There is a maintenance of MPCDF Gitlab on Thursday, April 22st 2020, 9:00 am CEST - Expect some service interruptions during this time

elpa2_kernels_real_avx-avx2_6hv.c 56.9 KB
Newer Older
1 2
//    This file is part of ELPA.
//
Andreas Marek's avatar
Andreas Marek committed
3
//    The ELPA library was originally created by the ELPA consortium,
4 5
//    consisting of the following organizations:
//
6 7
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8 9 10
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
Andreas Marek's avatar
Andreas Marek committed
11 12 13 14 15
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
//      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//      and
16 17
//    - IBM Deutschland GmbH
//
18
//    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
//    enhancements authored by Intel Corporation which is not part of
20
//    the ELPA consortium.
21 22
//
//    More information can be found here:
23
//    http://elpa.mpcdf.mpg.de/
24 25
//
//    ELPA is free software: you can redistribute it and/or modify
Andreas Marek's avatar
Andreas Marek committed
26 27
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
//    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
//
// --------------------------------------------------------------------------------------------------
//
// This file contains the compute intensive kernels for the Householder transformations.
// It should be compiled with the highest possible optimization level.
//
// On Intel Nehalem or Intel Westmere or AMD Magny Cours use -O3 -msse3
// On Intel Sandy Bridge use -O3 -mavx
//
// Copyright of the original code rests with the authors inside the ELPA
// consortium. The copyright of any additional modifications shall rest
// with their original authors, but shall adhere to the licensing terms
// distributed along with the original code in the file "COPYING".
//
// Author: Alexander Heinecke (alexander.heinecke@mytum.de)
60
// Adapted for building a shared-library by Andreas Marek, MPCDF (andreas.marek@mpcdf.mpg.de)
61 62
// --------------------------------------------------------------------------------------------------

63 64
#include "config-f90.h"

65 66 67 68
#include <x86intrin.h>

#define __forceinline __attribute__((always_inline)) static

69 70
#ifdef HAVE_AVX2

71 72 73 74
#ifdef __FMA4__
#define __ELPA_USE_FMA__
#define _mm256_FMA_pd(a,b,c) _mm256_macc_pd(a,b,c)
#define _mm256_NFMA_pd(a,b,c) _mm256_nmacc_pd(a,b,c)
Andreas Marek's avatar
Andreas Marek committed
75
#define _mm256_FMSUB_pd(a,b,c) _mm256_msub(a,b,c)
76 77 78 79 80 81
#endif

#ifdef __AVX2__
#define __ELPA_USE_FMA__
#define _mm256_FMA_pd(a,b,c) _mm256_fmadd_pd(a,b,c)
#define _mm256_NFMA_pd(a,b,c) _mm256_fnmadd_pd(a,b,c)
Andreas Marek's avatar
Andreas Marek committed
82
#define _mm256_FMSUB_pd(a,b,c) _mm256_fmsub_pd(a,b,c)
83 84
#endif

85 86
#endif

87 88 89 90
//Forward declaration
static void hh_trafo_kernel_4_AVX_6hv(double* q, double* hh, int nb, int ldq, int ldh, double* scalarprods);
static void hh_trafo_kernel_8_AVX_6hv(double* q, double* hh, int nb, int ldq, int ldh, double* scalarprods);

91
/*
92
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
93 94 95 96 97 98 99 100 101 102 103 104
!f> interface
!f>   subroutine hexa_hh_trafo_real_avx_avx2_6hv(q, hh, pnb, pnq, pldq, pldh) bind(C, name="hexa_hh_trafo_real_avx_avx2_6hv")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     real(kind=c_double)     :: q(*)
!f>     real(kind=c_double)     :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

void hexa_hh_trafo_real_avx_avx2_6hv(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh);
105

106
void hexa_hh_trafo_real_avx_avx2_6hv(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
	int i;
	int nb = *pnb;
	int nq = *pldq;
	int ldq = *pldq;
	int ldh = *pldh;

	// calculating scalar products to compute
	// 6 householder vectors simultaneously
	double scalarprods[15];

//	scalarprods[0] = s_1_2;
//	scalarprods[1] = s_1_3;
//	scalarprods[2] = s_2_3;
//	scalarprods[3] = s_1_4;
//	scalarprods[4] = s_2_4;
//	scalarprods[5] = s_3_4;
//	scalarprods[6] = s_1_5;
//	scalarprods[7] = s_2_5;
//	scalarprods[8] = s_3_5;
//	scalarprods[9] = s_4_5;
//	scalarprods[10] = s_1_6;
//	scalarprods[11] = s_2_6;
//	scalarprods[12] = s_3_6;
//	scalarprods[13] = s_4_6;
//	scalarprods[14] = s_5_6;

	scalarprods[0] = hh[(ldh+1)];
	scalarprods[1] = hh[(ldh*2)+2];
	scalarprods[2] = hh[(ldh*2)+1];
	scalarprods[3] = hh[(ldh*3)+3];
	scalarprods[4] = hh[(ldh*3)+2];
	scalarprods[5] = hh[(ldh*3)+1];
	scalarprods[6] = hh[(ldh*4)+4];
	scalarprods[7] = hh[(ldh*4)+3];
	scalarprods[8] = hh[(ldh*4)+2];
	scalarprods[9] = hh[(ldh*4)+1];
	scalarprods[10] = hh[(ldh*5)+5];
	scalarprods[11] = hh[(ldh*5)+4];
	scalarprods[12] = hh[(ldh*5)+3];
	scalarprods[13] = hh[(ldh*5)+2];
	scalarprods[14] = hh[(ldh*5)+1];

	// calculate scalar product of first and fourth householder vector
	// loop counter = 2
	scalarprods[0] += hh[1] * hh[(2+ldh)];
	scalarprods[2] += hh[(ldh)+1] * hh[2+(ldh*2)];
	scalarprods[5] += hh[(ldh*2)+1] * hh[2+(ldh*3)];
	scalarprods[9] += hh[(ldh*3)+1] * hh[2+(ldh*4)];
	scalarprods[14] += hh[(ldh*4)+1] * hh[2+(ldh*5)];

	// loop counter = 3
	scalarprods[0] += hh[2] * hh[(3+ldh)];
	scalarprods[2] += hh[(ldh)+2] * hh[3+(ldh*2)];
	scalarprods[5] += hh[(ldh*2)+2] * hh[3+(ldh*3)];
	scalarprods[9] += hh[(ldh*3)+2] * hh[3+(ldh*4)];
	scalarprods[14] += hh[(ldh*4)+2] * hh[3+(ldh*5)];

	scalarprods[1] += hh[1] * hh[3+(ldh*2)];
	scalarprods[4] += hh[(ldh*1)+1] * hh[3+(ldh*3)];
	scalarprods[8] += hh[(ldh*2)+1] * hh[3+(ldh*4)];
	scalarprods[13] += hh[(ldh*3)+1] * hh[3+(ldh*5)];

	// loop counter = 4
	scalarprods[0] += hh[3] * hh[(4+ldh)];
	scalarprods[2] += hh[(ldh)+3] * hh[4+(ldh*2)];
	scalarprods[5] += hh[(ldh*2)+3] * hh[4+(ldh*3)];
	scalarprods[9] += hh[(ldh*3)+3] * hh[4+(ldh*4)];
	scalarprods[14] += hh[(ldh*4)+3] * hh[4+(ldh*5)];

	scalarprods[1] += hh[2] * hh[4+(ldh*2)];
	scalarprods[4] += hh[(ldh*1)+2] * hh[4+(ldh*3)];
	scalarprods[8] += hh[(ldh*2)+2] * hh[4+(ldh*4)];
	scalarprods[13] += hh[(ldh*3)+2] * hh[4+(ldh*5)];

	scalarprods[3] += hh[1] * hh[4+(ldh*3)];
	scalarprods[7] += hh[(ldh)+1] * hh[4+(ldh*4)];
	scalarprods[12] += hh[(ldh*2)+1] * hh[4+(ldh*5)];

	// loop counter = 5
	scalarprods[0] += hh[4] * hh[(5+ldh)];
	scalarprods[2] += hh[(ldh)+4] * hh[5+(ldh*2)];
	scalarprods[5] += hh[(ldh*2)+4] * hh[5+(ldh*3)];
	scalarprods[9] += hh[(ldh*3)+4] * hh[5+(ldh*4)];
	scalarprods[14] += hh[(ldh*4)+4] * hh[5+(ldh*5)];

	scalarprods[1] += hh[3] * hh[5+(ldh*2)];
	scalarprods[4] += hh[(ldh*1)+3] * hh[5+(ldh*3)];
	scalarprods[8] += hh[(ldh*2)+3] * hh[5+(ldh*4)];
	scalarprods[13] += hh[(ldh*3)+3] * hh[5+(ldh*5)];

	scalarprods[3] += hh[2] * hh[5+(ldh*3)];
	scalarprods[7] += hh[(ldh)+2] * hh[5+(ldh*4)];
	scalarprods[12] += hh[(ldh*2)+2] * hh[5+(ldh*5)];

	scalarprods[6] += hh[1] * hh[5+(ldh*4)];
	scalarprods[11] += hh[(ldh)+1] * hh[5+(ldh*5)];

	#pragma ivdep
	for (i = 6; i < nb; i++)
	{
		scalarprods[0] += hh[i-1] * hh[(i+ldh)];
		scalarprods[2] += hh[(ldh)+i-1] * hh[i+(ldh*2)];
		scalarprods[5] += hh[(ldh*2)+i-1] * hh[i+(ldh*3)];
		scalarprods[9] += hh[(ldh*3)+i-1] * hh[i+(ldh*4)];
		scalarprods[14] += hh[(ldh*4)+i-1] * hh[i+(ldh*5)];

		scalarprods[1] += hh[i-2] * hh[i+(ldh*2)];
		scalarprods[4] += hh[(ldh*1)+i-2] * hh[i+(ldh*3)];
		scalarprods[8] += hh[(ldh*2)+i-2] * hh[i+(ldh*4)];
		scalarprods[13] += hh[(ldh*3)+i-2] * hh[i+(ldh*5)];

		scalarprods[3] += hh[i-3] * hh[i+(ldh*3)];
		scalarprods[7] += hh[(ldh)+i-3] * hh[i+(ldh*4)];
		scalarprods[12] += hh[(ldh*2)+i-3] * hh[i+(ldh*5)];

		scalarprods[6] += hh[i-4] * hh[i+(ldh*4)];
		scalarprods[11] += hh[(ldh)+i-4] * hh[i+(ldh*5)];

		scalarprods[10] += hh[i-5] * hh[i+(ldh*5)];
	}

//	printf("s_1_2: %f\n", scalarprods[0]);
//	printf("s_1_3: %f\n", scalarprods[1]);
//	printf("s_2_3: %f\n", scalarprods[2]);
//	printf("s_1_4: %f\n", scalarprods[3]);
//	printf("s_2_4: %f\n", scalarprods[4]);
//	printf("s_3_4: %f\n", scalarprods[5]);
//	printf("s_1_5: %f\n", scalarprods[6]);
//	printf("s_2_5: %f\n", scalarprods[7]);
//	printf("s_3_5: %f\n", scalarprods[8]);
//	printf("s_4_5: %f\n", scalarprods[9]);
//	printf("s_1_6: %f\n", scalarprods[10]);
//	printf("s_2_6: %f\n", scalarprods[11]);
//	printf("s_3_6: %f\n", scalarprods[12]);
//	printf("s_4_6: %f\n", scalarprods[13]);
//	printf("s_5_6: %f\n", scalarprods[14]);

	// Production level kernel calls with padding
#ifdef __AVX__
	for (i = 0; i < nq-4; i+=8)
	{
		hh_trafo_kernel_8_AVX_6hv(&q[i], hh, nb, ldq, ldh, scalarprods);
	}
	if (nq == i)
	{
		return;
	}
	else
	{
		hh_trafo_kernel_4_AVX_6hv(&q[i], hh, nb, ldq, ldh, scalarprods);
	}
#else
	for (i = 0; i < nq-2; i+=4)
	{
		hh_trafo_kernel_4_SSE_6hv(&q[i], hh, nb, ldq, ldh, scalarprods);
	}
	if (nq == i)
	{
		return;
	}
	else
	{
		hh_trafo_kernel_2_SSE_6hv(&q[i], hh, nb, ldq, ldh, scalarprods);
	}
#endif
}

#if 0
void hexa_hh_trafo_fast_(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh)
{
	int i;
	int nb = *pnb;
	int nq = *pldq;
	int ldq = *pldq;
	int ldh = *pldh;

	// calculating scalar products to compute
	// 6 householder vectors simultaneously
	double scalarprods[15];

//	scalarprods[0] = s_1_2;
//	scalarprods[1] = s_1_3;
//	scalarprods[2] = s_2_3;
//	scalarprods[3] = s_1_4;
//	scalarprods[4] = s_2_4;
//	scalarprods[5] = s_3_4;
//	scalarprods[6] = s_1_5;
//	scalarprods[7] = s_2_5;
//	scalarprods[8] = s_3_5;
//	scalarprods[9] = s_4_5;
//	scalarprods[10] = s_1_6;
//	scalarprods[11] = s_2_6;
//	scalarprods[12] = s_3_6;
//	scalarprods[13] = s_4_6;
//	scalarprods[14] = s_5_6;

	scalarprods[0] = hh[(ldh+1)];
	scalarprods[1] = hh[(ldh*2)+2];
	scalarprods[2] = hh[(ldh*2)+1];
	scalarprods[3] = hh[(ldh*3)+3];
	scalarprods[4] = hh[(ldh*3)+2];
	scalarprods[5] = hh[(ldh*3)+1];
	scalarprods[6] = hh[(ldh*4)+4];
	scalarprods[7] = hh[(ldh*4)+3];
	scalarprods[8] = hh[(ldh*4)+2];
	scalarprods[9] = hh[(ldh*4)+1];
	scalarprods[10] = hh[(ldh*5)+5];
	scalarprods[11] = hh[(ldh*5)+4];
	scalarprods[12] = hh[(ldh*5)+3];
	scalarprods[13] = hh[(ldh*5)+2];
	scalarprods[14] = hh[(ldh*5)+1];

	// calculate scalar product of first and fourth householder vector
	// loop counter = 2
	scalarprods[0] += hh[1] * hh[(2+ldh)];
	scalarprods[2] += hh[(ldh)+1] * hh[2+(ldh*2)];
	scalarprods[5] += hh[(ldh*2)+1] * hh[2+(ldh*3)];
	scalarprods[9] += hh[(ldh*3)+1] * hh[2+(ldh*4)];
	scalarprods[14] += hh[(ldh*4)+1] * hh[2+(ldh*5)];

	// loop counter = 3
	scalarprods[0] += hh[2] * hh[(3+ldh)];
	scalarprods[2] += hh[(ldh)+2] * hh[3+(ldh*2)];
	scalarprods[5] += hh[(ldh*2)+2] * hh[3+(ldh*3)];
	scalarprods[9] += hh[(ldh*3)+2] * hh[3+(ldh*4)];
	scalarprods[14] += hh[(ldh*4)+2] * hh[3+(ldh*5)];

	scalarprods[1] += hh[1] * hh[3+(ldh*2)];
	scalarprods[4] += hh[(ldh*1)+1] * hh[3+(ldh*3)];
	scalarprods[8] += hh[(ldh*2)+1] * hh[3+(ldh*4)];
	scalarprods[13] += hh[(ldh*3)+1] * hh[3+(ldh*5)];

	// loop counter = 4
	scalarprods[0] += hh[3] * hh[(4+ldh)];
	scalarprods[2] += hh[(ldh)+3] * hh[4+(ldh*2)];
	scalarprods[5] += hh[(ldh*2)+3] * hh[4+(ldh*3)];
	scalarprods[9] += hh[(ldh*3)+3] * hh[4+(ldh*4)];
	scalarprods[14] += hh[(ldh*4)+3] * hh[4+(ldh*5)];

	scalarprods[1] += hh[2] * hh[4+(ldh*2)];
	scalarprods[4] += hh[(ldh*1)+2] * hh[4+(ldh*3)];
	scalarprods[8] += hh[(ldh*2)+2] * hh[4+(ldh*4)];
	scalarprods[13] += hh[(ldh*3)+2] * hh[4+(ldh*5)];

	scalarprods[3] += hh[1] * hh[4+(ldh*3)];
	scalarprods[7] += hh[(ldh)+1] * hh[4+(ldh*4)];
	scalarprods[12] += hh[(ldh*2)+1] * hh[4+(ldh*5)];

	// loop counter = 5
	scalarprods[0] += hh[4] * hh[(5+ldh)];
	scalarprods[2] += hh[(ldh)+4] * hh[5+(ldh*2)];
	scalarprods[5] += hh[(ldh*2)+4] * hh[5+(ldh*3)];
	scalarprods[9] += hh[(ldh*3)+4] * hh[5+(ldh*4)];
	scalarprods[14] += hh[(ldh*4)+4] * hh[5+(ldh*5)];

	scalarprods[1] += hh[3] * hh[5+(ldh*2)];
	scalarprods[4] += hh[(ldh*1)+3] * hh[5+(ldh*3)];
	scalarprods[8] += hh[(ldh*2)+3] * hh[5+(ldh*4)];
	scalarprods[13] += hh[(ldh*3)+3] * hh[5+(ldh*5)];

	scalarprods[3] += hh[2] * hh[5+(ldh*3)];
	scalarprods[7] += hh[(ldh)+2] * hh[5+(ldh*4)];
	scalarprods[12] += hh[(ldh*2)+2] * hh[5+(ldh*5)];

	scalarprods[6] += hh[1] * hh[5+(ldh*4)];
	scalarprods[11] += hh[(ldh)+1] * hh[5+(ldh*5)];

	#pragma ivdep
	for (i = 6; i < nb; i++)
	{
		scalarprods[0] += hh[i-1] * hh[(i+ldh)];
		scalarprods[2] += hh[(ldh)+i-1] * hh[i+(ldh*2)];
		scalarprods[5] += hh[(ldh*2)+i-1] * hh[i+(ldh*3)];
		scalarprods[9] += hh[(ldh*3)+i-1] * hh[i+(ldh*4)];
		scalarprods[14] += hh[(ldh*4)+i-1] * hh[i+(ldh*5)];

		scalarprods[1] += hh[i-2] * hh[i+(ldh*2)];
		scalarprods[4] += hh[(ldh*1)+i-2] * hh[i+(ldh*3)];
		scalarprods[8] += hh[(ldh*2)+i-2] * hh[i+(ldh*4)];
		scalarprods[13] += hh[(ldh*3)+i-2] * hh[i+(ldh*5)];

		scalarprods[3] += hh[i-3] * hh[i+(ldh*3)];
		scalarprods[7] += hh[(ldh)+i-3] * hh[i+(ldh*4)];
		scalarprods[12] += hh[(ldh*2)+i-3] * hh[i+(ldh*5)];

		scalarprods[6] += hh[i-4] * hh[i+(ldh*4)];
		scalarprods[11] += hh[(ldh)+i-4] * hh[i+(ldh*5)];

		scalarprods[10] += hh[i-5] * hh[i+(ldh*5)];
	}

//	printf("s_1_2: %f\n", scalarprods[0]);
//	printf("s_1_3: %f\n", scalarprods[1]);
//	printf("s_2_3: %f\n", scalarprods[2]);
//	printf("s_1_4: %f\n", scalarprods[3]);
//	printf("s_2_4: %f\n", scalarprods[4]);
//	printf("s_3_4: %f\n", scalarprods[5]);
//	printf("s_1_5: %f\n", scalarprods[6]);
//	printf("s_2_5: %f\n", scalarprods[7]);
//	printf("s_3_5: %f\n", scalarprods[8]);
//	printf("s_4_5: %f\n", scalarprods[9]);
//	printf("s_1_6: %f\n", scalarprods[10]);
//	printf("s_2_6: %f\n", scalarprods[11]);
//	printf("s_3_6: %f\n", scalarprods[12]);
//	printf("s_4_6: %f\n", scalarprods[13]);
//	printf("s_5_6: %f\n", scalarprods[14]);

	// Production level kernel calls with padding
#ifdef __AVX__
	for (i = 0; i < nq; i+=8)
	{
		hh_trafo_kernel_8_AVX_6hv(&q[i], hh, nb, ldq, ldh, scalarprods);
	}
#else
	for (i = 0; i < nq; i+=4)
	{
		hh_trafo_kernel_4_SSE_6hv(&q[i], hh, nb, ldq, ldh, scalarprods);
	}
#endif
}
#endif

/**
 * Unrolled kernel that computes
 * 8 rows of Q simultaneously, a
 * matrix vector product with two householder
 * vectors + a rank 1 update is performed
 */
__forceinline void hh_trafo_kernel_8_AVX_6hv(double* q, double* hh, int nb, int ldq, int ldh, double* scalarprods)
{
	/////////////////////////////////////////////////////
	// Matrix Vector Multiplication, Q [8 x nb+3] * hh
	// hh contains four householder vectors
	/////////////////////////////////////////////////////
	int i;

	__m256d a1_1 = _mm256_load_pd(&q[ldq*5]);
	__m256d a2_1 = _mm256_load_pd(&q[ldq*4]);
	__m256d a3_1 = _mm256_load_pd(&q[ldq*3]);
	__m256d a4_1 = _mm256_load_pd(&q[ldq*2]);
	__m256d a5_1 = _mm256_load_pd(&q[ldq]);
	__m256d a6_1 = _mm256_load_pd(&q[0]);

	__m256d h_6_5 = _mm256_broadcast_sd(&hh[(ldh*5)+1]);
	__m256d h_6_4 = _mm256_broadcast_sd(&hh[(ldh*5)+2]);
	__m256d h_6_3 = _mm256_broadcast_sd(&hh[(ldh*5)+3]);
	__m256d h_6_2 = _mm256_broadcast_sd(&hh[(ldh*5)+4]);
	__m256d h_6_1 = _mm256_broadcast_sd(&hh[(ldh*5)+5]);
456 457 458 459 460 461
#ifdef __ELPA_USE_FMA__
	register __m256d t1 = _mm256_FMA_pd(a5_1, h_6_5, a6_1);
	t1 = _mm256_FMA_pd(a4_1, h_6_4, t1);
	t1 = _mm256_FMA_pd(a3_1, h_6_3, t1);
	t1 = _mm256_FMA_pd(a2_1, h_6_2, t1);
	t1 = _mm256_FMA_pd(a1_1, h_6_1, t1);
462 463 464 465 466 467 468 469 470 471 472
#else
	register __m256d t1 = _mm256_add_pd(a6_1, _mm256_mul_pd(a5_1, h_6_5));
	t1 = _mm256_add_pd(t1, _mm256_mul_pd(a4_1, h_6_4));
	t1 = _mm256_add_pd(t1, _mm256_mul_pd(a3_1, h_6_3));
	t1 = _mm256_add_pd(t1, _mm256_mul_pd(a2_1, h_6_2));
	t1 = _mm256_add_pd(t1, _mm256_mul_pd(a1_1, h_6_1));
#endif
	__m256d h_5_4 = _mm256_broadcast_sd(&hh[(ldh*4)+1]);
	__m256d h_5_3 = _mm256_broadcast_sd(&hh[(ldh*4)+2]);
	__m256d h_5_2 = _mm256_broadcast_sd(&hh[(ldh*4)+3]);
	__m256d h_5_1 = _mm256_broadcast_sd(&hh[(ldh*4)+4]);
473 474 475 476 477
#ifdef __ELPA_USE_FMA__
	register __m256d v1 = _mm256_FMA_pd(a4_1, h_5_4, a5_1);
	v1 = _mm256_FMA_pd(a3_1, h_5_3, v1);
	v1 = _mm256_FMA_pd(a2_1, h_5_2, v1);
	v1 = _mm256_FMA_pd(a1_1, h_5_1, v1);
478 479 480 481 482 483 484 485 486
#else
	register __m256d v1 = _mm256_add_pd(a5_1, _mm256_mul_pd(a4_1, h_5_4));
	v1 = _mm256_add_pd(v1, _mm256_mul_pd(a3_1, h_5_3));
	v1 = _mm256_add_pd(v1, _mm256_mul_pd(a2_1, h_5_2));
	v1 = _mm256_add_pd(v1, _mm256_mul_pd(a1_1, h_5_1));
#endif
	__m256d h_4_3 = _mm256_broadcast_sd(&hh[(ldh*3)+1]);
	__m256d h_4_2 = _mm256_broadcast_sd(&hh[(ldh*3)+2]);
	__m256d h_4_1 = _mm256_broadcast_sd(&hh[(ldh*3)+3]);
487 488 489 490
#ifdef __ELPA_USE_FMA__
	register __m256d w1 = _mm256_FMA_pd(a3_1, h_4_3, a4_1);
	w1 = _mm256_FMA_pd(a2_1, h_4_2, w1);
	w1 = _mm256_FMA_pd(a1_1, h_4_1, w1);
491 492 493 494 495 496 497 498
#else
	register __m256d w1 = _mm256_add_pd(a4_1, _mm256_mul_pd(a3_1, h_4_3));
	w1 = _mm256_add_pd(w1, _mm256_mul_pd(a2_1, h_4_2));
	w1 = _mm256_add_pd(w1, _mm256_mul_pd(a1_1, h_4_1));
#endif
	__m256d h_2_1 = _mm256_broadcast_sd(&hh[ldh+1]);
	__m256d h_3_2 = _mm256_broadcast_sd(&hh[(ldh*2)+1]);
	__m256d h_3_1 = _mm256_broadcast_sd(&hh[(ldh*2)+2]);
499 500 501 502
#ifdef __ELPA_USE_FMA__
	register __m256d z1 = _mm256_FMA_pd(a2_1, h_3_2, a3_1);
	z1 = _mm256_FMA_pd(a1_1, h_3_1, z1);
	register __m256d y1 = _mm256_FMA_pd(a1_1, h_2_1, a2_1);
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
#else
	register __m256d z1 = _mm256_add_pd(a3_1, _mm256_mul_pd(a2_1, h_3_2));
	z1 = _mm256_add_pd(z1, _mm256_mul_pd(a1_1, h_3_1));
	register __m256d y1 = _mm256_add_pd(a2_1, _mm256_mul_pd(a1_1, h_2_1));
#endif
	register __m256d x1 = a1_1;


	__m256d a1_2 = _mm256_load_pd(&q[(ldq*5)+4]);
	__m256d a2_2 = _mm256_load_pd(&q[(ldq*4)+4]);
	__m256d a3_2 = _mm256_load_pd(&q[(ldq*3)+4]);
	__m256d a4_2 = _mm256_load_pd(&q[(ldq*2)+4]);
	__m256d a5_2 = _mm256_load_pd(&q[(ldq)+4]);
	__m256d a6_2 = _mm256_load_pd(&q[4]);

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
#ifdef __ELPA_USE_FMA__
	register __m256d t2 = _mm256_FMA_pd(a5_2, h_6_5, a6_2);
	t2 = _mm256_FMA_pd(a4_2, h_6_4, t2);
	t2 = _mm256_FMA_pd(a3_2, h_6_3, t2);
	t2 = _mm256_FMA_pd(a2_2, h_6_2, t2);
	t2 = _mm256_FMA_pd(a1_2, h_6_1, t2);
	register __m256d v2 = _mm256_FMA_pd(a4_2, h_5_4, a5_2);
	v2 = _mm256_FMA_pd(a3_2, h_5_3, v2);
	v2 = _mm256_FMA_pd(a2_2, h_5_2, v2);
	v2 = _mm256_FMA_pd(a1_2, h_5_1, v2);
	register __m256d w2 = _mm256_FMA_pd(a3_2, h_4_3, a4_2);
	w2 = _mm256_FMA_pd(a2_2, h_4_2, w2);
	w2 = _mm256_FMA_pd(a1_2, h_4_1, w2);
	register __m256d z2 = _mm256_FMA_pd(a2_2, h_3_2, a3_2);
	z2 = _mm256_FMA_pd(a1_2, h_3_1, z2);
	register __m256d y2 = _mm256_FMA_pd(a1_2, h_2_1, a2_2);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
#else
	register __m256d t2 = _mm256_add_pd(a6_2, _mm256_mul_pd(a5_2, h_6_5));
	t2 = _mm256_add_pd(t2, _mm256_mul_pd(a4_2, h_6_4));
	t2 = _mm256_add_pd(t2, _mm256_mul_pd(a3_2, h_6_3));
	t2 = _mm256_add_pd(t2, _mm256_mul_pd(a2_2, h_6_2));
	t2 = _mm256_add_pd(t2, _mm256_mul_pd(a1_2, h_6_1));
	register __m256d v2 = _mm256_add_pd(a5_2, _mm256_mul_pd(a4_2, h_5_4));
	v2 = _mm256_add_pd(v2, _mm256_mul_pd(a3_2, h_5_3));
	v2 = _mm256_add_pd(v2, _mm256_mul_pd(a2_2, h_5_2));
	v2 = _mm256_add_pd(v2, _mm256_mul_pd(a1_2, h_5_1));
	register __m256d w2 = _mm256_add_pd(a4_2, _mm256_mul_pd(a3_2, h_4_3));
	w2 = _mm256_add_pd(w2, _mm256_mul_pd(a2_2, h_4_2));
	w2 = _mm256_add_pd(w2, _mm256_mul_pd(a1_2, h_4_1));
	register __m256d z2 = _mm256_add_pd(a3_2, _mm256_mul_pd(a2_2, h_3_2));
	z2 = _mm256_add_pd(z2, _mm256_mul_pd(a1_2, h_3_1));
	register __m256d y2 = _mm256_add_pd(a2_2, _mm256_mul_pd(a1_2, h_2_1));
#endif
	register __m256d x2 = a1_2;

	__m256d q1;
	__m256d q2;

	__m256d h1;
	__m256d h2;
	__m256d h3;
	__m256d h4;
	__m256d h5;
	__m256d h6;

	for(i = 6; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-5]);
		q1 = _mm256_load_pd(&q[i*ldq]);
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
568 569 570
#ifdef __ELPA_USE_FMA__
		x1 = _mm256_FMA_pd(q1, h1, x1);
		x2 = _mm256_FMA_pd(q2, h1, x2);
571 572 573 574 575
#else
		x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
		x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
#endif
		h2 = _mm256_broadcast_sd(&hh[ldh+i-4]);
576 577 578
#ifdef __ELPA_USE_FMA__
		y1 = _mm256_FMA_pd(q1, h2, y1);
		y2 = _mm256_FMA_pd(q2, h2, y2);
579 580 581 582 583
#else
		y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
		y2 = _mm256_add_pd(y2, _mm256_mul_pd(q2,h2));
#endif
		h3 = _mm256_broadcast_sd(&hh[(ldh*2)+i-3]);
584 585 586
#ifdef __ELPA_USE_FMA__
		z1 = _mm256_FMA_pd(q1, h3, z1);
		z2 = _mm256_FMA_pd(q2, h3, z2);
587 588 589 590 591
#else
		z1 = _mm256_add_pd(z1, _mm256_mul_pd(q1,h3));
		z2 = _mm256_add_pd(z2, _mm256_mul_pd(q2,h3));
#endif
		h4 = _mm256_broadcast_sd(&hh[(ldh*3)+i-2]);
592 593 594
#ifdef __ELPA_USE_FMA__
		w1 = _mm256_FMA_pd(q1, h4, w1);
		w2 = _mm256_FMA_pd(q2, h4, w2);
595 596 597 598 599
#else
		w1 = _mm256_add_pd(w1, _mm256_mul_pd(q1,h4));
		w2 = _mm256_add_pd(w2, _mm256_mul_pd(q2,h4));
#endif
		h5 = _mm256_broadcast_sd(&hh[(ldh*4)+i-1]);
600 601 602
#ifdef __ELPA_USE_FMA__
		v1 = _mm256_FMA_pd(q1, h5, v1);
		v2 = _mm256_FMA_pd(q2, h5, v2);
603 604 605 606 607
#else
		v1 = _mm256_add_pd(v1, _mm256_mul_pd(q1,h5));
		v2 = _mm256_add_pd(v2, _mm256_mul_pd(q2,h5));
#endif
		h6 = _mm256_broadcast_sd(&hh[(ldh*5)+i]);
608 609 610
#ifdef __ELPA_USE_FMA__
		t1 = _mm256_FMA_pd(q1, h6, t1);
		t2 = _mm256_FMA_pd(q2, h6, t2);
611 612 613 614 615 616 617 618 619
#else
		t1 = _mm256_add_pd(t1, _mm256_mul_pd(q1,h6));
		t2 = _mm256_add_pd(t2, _mm256_mul_pd(q2,h6));
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-5]);
	q1 = _mm256_load_pd(&q[nb*ldq]);
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
620 621 622
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMA_pd(q1, h1, x1);
	x2 = _mm256_FMA_pd(q2, h1, x2);
623 624 625 626 627
#else
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
	x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-4]);
628 629 630
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(q1, h2, y1);
	y2 = _mm256_FMA_pd(q2, h2, y2);
631 632 633 634 635
#else
	y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
	y2 = _mm256_add_pd(y2, _mm256_mul_pd(q2,h2));
#endif
	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+nb-3]);
636 637 638
#ifdef __ELPA_USE_FMA__
	z1 = _mm256_FMA_pd(q1, h3, z1);
	z2 = _mm256_FMA_pd(q2, h3, z2);
639 640 641 642 643
#else
	z1 = _mm256_add_pd(z1, _mm256_mul_pd(q1,h3));
	z2 = _mm256_add_pd(z2, _mm256_mul_pd(q2,h3));
#endif
	h4 = _mm256_broadcast_sd(&hh[(ldh*3)+nb-2]);
644 645 646
#ifdef __ELPA_USE_FMA__
	w1 = _mm256_FMA_pd(q1, h4, w1);
	w2 = _mm256_FMA_pd(q2, h4, w2);
647 648 649 650 651
#else
	w1 = _mm256_add_pd(w1, _mm256_mul_pd(q1,h4));
	w2 = _mm256_add_pd(w2, _mm256_mul_pd(q2,h4));
#endif
	h5 = _mm256_broadcast_sd(&hh[(ldh*4)+nb-1]);
652 653 654
#ifdef __ELPA_USE_FMA__
	v1 = _mm256_FMA_pd(q1, h5, v1);
	v2 = _mm256_FMA_pd(q2, h5, v2);
655 656 657 658 659 660 661 662
#else
	v1 = _mm256_add_pd(v1, _mm256_mul_pd(q1,h5));
	v2 = _mm256_add_pd(v2, _mm256_mul_pd(q2,h5));
#endif

	h1 = _mm256_broadcast_sd(&hh[nb-4]);
	q1 = _mm256_load_pd(&q[(nb+1)*ldq]);
	q2 = _mm256_load_pd(&q[((nb+1)*ldq)+4]);
663 664 665
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMA_pd(q1, h1, x1);
	x2 = _mm256_FMA_pd(q2, h1, x2);
666 667 668 669 670
#else
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
	x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-3]);
671 672 673
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(q1, h2, y1);
	y2 = _mm256_FMA_pd(q2, h2, y2);
674 675 676 677 678
#else
	y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
	y2 = _mm256_add_pd(y2, _mm256_mul_pd(q2,h2));
#endif
	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+nb-2]);
679 680 681
#ifdef __ELPA_USE_FMA__
	z1 = _mm256_FMA_pd(q1, h3, z1);
	z2 = _mm256_FMA_pd(q2, h3, z2);
682 683 684 685 686
#else
	z1 = _mm256_add_pd(z1, _mm256_mul_pd(q1,h3));
	z2 = _mm256_add_pd(z2, _mm256_mul_pd(q2,h3));
#endif
	h4 = _mm256_broadcast_sd(&hh[(ldh*3)+nb-1]);
687 688 689
#ifdef __ELPA_USE_FMA__
	w1 = _mm256_FMA_pd(q1, h4, w1);
	w2 = _mm256_FMA_pd(q2, h4, w2);
690 691 692 693 694 695 696 697
#else
	w1 = _mm256_add_pd(w1, _mm256_mul_pd(q1,h4));
	w2 = _mm256_add_pd(w2, _mm256_mul_pd(q2,h4));
#endif

	h1 = _mm256_broadcast_sd(&hh[nb-3]);
	q1 = _mm256_load_pd(&q[(nb+2)*ldq]);
	q2 = _mm256_load_pd(&q[((nb+2)*ldq)+4]);
698 699 700
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMA_pd(q1, h1, x1);
	x2 = _mm256_FMA_pd(q2, h1, x2);
701 702 703 704 705
#else
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
	x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-2]);
706 707 708
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(q1, h2, y1);
	y2 = _mm256_FMA_pd(q2, h2, y2);
709 710 711 712 713
#else
	y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
	y2 = _mm256_add_pd(y2, _mm256_mul_pd(q2,h2));
#endif
	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+nb-1]);
714 715 716
#ifdef __ELPA_USE_FMA__
	z1 = _mm256_FMA_pd(q1, h3, z1);
	z2 = _mm256_FMA_pd(q2, h3, z2);
717 718 719 720 721 722 723 724
#else
	z1 = _mm256_add_pd(z1, _mm256_mul_pd(q1,h3));
	z2 = _mm256_add_pd(z2, _mm256_mul_pd(q2,h3));
#endif

	h1 = _mm256_broadcast_sd(&hh[nb-2]);
	q1 = _mm256_load_pd(&q[(nb+3)*ldq]);
	q2 = _mm256_load_pd(&q[((nb+3)*ldq)+4]);
725 726 727
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMA_pd(q1, h1, x1);
	x2 = _mm256_FMA_pd(q2, h1, x2);
728 729 730 731 732
#else
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
	x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-1]);
733 734 735
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(q1, h2, y1);
	y2 = _mm256_FMA_pd(q2, h2, y2);
736 737 738 739 740 741 742 743
#else
	y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
	y2 = _mm256_add_pd(y2, _mm256_mul_pd(q2,h2));
#endif

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
	q1 = _mm256_load_pd(&q[(nb+4)*ldq]);
	q2 = _mm256_load_pd(&q[((nb+4)*ldq)+4]);
744 745 746
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMA_pd(q1, h1, x1);
	x2 = _mm256_FMA_pd(q2, h1, x2);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
#else
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
	x2 = _mm256_add_pd(x2, _mm256_mul_pd(q2,h1));
#endif

	/////////////////////////////////////////////////////
	// Apply tau, correct wrong calculation using pre-calculated scalar products
	/////////////////////////////////////////////////////

	__m256d tau1 = _mm256_broadcast_sd(&hh[0]);
	x1 = _mm256_mul_pd(x1, tau1);
	x2 = _mm256_mul_pd(x2, tau1);

	__m256d tau2 = _mm256_broadcast_sd(&hh[ldh]);
	__m256d vs_1_2 = _mm256_broadcast_sd(&scalarprods[0]);
	h2 = _mm256_mul_pd(tau2, vs_1_2);
763 764 765
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMSUB_pd(y1, tau2, _mm256_mul_pd(x1,h2));
	y2 = _mm256_FMSUB_pd(y2, tau2, _mm256_mul_pd(x2,h2));
766 767 768 769 770 771 772 773 774 775
#else
	y1 = _mm256_sub_pd(_mm256_mul_pd(y1,tau2), _mm256_mul_pd(x1,h2));
	y2 = _mm256_sub_pd(_mm256_mul_pd(y2,tau2), _mm256_mul_pd(x2,h2));
#endif

	__m256d tau3 = _mm256_broadcast_sd(&hh[ldh*2]);
	__m256d vs_1_3 = _mm256_broadcast_sd(&scalarprods[1]);
	__m256d vs_2_3 = _mm256_broadcast_sd(&scalarprods[2]);
	h2 = _mm256_mul_pd(tau3, vs_1_3);
	h3 = _mm256_mul_pd(tau3, vs_2_3);
776 777 778
#ifdef __ELPA_USE_FMA__
	z1 = _mm256_FMSUB_pd(z1, tau3, _mm256_FMA_pd(y1, h3, _mm256_mul_pd(x1,h2)));
	z2 = _mm256_FMSUB_pd(z2, tau3, _mm256_FMA_pd(y2, h3, _mm256_mul_pd(x2,h2)));
779 780 781 782 783 784 785 786 787 788 789 790
#else
	z1 = _mm256_sub_pd(_mm256_mul_pd(z1,tau3), _mm256_add_pd(_mm256_mul_pd(y1,h3), _mm256_mul_pd(x1,h2)));
	z2 = _mm256_sub_pd(_mm256_mul_pd(z2,tau3), _mm256_add_pd(_mm256_mul_pd(y2,h3), _mm256_mul_pd(x2,h2)));
#endif

	__m256d tau4 = _mm256_broadcast_sd(&hh[ldh*3]);
	__m256d vs_1_4 = _mm256_broadcast_sd(&scalarprods[3]);
	__m256d vs_2_4 = _mm256_broadcast_sd(&scalarprods[4]);
	h2 = _mm256_mul_pd(tau4, vs_1_4);
	h3 = _mm256_mul_pd(tau4, vs_2_4);
	__m256d vs_3_4 = _mm256_broadcast_sd(&scalarprods[5]);
	h4 = _mm256_mul_pd(tau4, vs_3_4);
791 792 793
#ifdef __ELPA_USE_FMA__
	w1 = _mm256_FMSUB_pd(w1, tau4, _mm256_FMA_pd(z1, h4, _mm256_FMA_pd(y1, h3, _mm256_mul_pd(x1,h2))));
	w2 = _mm256_FMSUB_pd(w2, tau4, _mm256_FMA_pd(z2, h4, _mm256_FMA_pd(y2, h3, _mm256_mul_pd(x2,h2))));
794 795 796 797 798 799 800 801 802 803 804 805 806 807
#else
	w1 = _mm256_sub_pd(_mm256_mul_pd(w1,tau4), _mm256_add_pd(_mm256_mul_pd(z1,h4), _mm256_add_pd(_mm256_mul_pd(y1,h3), _mm256_mul_pd(x1,h2))));
	w2 = _mm256_sub_pd(_mm256_mul_pd(w2,tau4), _mm256_add_pd(_mm256_mul_pd(z2,h4), _mm256_add_pd(_mm256_mul_pd(y2,h3), _mm256_mul_pd(x2,h2))));
#endif

	__m256d tau5 = _mm256_broadcast_sd(&hh[ldh*4]);
	__m256d vs_1_5 = _mm256_broadcast_sd(&scalarprods[6]);
	__m256d vs_2_5 = _mm256_broadcast_sd(&scalarprods[7]);
	h2 = _mm256_mul_pd(tau5, vs_1_5);
	h3 = _mm256_mul_pd(tau5, vs_2_5);
	__m256d vs_3_5 = _mm256_broadcast_sd(&scalarprods[8]);
	__m256d vs_4_5 = _mm256_broadcast_sd(&scalarprods[9]);
	h4 = _mm256_mul_pd(tau5, vs_3_5);
	h5 = _mm256_mul_pd(tau5, vs_4_5);
808 809 810
#ifdef __ELPA_USE_FMA__
	v1 = _mm256_FMSUB_pd(v1, tau5, _mm256_add_pd(_mm256_FMA_pd(w1, h5, _mm256_mul_pd(z1,h4)), _mm256_FMA_pd(y1, h3, _mm256_mul_pd(x1,h2))));
	v2 = _mm256_FMSUB_pd(v2, tau5, _mm256_add_pd(_mm256_FMA_pd(w2, h5, _mm256_mul_pd(z2,h4)), _mm256_FMA_pd(y2, h3, _mm256_mul_pd(x2,h2))));
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
#else
	v1 = _mm256_sub_pd(_mm256_mul_pd(v1,tau5), _mm256_add_pd(_mm256_add_pd(_mm256_mul_pd(w1,h5), _mm256_mul_pd(z1,h4)), _mm256_add_pd(_mm256_mul_pd(y1,h3), _mm256_mul_pd(x1,h2))));
	v2 = _mm256_sub_pd(_mm256_mul_pd(v2,tau5), _mm256_add_pd(_mm256_add_pd(_mm256_mul_pd(w2,h5), _mm256_mul_pd(z2,h4)), _mm256_add_pd(_mm256_mul_pd(y2,h3), _mm256_mul_pd(x2,h2))));
#endif

	__m256d tau6 = _mm256_broadcast_sd(&hh[ldh*5]);
	__m256d vs_1_6 = _mm256_broadcast_sd(&scalarprods[10]);
	__m256d vs_2_6 = _mm256_broadcast_sd(&scalarprods[11]);
	h2 = _mm256_mul_pd(tau6, vs_1_6);
	h3 = _mm256_mul_pd(tau6, vs_2_6);
	__m256d vs_3_6 = _mm256_broadcast_sd(&scalarprods[12]);
	__m256d vs_4_6 = _mm256_broadcast_sd(&scalarprods[13]);
	__m256d vs_5_6 = _mm256_broadcast_sd(&scalarprods[14]);
	h4 = _mm256_mul_pd(tau6, vs_3_6);
	h5 = _mm256_mul_pd(tau6, vs_4_6);
	h6 = _mm256_mul_pd(tau6, vs_5_6);
827 828 829
#ifdef __ELPA_USE_FMA__
	t1 = _mm256_FMSUB_pd(t1, tau6, _mm256_FMA_pd(v1, h6, _mm256_add_pd(_mm256_FMA_pd(w1, h5, _mm256_mul_pd(z1,h4)), _mm256_FMA_pd(y1, h3, _mm256_mul_pd(x1,h2)))));
	t2 = _mm256_FMSUB_pd(t2, tau6, _mm256_FMA_pd(v2, h6, _mm256_add_pd(_mm256_FMA_pd(w2, h5, _mm256_mul_pd(z2,h4)), _mm256_FMA_pd(y2, h3, _mm256_mul_pd(x2,h2)))));
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
#else
	t1 = _mm256_sub_pd(_mm256_mul_pd(t1,tau6), _mm256_add_pd( _mm256_mul_pd(v1,h6), _mm256_add_pd(_mm256_add_pd(_mm256_mul_pd(w1,h5), _mm256_mul_pd(z1,h4)), _mm256_add_pd(_mm256_mul_pd(y1,h3), _mm256_mul_pd(x1,h2)))));
	t2 = _mm256_sub_pd(_mm256_mul_pd(t2,tau6), _mm256_add_pd( _mm256_mul_pd(v2,h6), _mm256_add_pd(_mm256_add_pd(_mm256_mul_pd(w2,h5), _mm256_mul_pd(z2,h4)), _mm256_add_pd(_mm256_mul_pd(y2,h3), _mm256_mul_pd(x2,h2)))));
#endif

	/////////////////////////////////////////////////////
	// Rank-1 update of Q [8 x nb+3]
	/////////////////////////////////////////////////////

	q1 = _mm256_load_pd(&q[0]);
	q2 = _mm256_load_pd(&q[4]);
	q1 = _mm256_sub_pd(q1, t1);
	q2 = _mm256_sub_pd(q2, t2);
	_mm256_store_pd(&q[0],q1);
	_mm256_store_pd(&q[4],q2);

	h6 = _mm256_broadcast_sd(&hh[(ldh*5)+1]);
	q1 = _mm256_load_pd(&q[ldq]);
	q2 = _mm256_load_pd(&q[(ldq+4)]);
	q1 = _mm256_sub_pd(q1, v1);
	q2 = _mm256_sub_pd(q2, v2);
851 852 853
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(t1, h6, q1);
	q2 = _mm256_NFMA_pd(t2, h6, q2);
854 855 856 857 858 859 860 861 862 863 864 865
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(t1, h6));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(t2, h6));
#endif
	_mm256_store_pd(&q[ldq],q1);
	_mm256_store_pd(&q[(ldq+4)],q2);

	h5 = _mm256_broadcast_sd(&hh[(ldh*4)+1]);
	q1 = _mm256_load_pd(&q[ldq*2]);
	q2 = _mm256_load_pd(&q[(ldq*2)+4]);
	q1 = _mm256_sub_pd(q1, w1);
	q2 = _mm256_sub_pd(q2, w2);
866 867 868
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(v1, h5, q1);
	q2 = _mm256_NFMA_pd(v2, h5, q2);
869 870 871 872 873
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(v1, h5));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(v2, h5));
#endif
	h6 = _mm256_broadcast_sd(&hh[(ldh*5)+2]);
874 875 876
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(t1, h6, q1);
	q2 = _mm256_NFMA_pd(t2, h6, q2);
877 878 879 880 881 882 883 884 885 886 887 888
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(t1, h6));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(t2, h6));
#endif
	_mm256_store_pd(&q[ldq*2],q1);
	_mm256_store_pd(&q[(ldq*2)+4],q2);

	h4 = _mm256_broadcast_sd(&hh[(ldh*3)+1]);
	q1 = _mm256_load_pd(&q[ldq*3]);
	q2 = _mm256_load_pd(&q[(ldq*3)+4]);
	q1 = _mm256_sub_pd(q1, z1);
	q2 = _mm256_sub_pd(q2, z2);
889 890 891
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(w1, h4, q1);
	q2 = _mm256_NFMA_pd(w2, h4, q2);
892 893 894 895 896
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(w1, h4));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(w2, h4));
#endif
	h5 = _mm256_broadcast_sd(&hh[(ldh*4)+2]);
897 898 899
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(v1, h5, q1);
	q2 = _mm256_NFMA_pd(v2, h5, q2);
900 901 902 903 904
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(v1, h5));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(v2, h5));
#endif
	h6 = _mm256_broadcast_sd(&hh[(ldh*5)+3]);
905 906 907
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(t1, h6, q1);
	q2 = _mm256_NFMA_pd(t2, h6, q2);
908 909 910 911 912 913 914 915 916 917 918 919
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(t1, h6));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(t2, h6));
#endif
	_mm256_store_pd(&q[ldq*3],q1);
	_mm256_store_pd(&q[(ldq*3)+4],q2);

	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+1]);
	q1 = _mm256_load_pd(&q[ldq*4]);
	q2 = _mm256_load_pd(&q[(ldq*4)+4]);
	q1 = _mm256_sub_pd(q1, y1);
	q2 = _mm256_sub_pd(q2, y2);
920 921 922
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(z1, h3, q1);
	q2 = _mm256_NFMA_pd(z2, h3, q2);
923 924 925 926 927
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(z1, h3));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(z2, h3));
#endif
	h4 = _mm256_broadcast_sd(&hh[(ldh*3)+2]);
928 929 930
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(w1, h4, q1);
	q2 = _mm256_NFMA_pd(w2, h4, q2);
931 932 933 934 935
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(w1, h4));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(w2, h4));
#endif
	h5 = _mm256_broadcast_sd(&hh[(ldh*4)+3]);
936 937 938
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(v1, h5, q1);
	q2 = _mm256_NFMA_pd(v2, h5, q2);
939 940 941 942 943
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(v1, h5));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(v2, h5));
#endif
	h6 = _mm256_broadcast_sd(&hh[(ldh*5)+4]);
944 945 946
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(t1, h6, q1);
	q2 = _mm256_NFMA_pd(t2, h6, q2);
947 948 949 950 951 952 953 954 955 956 957 958
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(t1, h6));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(t2, h6));
#endif
	_mm256_store_pd(&q[ldq*4],q1);
	_mm256_store_pd(&q[(ldq*4)+4],q2);

	h2 = _mm256_broadcast_sd(&hh[(ldh)+1]);
	q1 = _mm256_load_pd(&q[ldq*5]);
	q2 = _mm256_load_pd(&q[(ldq*5)+4]);
	q1 = _mm256_sub_pd(q1, x1);
	q2 = _mm256_sub_pd(q2, x2);
959 960 961
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(y1, h2, q1);
	q2 = _mm256_NFMA_pd(y2, h2, q2);
962 963 964 965 966
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(y1, h2));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(y2, h2));
#endif
	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+2]);
967 968 969
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(z1, h3, q1);
	q2 = _mm256_NFMA_pd(z2, h3, q2);
970 971 972 973 974
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(z1, h3));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(z2, h3));
#endif
	h4 = _mm256_broadcast_sd(&hh[(ldh*3)+3]);
975 976 977
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(w1, h4, q1);
	q2 = _mm256_NFMA_pd(w2, h4, q2);
978 979 980 981 982
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(w1, h4));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(w2, h4));
#endif
	h5 = _mm256_broadcast_sd(&hh[(ldh*4)+4]);
983 984 985
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(v1, h5, q1);
	q2 = _mm256_NFMA_pd(v2, h5, q2);
986 987 988 989 990
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(v1, h5));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(v2, h5));
#endif
	h6 = _mm256_broadcast_sd(&hh[(ldh*5)+5]);
991 992 993
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(t1, h6, q1);
	q2 = _mm256_NFMA_pd(t2, h6, q2);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(t1, h6));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(t2, h6));
#endif
	_mm256_store_pd(&q[ldq*5],q1);
	_mm256_store_pd(&q[(ldq*5)+4],q2);

	for (i = 6; i < nb; i++)
	{
		q1 = _mm256_load_pd(&q[i*ldq]);
		q2 = _mm256_load_pd(&q[(i*ldq)+4]);
		h1 = _mm256_broadcast_sd(&hh[i-5]);
1006 1007 1008
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_NFMA_pd(x1, h1, q1);
		q2 = _mm256_NFMA_pd(x2, h1, q2);
1009 1010 1011 1012 1013
#else
		q1 = _mm256_sub_pd(q1, _mm256_mul_pd(x1, h1));
		q2 = _mm256_sub_pd(q2, _mm256_mul_pd(x2, h1));
#endif
		h2 = _mm256_broadcast_sd(&hh[ldh+i-4]);
1014 1015 1016
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_NFMA_pd(y1, h2, q1);
		q2 = _mm256_NFMA_pd(y2, h2, q2);
1017 1018 1019 1020 1021
#else
		q1 = _mm256_sub_pd(q1, _mm256_mul_pd(y1, h2));
		q2 = _mm256_sub_pd(q2, _mm256_mul_pd(y2, h2));
#endif
		h3 = _mm256_broadcast_sd(&hh[(ldh*2)+i-3]);
1022 1023 1024
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_NFMA_pd(z1, h3, q1);
		q2 = _mm256_NFMA_pd(z2, h3, q2);
1025 1026 1027 1028 1029
#else
		q1 = _mm256_sub_pd(q1, _mm256_mul_pd(z1, h3));
		q2 = _mm256_sub_pd(q2, _mm256_mul_pd(z2, h3));
#endif
		h4 = _mm256_broadcast_sd(&hh[(ldh*3)+i-2]);
1030 1031 1032
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_NFMA_pd(w1, h4, q1);
		q2 = _mm256_NFMA_pd(w2, h4, q2);
1033 1034 1035 1036 1037
#else
		q1 = _mm256_sub_pd(q1, _mm256_mul_pd(w1, h4));
		q2 = _mm256_sub_pd(q2, _mm256_mul_pd(w2, h4));
#endif
		h5 = _mm256_broadcast_sd(&hh[(ldh*4)+i-1]);
1038 1039 1040
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_NFMA_pd(v1, h5, q1);
		q2 = _mm256_NFMA_pd(v2, h5, q2);
1041 1042 1043 1044 1045
#else
		q1 = _mm256_sub_pd(q1, _mm256_mul_pd(v1, h5));
		q2 = _mm256_sub_pd(q2, _mm256_mul_pd(v2, h5));
#endif
		h6 = _mm256_broadcast_sd(&hh[(ldh*5)+i]);
1046 1047 1048
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_NFMA_pd(t1, h6, q1);
		q2 = _mm256_NFMA_pd(t2, h6, q2);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
#else
		q1 = _mm256_sub_pd(q1, _mm256_mul_pd(t1, h6));
		q2 = _mm256_sub_pd(q2, _mm256_mul_pd(t2, h6));
#endif
		_mm256_store_pd(&q[i*ldq],q1);
		_mm256_store_pd(&q[(i*ldq)+4],q2);
	}

	h1 = _mm256_broadcast_sd(&hh[nb-5]);
	q1 = _mm256_load_pd(&q[nb*ldq]);
	q2 = _mm256_load_pd(&q[(nb*ldq)+4]);
1060 1061 1062
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(x1, h1, q1);
	q2 = _mm256_NFMA_pd(x2, h1, q2);
1063 1064 1065 1066 1067
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(x1, h1));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(x2, h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-4]);
1068 1069 1070
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(y1, h2, q1);
	q2 = _mm256_NFMA_pd(y2, h2, q2);
1071 1072 1073 1074 1075
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(y1, h2));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(y2, h2));
#endif
	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+nb-3]);
1076 1077 1078
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(z1, h3, q1);
	q2 = _mm256_NFMA_pd(z2, h3, q2);
1079 1080 1081 1082 1083
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(z1, h3));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(z2, h3));
#endif
	h4 = _mm256_broadcast_sd(&hh[(ldh*3)+nb-2]);
1084 1085 1086
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(w1, h4, q1);
	q2 = _mm256_NFMA_pd(w2, h4, q2);
1087 1088 1089 1090 1091
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(w1, h4));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(w2, h4));
#endif
	h5 = _mm256_broadcast_sd(&hh[(ldh*4)+nb-1]);
1092 1093 1094
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(v1, h5, q1);
	q2 = _mm256_NFMA_pd(v2, h5, q2);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(v1, h5));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(v2, h5));
#endif
	_mm256_store_pd(&q[nb*ldq],q1);
	_mm256_store_pd(&q[(nb*ldq)+4],q2);

	h1 = _mm256_broadcast_sd(&hh[nb-4]);
	q1 = _mm256_load_pd(&q[(nb+1)*ldq]);
	q2 = _mm256_load_pd(&q[((nb+1)*ldq)+4]);
1105 1106 1107
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(x1, h1, q1);
	q2 = _mm256_NFMA_pd(x2, h1, q2);
1108 1109 1110 1111 1112
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(x1, h1));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(x2, h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-3]);
1113 1114 1115
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(y1, h2, q1);
	q2 = _mm256_NFMA_pd(y2, h2, q2);
1116 1117 1118 1119 1120
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(y1, h2));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(y2, h2));
#endif
	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+nb-2]);
1121 1122 1123
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(z1, h3, q1);
	q2 = _mm256_NFMA_pd(z2, h3, q2);
1124 1125 1126 1127 1128
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(z1, h3));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(z2, h3));
#endif
	h4 = _mm256_broadcast_sd(&hh[(ldh*3)+nb-1]);
1129 1130 1131
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(w1, h4, q1);
	q2 = _mm256_NFMA_pd(w2, h4, q2);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(w1, h4));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(w2, h4));
#endif
	_mm256_store_pd(&q[(nb+1)*ldq],q1);
	_mm256_store_pd(&q[((nb+1)*ldq)+4],q2);

	h1 = _mm256_broadcast_sd(&hh[nb-3]);
	q1 = _mm256_load_pd(&q[(nb+2)*ldq]);
	q2 = _mm256_load_pd(&q[((nb+2)*ldq)+4]);
1142 1143 1144
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(x1, h1, q1);
	q2 = _mm256_NFMA_pd(x2, h1, q2);
1145 1146 1147 1148 1149
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(x1, h1));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(x2, h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-2]);
1150 1151 1152
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(y1, h2, q1);
	q2 = _mm256_NFMA_pd(y2, h2, q2);
1153 1154 1155 1156 1157
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(y1, h2));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(y2, h2));
#endif
	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+nb-1]);
1158 1159 1160
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(z1, h3, q1);
	q2 = _mm256_NFMA_pd(z2, h3, q2);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(z1, h3));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(z2, h3));
#endif
	_mm256_store_pd(&q[(nb+2)*ldq],q1);
	_mm256_store_pd(&q[((nb+2)*ldq)+4],q2);

	h1 = _mm256_broadcast_sd(&hh[nb-2]);
	q1 = _mm256_load_pd(&q[(nb+3)*ldq]);
	q2 = _mm256_load_pd(&q[((nb+3)*ldq)+4]);
1171 1172 1173
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(x1, h1, q1);
	q2 = _mm256_NFMA_pd(x2, h1, q2);
1174 1175 1176 1177 1178
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(x1, h1));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(x2, h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-1]);
1179 1180 1181
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(y1, h2, q1);
	q2 = _mm256_NFMA_pd(y2, h2, q2);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(y1, h2));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(y2, h2));
#endif
	_mm256_store_pd(&q[(nb+3)*ldq],q1);
	_mm256_store_pd(&q[((nb+3)*ldq)+4],q2);

	h1 = _mm256_broadcast_sd(&hh[nb-1]);
	q1 = _mm256_load_pd(&q[(nb+4)*ldq]);
	q2 = _mm256_load_pd(&q[((nb+4)*ldq)+4]);
1192 1193 1194
#ifdef __ELPA_USE_FMA__
	q1 = _mm256_NFMA_pd(x1, h1, q1);
	q2 = _mm256_NFMA_pd(x2, h1, q2);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
#else
	q1 = _mm256_sub_pd(q1, _mm256_mul_pd(x1, h1));
	q2 = _mm256_sub_pd(q2, _mm256_mul_pd(x2, h1));
#endif
	_mm256_store_pd(&q[(nb+4)*ldq],q1);
	_mm256_store_pd(&q[((nb+4)*ldq)+4],q2);
}

/**
 * Unrolled kernel that computes
 * 4 rows of Q simultaneously, a
 * matrix vector product with two householder
 * vectors + a rank 1 update is performed
 */
__forceinline void hh_trafo_kernel_4_AVX_6hv(double* q, double* hh, int nb, int ldq, int ldh, double* scalarprods)
{
	/////////////////////////////////////////////////////
	// Matrix Vector Multiplication, Q [8 x nb+3] * hh
	// hh contains four householder vectors
	/////////////////////////////////////////////////////
	int i;

	__m256d a1_1 = _mm256_load_pd(&q[ldq*5]);
	__m256d a2_1 = _mm256_load_pd(&q[ldq*4]);
	__m256d a3_1 = _mm256_load_pd(&q[ldq*3]);
	__m256d a4_1 = _mm256_load_pd(&q[ldq*2]);
	__m256d a5_1 = _mm256_load_pd(&q[ldq]);
	__m256d a6_1 = _mm256_load_pd(&q[0]);

	__m256d h_6_5 = _mm256_broadcast_sd(&hh[(ldh*5)+1]);
	__m256d h_6_4 = _mm256_broadcast_sd(&hh[(ldh*5)+2]);
	__m256d h_6_3 = _mm256_broadcast_sd(&hh[(ldh*5)+3]);
	__m256d h_6_2 = _mm256_broadcast_sd(&hh[(ldh*5)+4]);
	__m256d h_6_1 = _mm256_broadcast_sd(&hh[(ldh*5)+5]);
1229 1230 1231 1232 1233 1234
#ifdef __ELPA_USE_FMA__
	register __m256d t1 = _mm256_FMA_pd(a5_1, h_6_5, a6_1);
	t1 = _mm256_FMA_pd(a4_1, h_6_4, t1);
	t1 = _mm256_FMA_pd(a3_1, h_6_3, t1);
	t1 = _mm256_FMA_pd(a2_1, h_6_2, t1);
	t1 = _mm256_FMA_pd(a1_1, h_6_1, t1);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
#else
	register __m256d t1 = _mm256_add_pd(a6_1, _mm256_mul_pd(a5_1, h_6_5));
	t1 = _mm256_add_pd(t1, _mm256_mul_pd(a4_1, h_6_4));
	t1 = _mm256_add_pd(t1, _mm256_mul_pd(a3_1, h_6_3));
	t1 = _mm256_add_pd(t1, _mm256_mul_pd(a2_1, h_6_2));
	t1 = _mm256_add_pd(t1, _mm256_mul_pd(a1_1, h_6_1));
#endif
	__m256d h_5_4 = _mm256_broadcast_sd(&hh[(ldh*4)+1]);
	__m256d h_5_3 = _mm256_broadcast_sd(&hh[(ldh*4)+2]);
	__m256d h_5_2 = _mm256_broadcast_sd(&hh[(ldh*4)+3]);
	__m256d h_5_1 = _mm256_broadcast_sd(&hh[(ldh*4)+4]);
1246 1247 1248 1249 1250
#ifdef __ELPA_USE_FMA__
	register __m256d v1 = _mm256_FMA_pd(a4_1, h_5_4, a5_1);
	v1 = _mm256_FMA_pd(a3_1, h_5_3, v1);
	v1 = _mm256_FMA_pd(a2_1, h_5_2, v1);
	v1 = _mm256_FMA_pd(a1_1, h_5_1, v1);
1251 1252 1253 1254 1255 1256 1257 1258 1259
#else
	register __m256d v1 = _mm256_add_pd(a5_1, _mm256_mul_pd(a4_1, h_5_4));
	v1 = _mm256_add_pd(v1, _mm256_mul_pd(a3_1, h_5_3));
	v1 = _mm256_add_pd(v1, _mm256_mul_pd(a2_1, h_5_2));
	v1 = _mm256_add_pd(v1, _mm256_mul_pd(a1_1, h_5_1));
#endif
	__m256d h_4_3 = _mm256_broadcast_sd(&hh[(ldh*3)+1]);
	__m256d h_4_2 = _mm256_broadcast_sd(&hh[(ldh*3)+2]);
	__m256d h_4_1 = _mm256_broadcast_sd(&hh[(ldh*3)+3]);
1260 1261 1262 1263
#ifdef __ELPA_USE_FMA__
	register __m256d w1 = _mm256_FMA_pd(a3_1, h_4_3, a4_1);
	w1 = _mm256_FMA_pd(a2_1, h_4_2, w1);
	w1 = _mm256_FMA_pd(a1_1, h_4_1, w1);
1264 1265 1266 1267 1268 1269 1270 1271
#else
	register __m256d w1 = _mm256_add_pd(a4_1, _mm256_mul_pd(a3_1, h_4_3));
	w1 = _mm256_add_pd(w1, _mm256_mul_pd(a2_1, h_4_2));
	w1 = _mm256_add_pd(w1, _mm256_mul_pd(a1_1, h_4_1));
#endif
	__m256d h_2_1 = _mm256_broadcast_sd(&hh[ldh+1]);
	__m256d h_3_2 = _mm256_broadcast_sd(&hh[(ldh*2)+1]);
	__m256d h_3_1 = _mm256_broadcast_sd(&hh[(ldh*2)+2]);
1272 1273 1274 1275
#ifdef __ELPA_USE_FMA__
	register __m256d z1 = _mm256_FMA_pd(a2_1, h_3_2, a3_1);
	z1 = _mm256_FMA_pd(a1_1, h_3_1, z1);
	register __m256d y1 = _mm256_FMA_pd(a1_1, h_2_1, a2_1);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
#else
	register __m256d z1 = _mm256_add_pd(a3_1, _mm256_mul_pd(a2_1, h_3_2));
	z1 = _mm256_add_pd(z1, _mm256_mul_pd(a1_1, h_3_1));
	register __m256d y1 = _mm256_add_pd(a2_1, _mm256_mul_pd(a1_1, h_2_1));
#endif
	register __m256d x1 = a1_1;

	__m256d q1;

	__m256d h1;
	__m256d h2;
	__m256d h3;
	__m256d h4;
	__m256d h5;
	__m256d h6;

	for(i = 6; i < nb; i++)
	{
		h1 = _mm256_broadcast_sd(&hh[i-5]);
		q1 = _mm256_load_pd(&q[i*ldq]);
1296 1297
#ifdef __ELPA_USE_FMA__
		x1 = _mm256_FMA_pd(q1, h1, x1);
1298 1299 1300 1301
#else
		x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
#endif
		h2 = _mm256_broadcast_sd(&hh[ldh+i-4]);
1302 1303
#ifdef __ELPA_USE_FMA__
		y1 = _mm256_FMA_pd(q1, h2, y1);
1304 1305 1306 1307
#else
		y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
#endif
		h3 = _mm256_broadcast_sd(&hh[(ldh*2)+i-3]);
1308 1309
#ifdef __ELPA_USE_FMA__
		z1 = _mm256_FMA_pd(q1, h3, z1);
1310 1311 1312 1313
#else
		z1 = _mm256_add_pd(z1, _mm256_mul_pd(q1,h3));
#endif
		h4 = _mm256_broadcast_sd(&hh[(ldh*3)+i-2]);
1314 1315
#ifdef __ELPA_USE_FMA__
		w1 = _mm256_FMA_pd(q1, h4, w1);
1316 1317 1318 1319
#else
		w1 = _mm256_add_pd(w1, _mm256_mul_pd(q1,h4));
#endif
		h5 = _mm256_broadcast_sd(&hh[(ldh*4)+i-1]);
1320 1321
#ifdef __ELPA_USE_FMA__
		v1 = _mm256_FMA_pd(q1, h5, v1);
1322 1323 1324 1325
#else
		v1 = _mm256_add_pd(v1, _mm256_mul_pd(q1,h5));
#endif
		h6 = _mm256_broadcast_sd(&hh[(ldh*5)+i]);
1326 1327
#ifdef __ELPA_USE_FMA__
		t1 = _mm256_FMA_pd(q1, h6, t1);
1328 1329 1330 1331 1332 1333 1334
#else
		t1 = _mm256_add_pd(t1, _mm256_mul_pd(q1,h6));
#endif
	}

	h1 = _mm256_broadcast_sd(&hh[nb-5]);
	q1 = _mm256_load_pd(&q[nb*ldq]);
1335 1336
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMA_pd(q1, h1, x1);
1337 1338 1339 1340
#else
	x1 = _mm256_add_pd(x1, _mm256_mul_pd(q1,h1));
#endif
	h2 = _mm256_broadcast_sd(&hh[ldh+nb-4]);
1341 1342
#ifdef __ELPA_USE_FMA__
	y1 = _mm256_FMA_pd(q1, h2, y1);
1343 1344 1345 1346
#else
	y1 = _mm256_add_pd(y1, _mm256_mul_pd(q1,h2));
#endif
	h3 = _mm256_broadcast_sd(&hh[(ldh*2)+nb-3]);
1347 1348
#ifdef __ELPA_USE_FMA__
	z1 = _mm256_FMA_pd(q1, h3, z1);
1349 1350 1351 1352
#else
	z1 = _mm256_add_pd(z1, _mm256_mul_pd(q1,h3));
#endif
	h4 = _mm256_broadcast_sd(&hh[(ldh*3)+nb-2]);
1353 1354
#ifdef __ELPA_USE_FMA__
	w1 = _mm256_FMA_pd(q1, h4, w1);
1355 1356 1357 1358
#else
	w1 = _mm256_add_pd(w1, _mm256_mul_pd(q1,h4));
#endif
	h5 = _mm256_broadcast_sd(&hh[(ldh*4)+nb-1]);
1359 1360
#ifdef __ELPA_USE_FMA__
	v1 = _mm256_FMA_pd(q1, h5, v1);
1361 1362 1363 1364 1365 1366
#else
	v1 = _mm256_add_pd(v1, _mm256_mul_pd(q1,h5));
#endif

	h1 = _mm256_broadcast_sd(&hh[nb-4]);
	q1 = _mm256_load_pd(&q[(nb+1)*ldq]);
1367 1368
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMA_pd(q1, h1, x1);