There is a maintenance of MPCDF Gitlab on Thursday, April 22st 2020, 9:00 am CEST - Expect some service interruptions during this time

elpa2_kernels_complex_avx-avx2_1hv.c 19.8 KB
Newer Older
1 2
//    This file is part of ELPA.
//
Andreas Marek's avatar
Andreas Marek committed
3
//    The ELPA library was originally created by the ELPA consortium,
4 5
//    consisting of the following organizations:
//
6 7
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8 9 10
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
Andreas Marek's avatar
Andreas Marek committed
11 12 13 14 15
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
//      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//      and
16 17
//    - IBM Deutschland GmbH
//
18
//    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
//    enhancements authored by Intel Corporation which is not part of
20
//    the ELPA consortium.
21 22
//
//    More information can be found here:
23
//    http://elpa.mpcdf.mpg.de/
24 25
//
//    ELPA is free software: you can redistribute it and/or modify
Andreas Marek's avatar
Andreas Marek committed
26 27
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
//    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
//
// --------------------------------------------------------------------------------------------------
//
// This file contains the compute intensive kernels for the Householder transformations.
// It should be compiled with the highest possible optimization level.
//
// On Intel Nehalem or Intel Westmere or AMD Magny Cours use -O3 -msse3
// On Intel Sandy Bridge use -O3 -mavx
//
// Copyright of the original code rests with the authors inside the ELPA
// consortium. The copyright of any additional modifications shall rest
// with their original authors, but shall adhere to the licensing terms
// distributed along with the original code in the file "COPYING".
//
// Author: Alexander Heinecke (alexander.heinecke@mytum.de)
60
// Adapted for building a shared-library by Andreas Marek, MPCDF (andreas.marek@mpcdf.mpg.de)
61
// --------------------------------------------------------------------------------------------------
62
#include "config-f90.h"
63

Andreas Marek's avatar
Andreas Marek committed
64
#include <complex.h>
65 66 67 68
#include <x86intrin.h>

#define __forceinline __attribute__((always_inline))

69 70
#ifdef HAVE_AVX2

71 72 73 74 75 76 77 78 79 80 81
#ifdef __FMA4__
#define __ELPA_USE_FMA__
#define _mm256_FMADDSUB_pd(a,b,c) _mm256_maddsub_pd(a,b,c)
#define _mm256_FMSUBADD_pd(a,b,c) _mm256_msubadd_pd(a,b,c)
#endif

#ifdef __AVX2__
#define __ELPA_USE_FMA__
#define _mm256_FMADDSUB_pd(a,b,c) _mm256_fmaddsub_pd(a,b,c)
#define _mm256_FMSUBADD_pd(a,b,c) _mm256_fmsubadd_pd(a,b,c)
#endif
82

83 84
#endif

85
//Forward declaration
Andreas Marek's avatar
Andreas Marek committed
86 87 88
static  __forceinline void hh_trafo_complex_kernel_12_AVX_1hv(double complex* q, double complex* hh, int nb, int ldq);
static  __forceinline void hh_trafo_complex_kernel_8_AVX_1hv(double complex* q, double complex* hh, int nb, int ldq);
static  __forceinline void hh_trafo_complex_kernel_4_AVX_1hv(double complex* q, double complex* hh, int nb, int ldq);
89

90
/*
91
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
92 93 94 95 96 97 98 99 100 101 102
!f> interface
!f>   subroutine single_hh_trafo_complex_avx_avx2_1hv(q, hh, pnb, pnq, pldq) bind(C, name="single_hh_trafo_complex_avx_avx2_1hv")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
!f>     complex(kind=c_double)     :: q(*)
!f>     complex(kind=c_double)     :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

Andreas Marek's avatar
Andreas Marek committed
103
void single_hh_trafo_complex_avx_avx2_1hv(double complex* q, double complex* hh, int* pnb, int* pnq, int* pldq)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
{
	int i;
	int nb = *pnb;
	int nq = *pldq;
	int ldq = *pldq;
	//int ldh = *pldh;

	for (i = 0; i < nq-8; i+=12)
	{
		hh_trafo_complex_kernel_12_AVX_1hv(&q[i], hh, nb, ldq);
	}
	if (nq-i > 4)
	{
		hh_trafo_complex_kernel_8_AVX_1hv(&q[i], hh, nb, ldq);
	}
	else if (nq-i > 0)
	{
		hh_trafo_complex_kernel_4_AVX_1hv(&q[i], hh, nb, ldq);
	}
}

Andreas Marek's avatar
Andreas Marek committed
125
 static __forceinline void hh_trafo_complex_kernel_12_AVX_1hv(double complex* q, double complex* hh, int nb, int ldq)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m256d x1, x2, x3, x4, x5, x6;
	__m256d q1, q2, q3, q4, q5, q6;
	__m256d h1_real, h1_imag;
	__m256d tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
	int i=0;

	__m256d sign = (__m256d)_mm256_set_epi64x(0x8000000000000000, 0x8000000000000000, 0x8000000000000000, 0x8000000000000000);

	x1 = _mm256_load_pd(&q_dbl[0]);
	x2 = _mm256_load_pd(&q_dbl[4]);
	x3 = _mm256_load_pd(&q_dbl[8]);
	x4 = _mm256_load_pd(&q_dbl[12]);
	x5 = _mm256_load_pd(&q_dbl[16]);
	x6 = _mm256_load_pd(&q_dbl[20]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);
149
#ifndef __ELPA_USE_FMA__
150 151 152 153 154 155 156 157 158 159 160 161
		// conjugate
		h1_imag = _mm256_xor_pd(h1_imag, sign);
#endif

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);
		q3 = _mm256_load_pd(&q_dbl[(2*i*ldq)+8]);
		q4 = _mm256_load_pd(&q_dbl[(2*i*ldq)+12]);
		q5 = _mm256_load_pd(&q_dbl[(2*i*ldq)+16]);
		q6 = _mm256_load_pd(&q_dbl[(2*i*ldq)+20]);

		tmp1 = _mm256_mul_pd(h1_imag, q1);
162 163
#ifdef __ELPA_USE_FMA__
		x1 = _mm256_add_pd(x1, _mm256_FMSUBADD_pd(h1_real, q1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
164 165 166 167
#else
		x1 = _mm256_add_pd(x1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, q2);
168 169
#ifdef __ELPA_USE_FMA__
		x2 = _mm256_add_pd(x2, _mm256_FMSUBADD_pd(h1_real, q2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
170 171 172 173
#else
		x2 = _mm256_add_pd(x2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
		tmp3 = _mm256_mul_pd(h1_imag, q3);
174 175
#ifdef __ELPA_USE_FMA__
		x3 = _mm256_add_pd(x3, _mm256_FMSUBADD_pd(h1_real, q3, _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
176 177 178 179
#else
		x3 = _mm256_add_pd(x3, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q3), _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
#endif
		tmp4 = _mm256_mul_pd(h1_imag, q4);
180 181
#ifdef __ELPA_USE_FMA__
		x4 = _mm256_add_pd(x4, _mm256_FMSUBADD_pd(h1_real, q4, _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
182 183 184 185
#else
		x4 = _mm256_add_pd(x4, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q4), _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
#endif
		tmp5 = _mm256_mul_pd(h1_imag, q5);
186 187
#ifdef __ELPA_USE_FMA__
		x5 = _mm256_add_pd(x5, _mm256_FMSUBADD_pd(h1_real, q5, _mm256_shuffle_pd(tmp5, tmp5, 0x5)));
188 189 190 191
#else
		x5 = _mm256_add_pd(x5, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q5), _mm256_shuffle_pd(tmp5, tmp5, 0x5)));
#endif
		tmp6 = _mm256_mul_pd(h1_imag, q6);
192 193
#ifdef __ELPA_USE_FMA__
		x6 = _mm256_add_pd(x6, _mm256_FMSUBADD_pd(h1_real, q6, _mm256_shuffle_pd(tmp6, tmp6, 0x5)));
194 195 196 197 198 199 200 201 202 203 204
#else
		x6 = _mm256_add_pd(x6, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q6), _mm256_shuffle_pd(tmp6, tmp6, 0x5)));
#endif
	}

	h1_real = _mm256_broadcast_sd(&hh_dbl[0]);
	h1_imag = _mm256_broadcast_sd(&hh_dbl[1]);
	h1_real = _mm256_xor_pd(h1_real, sign);
	h1_imag = _mm256_xor_pd(h1_imag, sign);

	tmp1 = _mm256_mul_pd(h1_imag, x1);
205 206
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5));
207 208 209 210
#else
	x1 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5));
#endif
	tmp2 = _mm256_mul_pd(h1_imag, x2);
211 212
#ifdef __ELPA_USE_FMA__
	x2 = _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5));
213 214 215 216
#else
	x2 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5));
#endif
	tmp3 = _mm256_mul_pd(h1_imag, x3);
217 218
#ifdef __ELPA_USE_FMA__
	x3 = _mm256_FMADDSUB_pd(h1_real, x3, _mm256_shuffle_pd(tmp3, tmp3, 0x5));
219 220 221 222
#else
	x3 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x3), _mm256_shuffle_pd(tmp3, tmp3, 0x5));
#endif
	tmp4 = _mm256_mul_pd(h1_imag, x4);
223 224
#ifdef __ELPA_USE_FMA__
	x4 = _mm256_FMADDSUB_pd(h1_real, x4, _mm256_shuffle_pd(tmp4, tmp4, 0x5));
225 226 227 228
#else
	x4 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x4), _mm256_shuffle_pd(tmp4, tmp4, 0x5));
#endif
	tmp5 = _mm256_mul_pd(h1_imag, x5);
229 230
#ifdef __ELPA_USE_FMA__
	x5 = _mm256_FMADDSUB_pd(h1_real, x5, _mm256_shuffle_pd(tmp5, tmp5, 0x5));
231 232 233 234
#else
	x5 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x5), _mm256_shuffle_pd(tmp5, tmp5, 0x5));
#endif
	tmp6 = _mm256_mul_pd(h1_imag, x6);
235 236
#ifdef __ELPA_USE_FMA__
	x6 = _mm256_FMADDSUB_pd(h1_real, x6, _mm256_shuffle_pd(tmp6, tmp6, 0x5));
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
#else
	x6 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x6), _mm256_shuffle_pd(tmp6, tmp6, 0x5));
#endif

	q1 = _mm256_load_pd(&q_dbl[0]);
	q2 = _mm256_load_pd(&q_dbl[4]);
	q3 = _mm256_load_pd(&q_dbl[8]);
	q4 = _mm256_load_pd(&q_dbl[12]);
	q5 = _mm256_load_pd(&q_dbl[16]);
	q6 = _mm256_load_pd(&q_dbl[20]);

	q1 = _mm256_add_pd(q1, x1);
	q2 = _mm256_add_pd(q2, x2);
	q3 = _mm256_add_pd(q3, x3);
	q4 = _mm256_add_pd(q4, x4);
	q5 = _mm256_add_pd(q5, x5);
	q6 = _mm256_add_pd(q6, x6);

	_mm256_store_pd(&q_dbl[0], q1);
	_mm256_store_pd(&q_dbl[4], q2);
	_mm256_store_pd(&q_dbl[8], q3);
	_mm256_store_pd(&q_dbl[12], q4);
	_mm256_store_pd(&q_dbl[16], q5);
	_mm256_store_pd(&q_dbl[20], q6);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);
		q3 = _mm256_load_pd(&q_dbl[(2*i*ldq)+8]);
		q4 = _mm256_load_pd(&q_dbl[(2*i*ldq)+12]);
		q5 = _mm256_load_pd(&q_dbl[(2*i*ldq)+16]);
		q6 = _mm256_load_pd(&q_dbl[(2*i*ldq)+20]);

		tmp1 = _mm256_mul_pd(h1_imag, x1);
275 276
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_add_pd(q1, _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
277 278 279 280
#else
		q1 = _mm256_add_pd(q1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, x2);
281 282
#ifdef __ELPA_USE_FMA__
		q2 = _mm256_add_pd(q2, _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
283 284 285 286
#else
		q2 = _mm256_add_pd(q2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
		tmp3 = _mm256_mul_pd(h1_imag, x3);
287
#ifdef __ELPA_USE_FMA__
288
		q3 = _mm256_add_pd(q3, _mm256_FMADDSUB_pd(h1_real, x3, _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
289 290 291 292
#else
		q3 = _mm256_add_pd(q3, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x3), _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
#endif
		tmp4 = _mm256_mul_pd(h1_imag, x4);
293 294
#ifdef __ELPA_USE_FMA__
		q4 = _mm256_add_pd(q4, _mm256_FMADDSUB_pd(h1_real, x4, _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
295 296 297 298
#else
		q4 = _mm256_add_pd(q4, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x4), _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
#endif
		tmp5 = _mm256_mul_pd(h1_imag, x5);
299 300
#ifdef __ELPA_USE_FMA__
		q5 = _mm256_add_pd(q5, _mm256_FMADDSUB_pd(h1_real, x5, _mm256_shuffle_pd(tmp5, tmp5, 0x5)));
301 302 303 304
#else
		q5 = _mm256_add_pd(q5, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x5), _mm256_shuffle_pd(tmp5, tmp5, 0x5)));
#endif
		tmp6 = _mm256_mul_pd(h1_imag, x6);
305 306
#ifdef __ELPA_USE_FMA__
		q6 = _mm256_add_pd(q6, _mm256_FMADDSUB_pd(h1_real, x6, _mm256_shuffle_pd(tmp6, tmp6, 0x5)));
307 308 309 310 311 312 313 314 315 316 317 318 319
#else
		q6 = _mm256_add_pd(q6, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x6), _mm256_shuffle_pd(tmp6, tmp6, 0x5)));
#endif

		_mm256_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+4], q2);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+8], q3);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+12], q4);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+16], q5);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+20], q6);
	}
}

Andreas Marek's avatar
Andreas Marek committed
320
static __forceinline void hh_trafo_complex_kernel_8_AVX_1hv(double complex* q, double complex* hh, int nb, int ldq)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m256d x1, x2, x3, x4;
	__m256d q1, q2, q3, q4;
	__m256d h1_real, h1_imag;
	__m256d tmp1, tmp2, tmp3, tmp4;
	int i=0;

	__m256d sign = (__m256d)_mm256_set_epi64x(0x8000000000000000, 0x8000000000000000, 0x8000000000000000, 0x8000000000000000);

	x1 = _mm256_load_pd(&q_dbl[0]);
	x2 = _mm256_load_pd(&q_dbl[4]);
	x3 = _mm256_load_pd(&q_dbl[8]);
	x4 = _mm256_load_pd(&q_dbl[12]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);
342
#ifndef __ELPA_USE_FMA__
343 344 345 346 347 348 349 350 351 352
		// conjugate
		h1_imag = _mm256_xor_pd(h1_imag, sign);
#endif

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);
		q3 = _mm256_load_pd(&q_dbl[(2*i*ldq)+8]);
		q4 = _mm256_load_pd(&q_dbl[(2*i*ldq)+12]);

		tmp1 = _mm256_mul_pd(h1_imag, q1);
353 354
#ifdef __ELPA_USE_FMA__
		x1 = _mm256_add_pd(x1, _mm256_FMSUBADD_pd(h1_real, q1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
355 356 357 358
#else
		x1 = _mm256_add_pd(x1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, q2);
359 360
#ifdef __ELPA_USE_FMA__
		x2 = _mm256_add_pd(x2, _mm256_FMSUBADD_pd(h1_real, q2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
361 362 363 364
#else
		x2 = _mm256_add_pd(x2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
		tmp3 = _mm256_mul_pd(h1_imag, q3);
365 366
#ifdef __ELPA_USE_FMA__
		x3 = _mm256_add_pd(x3, _mm256_FMSUBADD_pd(h1_real, q3, _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
367 368 369 370
#else
		x3 = _mm256_add_pd(x3, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q3), _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
#endif
		tmp4 = _mm256_mul_pd(h1_imag, q4);
371 372
#ifdef __ELPA_USE_FMA__
		x4 = _mm256_add_pd(x4, _mm256_FMSUBADD_pd(h1_real, q4, _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
373 374 375 376 377 378 379 380 381 382 383
#else
		x4 = _mm256_add_pd(x4, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q4), _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
#endif
	}

	h1_real = _mm256_broadcast_sd(&hh_dbl[0]);
	h1_imag = _mm256_broadcast_sd(&hh_dbl[1]);
	h1_real = _mm256_xor_pd(h1_real, sign);
	h1_imag = _mm256_xor_pd(h1_imag, sign);

	tmp1 = _mm256_mul_pd(h1_imag, x1);
384 385
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5));
386 387 388 389
#else
	x1 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5));
#endif
	tmp2 = _mm256_mul_pd(h1_imag, x2);
390 391
#ifdef __ELPA_USE_FMA__
	x2 = _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5));
392 393 394 395
#else
	x2 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5));
#endif
	tmp3 = _mm256_mul_pd(h1_imag, x3);
396 397
#ifdef __ELPA_USE_FMA__
	x3 = _mm256_FMADDSUB_pd(h1_real, x3, _mm256_shuffle_pd(tmp3, tmp3, 0x5));
398 399 400 401
#else
	x3 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x3), _mm256_shuffle_pd(tmp3, tmp3, 0x5));
#endif
	tmp4 = _mm256_mul_pd(h1_imag, x4);
402 403
#ifdef __ELPA_USE_FMA__
	x4 = _mm256_FMADDSUB_pd(h1_real, x4, _mm256_shuffle_pd(tmp4, tmp4, 0x5));
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
#else
	x4 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x4), _mm256_shuffle_pd(tmp4, tmp4, 0x5));
#endif

	q1 = _mm256_load_pd(&q_dbl[0]);
	q2 = _mm256_load_pd(&q_dbl[4]);
	q3 = _mm256_load_pd(&q_dbl[8]);
	q4 = _mm256_load_pd(&q_dbl[12]);

	q1 = _mm256_add_pd(q1, x1);
	q2 = _mm256_add_pd(q2, x2);
	q3 = _mm256_add_pd(q3, x3);
	q4 = _mm256_add_pd(q4, x4);

	_mm256_store_pd(&q_dbl[0], q1);
	_mm256_store_pd(&q_dbl[4], q2);
	_mm256_store_pd(&q_dbl[8], q3);
	_mm256_store_pd(&q_dbl[12], q4);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);
		q3 = _mm256_load_pd(&q_dbl[(2*i*ldq)+8]);
		q4 = _mm256_load_pd(&q_dbl[(2*i*ldq)+12]);

		tmp1 = _mm256_mul_pd(h1_imag, x1);
434 435
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_add_pd(q1, _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
436 437 438 439
#else
		q1 = _mm256_add_pd(q1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, x2);
440 441
#ifdef __ELPA_USE_FMA__
		q2 = _mm256_add_pd(q2, _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
442
#else
443 444 445
		q2 = _mm256_add_pd(q2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
		tmp3 = _mm256_mul_pd(h1_imag, x3);
446 447
#ifdef __ELPA_USE_FMA__
		q3 = _mm256_add_pd(q3, _mm256_FMADDSUB_pd(h1_real, x3, _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
448
#else
449 450 451
		q3 = _mm256_add_pd(q3, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x3), _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
#endif
		tmp4 = _mm256_mul_pd(h1_imag, x4);
452 453
#ifdef __ELPA_USE_FMA__
		q4 = _mm256_add_pd(q4, _mm256_FMADDSUB_pd(h1_real, x4, _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
454 455 456 457 458 459 460 461 462 463 464
#else
		q4 = _mm256_add_pd(q4, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x4), _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
#endif

		_mm256_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+4], q2);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+8], q3);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+12], q4);
	}
}

Andreas Marek's avatar
Andreas Marek committed
465
static __forceinline void hh_trafo_complex_kernel_4_AVX_1hv(double complex* q, double complex* hh, int nb, int ldq)
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m256d x1, x2;
	__m256d q1, q2;
	__m256d h1_real, h1_imag;
	__m256d tmp1, tmp2;
	int i=0;

	__m256d sign = (__m256d)_mm256_set_epi64x(0x8000000000000000, 0x8000000000000000, 0x8000000000000000, 0x8000000000000000);

	x1 = _mm256_load_pd(&q_dbl[0]);
	x2 = _mm256_load_pd(&q_dbl[4]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);
485
#ifndef __ELPA_USE_FMA__
486 487 488 489 490 491 492 493
		// conjugate
		h1_imag = _mm256_xor_pd(h1_imag, sign);
#endif

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);

		tmp1 = _mm256_mul_pd(h1_imag, q1);
494 495
#ifdef __ELPA_USE_FMA__
		x1 = _mm256_add_pd(x1, _mm256_FMSUBADD_pd(h1_real, q1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
496 497 498 499
#else
		x1 = _mm256_add_pd(x1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, q2);
500 501
#ifdef __ELPA_USE_FMA__
		x2 = _mm256_add_pd(x2, _mm256_FMSUBADD_pd(h1_real, q2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
502 503 504 505 506 507 508 509 510 511 512
#else
		x2 = _mm256_add_pd(x2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
	}

	h1_real = _mm256_broadcast_sd(&hh_dbl[0]);
	h1_imag = _mm256_broadcast_sd(&hh_dbl[1]);
	h1_real = _mm256_xor_pd(h1_real, sign);
	h1_imag = _mm256_xor_pd(h1_imag, sign);

	tmp1 = _mm256_mul_pd(h1_imag, x1);
513 514
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5));
515 516 517 518
#else
	x1 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5));
#endif
	tmp2 = _mm256_mul_pd(h1_imag, x2);
519 520
#ifdef __ELPA_USE_FMA__
	x2 = _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5));
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
#else
	x2 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5));
#endif

	q1 = _mm256_load_pd(&q_dbl[0]);
	q2 = _mm256_load_pd(&q_dbl[4]);

	q1 = _mm256_add_pd(q1, x1);
	q2 = _mm256_add_pd(q2, x2);

	_mm256_store_pd(&q_dbl[0], q1);
	_mm256_store_pd(&q_dbl[4], q2);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);

		tmp1 = _mm256_mul_pd(h1_imag, x1);
543 544
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_add_pd(q1, _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
545 546 547 548
#else
		q1 = _mm256_add_pd(q1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, x2);
549 550
#ifdef __ELPA_USE_FMA__
		q2 = _mm256_add_pd(q2, _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
551 552 553 554 555 556 557 558
#else
		q2 = _mm256_add_pd(q2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif

		_mm256_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+4], q2);
	}
}