%start("accumulator")
795
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
796
        call self%autotune_timer%stop("accumulator")
797

798
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
799
        call self%autotune_timer%start("accumulator")
800
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
801 802
        call self%autotune_timer%stop("accumulator")

803 804 805 806
      else
        print *,"unknown solver"
        stop
      endif
807

Andreas Marek's avatar
Andreas Marek committed
808
#ifdef USE_FORTRAN2008
809
      if (present(error)) then
810
        if (success_l) then
811
          error = ELPA_OK
812
        else
813
          error = ELPA_ERROR
814 815 816 817
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
818 819 820 821 822 823 824 825
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

826
#else
827
      print *,"This installation of the ELPA library has not been build with single-precision support"
828
      error = ELPA_ERROR
829 830 831
#endif
    end subroutine

832

833 834
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
Andreas Marek's avatar
Andreas Marek committed
835 836
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
837
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
838 839 840
#else
      integer(kind=c_int), intent(in)           :: error
#endif
841

Andreas Marek's avatar
Andreas Marek committed
842 843
      real(kind=c_float), pointer               :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
844 845 846 847 848 849

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

850
      call elpa_eigenvectors_f(self, a, ev, q, error)
851 852 853
    end subroutine


854
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
855
    !>
856 857
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
879
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
880
      class(elpa_impl_t)             :: self
881

882 883 884
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
885
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
886
#endif
887
      real(kind=c_double)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
888
#ifdef USE_FORTRAN2008
889
      integer, optional              :: error
Andreas Marek's avatar
Andreas Marek committed
890 891 892 893
#else
      integer                        :: error
#endif
      integer                        :: error2
894
      integer(kind=c_int)            :: solver
895
      logical                        :: success_l
896

Andreas Marek's avatar
Andreas Marek committed
897 898 899 900 901 902 903 904 905 906 907 908 909
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif

910
      if (solver .eq. ELPA_SOLVER_1STAGE) then
911
        call self%autotune_timer%start("accumulator")
912
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
913
        call self%autotune_timer%stop("accumulator")
914

915
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
916
        call self%autotune_timer%start("accumulator")
917
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
918 919
        call self%autotune_timer%stop("accumulator")

920 921 922 923
      else
        print *,"unknown solver"
        stop
      endif
924

Andreas Marek's avatar
Andreas Marek committed
925
#ifdef USE_FORTRAN2008
926
      if (present(error)) then
927
        if (success_l) then
928
          error = ELPA_OK