test.F90 14.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
#include "config-f90.h"

! Define one of TEST_REAL or TEST_COMPLEX
! Define one of TEST_SINGLE or TEST_DOUBLE
! Define one of TEST_SOLVER_1STAGE or TEST_SOLVER_2STAGE
! Define TEST_GPU \in [0, 1]
49
! Define either TEST_ALL_KERNELS or a TEST_KERNEL \in [any valid kernel]
50
51
52
53
54
55
56
57
58
59
60
61
62

#if !(defined(TEST_REAL) ^ defined(TEST_COMPLEX))
error: define exactly one of TEST_REAL or TEST_COMPLEX
#endif

#if !(defined(TEST_SINGLE) ^ defined(TEST_DOUBLE))
error: define exactly one of TEST_SINGLE or TEST_DOUBLE
#endif

#if !(defined(TEST_SOLVER_1STAGE) ^ defined(TEST_SOLVER_2STAGE))
error: define exactly one of TEST_SOLVER_1STAGE or TEST_SOLVER_2STAGE
#endif

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#ifdef TEST_SOLVER_1STAGE
#ifdef TEST_ALL_KERNELS
error: TEST_ALL_KERNELS cannot be defined for TEST_SOLVER_1STAGE
#endif
#ifdef TEST_KERNEL
error: TEST_KERNEL cannot be defined for TEST_SOLVER_1STAGE
#endif
#endif

#ifdef TEST_SOLVER_2STAGE
#if !(defined(TEST_KERNEL) ^ defined(TEST_ALL_KERNELS))
error: define either TEST_ALL_KERNELS or a valid TEST_KERNEL
#endif
#endif


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#ifdef TEST_SINGLE
#  define EV_TYPE real(kind=C_FLOAT)
#  ifdef TEST_REAL
#    define MATRIX_TYPE real(kind=C_FLOAT)
#  else
#    define MATRIX_TYPE complex(kind=C_FLOAT_COMPLEX)
#  endif
#else
#  define EV_TYPE real(kind=C_DOUBLE)
#  ifdef TEST_REAL
#    define MATRIX_TYPE real(kind=C_DOUBLE)
#  else
#    define MATRIX_TYPE complex(kind=C_DOUBLE_COMPLEX)
#  endif
#endif

95
96
97
98
99
100
101
#ifdef TEST_REAL
#define KERNEL_KEY "real_kernel"
#endif
#ifdef TEST_COMPLEX
#define KERNEL_KEY "complex_kernel"
#endif

102
103
104
105
#include "assert.h"

program test
   use elpa
106
107
108
109
110
111
112

   use test_util
   use test_setup_mpi
   use test_prepare_matrix
   use test_read_input_parameters
   use test_blacs_infrastructure
   use test_check_correctness
Pavel Kus's avatar
Pavel Kus committed
113
   use test_analytic
114
115
116
117
118
119
120
121
122
123
124
125
126
127

   implicit none

   ! matrix dimensions
   integer :: na, nev, nblk

   ! mpi
   integer :: myid, nprocs
   integer :: na_cols, na_rows  ! local matrix size
   integer :: np_cols, np_rows  ! number of MPI processes per column/row
   integer :: my_prow, my_pcol  ! local MPI task position (my_prow, my_pcol) in the grid (0..np_cols -1, 0..np_rows -1)
   integer :: mpierr

   ! blacs
Pavel Kus's avatar
Pavel Kus committed
128
   integer :: my_blacs_ctxt, sc_desc(9), info, nprow, npcol, adjusted_na
129
130
131
132
133
134
135

   ! The Matrix
   MATRIX_TYPE, allocatable :: a(:,:), as(:,:)
   ! eigenvectors
   MATRIX_TYPE, allocatable :: z(:,:)
   ! eigenvalues
   EV_TYPE, allocatable :: ev(:)
136
137
138
139
140
141
142
143
144
145
146
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
   EV_TYPE, allocatable :: d(:), sd(:), ev_analytic(:), ds(:), sds(:)
   EV_TYPE              :: diagonalELement, subdiagonalElement, tmp, maxerr
#ifdef TEST_DOUBLE
   EV_TYPE, parameter   :: pi = 3.141592653589793238462643383279_rk8
#else
   EV_TYPE, parameter   :: pi = 3.1415926535897932_rk4
#endif
   integer              :: loctmp ,rowLocal, colLocal, j,ii
#endif

147

148
   integer :: error, status
149
150
151

   type(output_t) :: write_to_file
   class(elpa_t), pointer :: e
152
#ifdef TEST_ALL_KERNELS
153
   integer :: i
154
#endif
155
   integer :: kernel
156

157
158
159
#if defined(TEST_COMPLEX) && defined(__SOLVE_TRIDIAGONAL)
   stop 77
#endif
160
   call read_input_parameters_traditional(na, nev, nblk, write_to_file)
Pavel Kus's avatar
Pavel Kus committed
161

162
163
164
165
166
167
168
169
   call setup_mpi(myid, nprocs)

   do np_cols = NINT(SQRT(REAL(nprocs))),2,-1
      if(mod(nprocs,np_cols) == 0 ) exit
   enddo

   np_rows = nprocs/np_cols

Pavel Kus's avatar
Pavel Kus committed
170
171
172
173
174
175
176
177
178
179
180
181
182
#ifdef TEST_MATRIX_ANALYTIC
   adjusted_na = 1
   do while (adjusted_na < na)
     adjusted_na = adjusted_na * 2
   end do
   if (adjusted_na > na) then
     na = adjusted_na
     if(myid == 0) then
       print *, 'At the moment, analytic test works for sizes of matrix of powers of two only. na changed to ', na
     end if
   end if
#endif
 
183
184
185
186
187
188
189
190
191
   if (myid == 0) then
     print '((a,i0))', 'Matrix size: ', na
     print '((a,i0))', 'Num eigenvectors: ', nev
     print '((a,i0))', 'Blocksize: ', nblk
     print '((a,i0))', 'Num MPI proc: ', nprocs
     print '(3(a,i0))','Number of processor rows=',np_rows,', cols=',np_cols,', total=',nprocs
     print *,''
   endif

192
193
194
195
196
197
   call set_up_blacsgrid(mpi_comm_world, my_blacs_ctxt, np_rows, np_cols, &
                         nprow, npcol, my_prow, my_pcol)

   call set_up_blacs_descriptor(na, nblk, my_prow, my_pcol, np_rows, np_cols, &
                                na_rows, na_cols, sc_desc, my_blacs_ctxt, info)

Pavel Kus's avatar
Pavel Kus committed
198
199
200
201
   allocate(a (na_rows,na_cols))
#ifdef TEST_MATRIX_RANDOM
   allocate(as(na_rows,na_cols))
#endif
202
203
204
   allocate(z (na_rows,na_cols))
   allocate(ev(na))

205
206
207
208
209
210
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
   allocate(d (na), ds(na))
   allocate(sd (na), sds(na))
   allocate(ev_analytic(na))
#endif

211
212
213
214
   a(:,:) = 0.0
   z(:,:) = 0.0
   ev(:) = 0.0

215
#ifdef __EIGENVECTORS
Pavel Kus's avatar
Pavel Kus committed
216
217
218
#ifdef TEST_MATRIX_ANALYTIC
   call prepare_matrix_analytic(na, a, nblk, myid, np_rows, np_cols, my_prow, my_pcol)
#else
219
   call prepare_matrix(na, myid, sc_desc, a, z, as)
220
#endif
Pavel Kus's avatar
Pavel Kus committed
221
#endif
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
   ! set up simple toeplitz matrix
#ifdef TEST_DOUBLE
   diagonalElement = 0.45_rk8
   subdiagonalElement =  0.78_rk8
#else
   diagonalElement = 0.45_rk4
   subdiagonalElement =  0.78_rk4
#endif

   d(:) = diagonalElement
   sd(:) = subdiagonalElement

   ! set up the diagonal and subdiagonals (for general solver test)
   do ii=1, na ! for diagonal elements
     if (map_global_array_index_to_local_index(ii, ii, rowLocal, colLocal, nblk, np_rows, np_cols, my_prow, my_pcol)) then
       a(rowLocal,colLocal) = diagonalElement
     endif
   enddo
   do ii=1, na-1
     if (map_global_array_index_to_local_index(ii, ii+1, rowLocal, colLocal, nblk, np_rows, np_cols, my_prow, my_pcol)) then
       a(rowLocal,colLocal) = subdiagonalElement
     endif
   enddo

   do ii=2, na
     if (map_global_array_index_to_local_index(ii, ii-1, rowLocal, colLocal, nblk, np_rows, np_cols, my_prow, my_pcol)) then
       a(rowLocal,colLocal) = subdiagonalElement
     endif
   enddo
   ds = d
   sds = sd
   as = a
#endif
257
258
259
260
261
262
263
264

   if (elpa_init(CURRENT_API_VERSION) /= ELPA_OK) then
     print *, "ELPA API version not supported"
     stop 1
   endif

   e => elpa_allocate()

265
266
267
268
269
270
271
272
273
274
   call e%set("na", na, error)
   assert_elpa_ok(error)
   call e%set("nev", nev, error)
   assert_elpa_ok(error)
   call e%set("local_nrows", na_rows, error)
   assert_elpa_ok(error)
   call e%set("local_ncols", na_cols, error)
   assert_elpa_ok(error)
   call e%set("nblk", nblk, error)
   assert_elpa_ok(error)
275
276

#ifdef WITH_MPI
277
278
279
280
281
282
   call e%set("mpi_comm_parent", MPI_COMM_WORLD, error)
   assert_elpa_ok(error)
   call e%set("process_row", my_prow, error)
   assert_elpa_ok(error)
   call e%set("process_col", my_pcol, error)
   assert_elpa_ok(error)
283
#endif
284

Andreas Marek's avatar
Andreas Marek committed
285
286
   call e%set("timings",1)

287
288
289
290
291
292
293
   assert_elpa_ok(e%setup())

#ifdef TEST_SOLVER_1STAGE
   call e%set("solver", ELPA_SOLVER_1STAGE)
#else
   call e%set("solver", ELPA_SOLVER_2STAGE)
#endif
294
   assert_elpa_ok(error)
295

296
297
   call e%set("gpu", TEST_GPU, error)
   assert_elpa_ok(error)
298

299
300
301
#ifdef TEST_ALL_KERNELS
   do i = 0, elpa_option_cardinality(KERNEL_KEY)
     kernel = elpa_option_enumerate(KERNEL_KEY, i)
302
#endif
303
#ifdef TEST_KERNEL
304
     kernel = TEST_KERNEL
305
#endif
306
307

#ifdef TEST_SOLVER_2STAGE
308
     call e%set(KERNEL_KEY, kernel, error)
309
310
311
#ifdef TEST_KERNEL
     assert_elpa_ok(error)
#else
312
313
314
     if (error /= ELPA_OK) then
       cycle
     endif
315
#endif
316
     if (myid == 0) print *, elpa_int_value_to_string(KERNEL_KEY, kernel), " kernel"
317
318
319

     call e%timer_start(elpa_int_value_to_string(KERNEL_KEY, kernel))
#else
320
321

#ifdef __EIGENVECTORS
322
     call e%timer_start("e%eigenvectors()")
323
324
325
326
327
328
329
#endif
#ifdef __EIGENVALUES
     call e%timer_start("e%eigenvalues()")
#endif
#ifdef __SOLVE_TRIDIAGONAL
     call e%timer_start("e%solve_tridiagonal()")
#endif
330
#endif
331

332
     ! The actual solve step
333
#ifdef __EIGENVECTORS
334
     call e%eigenvectors(a, ev, z, error)
335
336
337
338
339
340
341
342
343
#endif
#ifdef __EIGENVALUES
     call e%eigenvalues(a, ev, error)
#endif
#if defined(__SOLVE_TRIDIAGONAL) && !defined(TEST_COMPLEX)
     call e%solve_tridiagonal(d, sd, z, error)
     ev(:) = d(:)
#endif

344
345
     assert_elpa_ok(error)

346
347
348
#ifdef TEST_SOLVER_2STAGE
     call e%timer_stop(elpa_int_value_to_string(KERNEL_KEY, kernel))
#else
349
#ifdef __EIGENVECTORS
350
     call e%timer_stop("e%eigenvectors()")
351
352
353
354
355
356
357
#endif
#ifdef __EIGENVALUES
     call e%timer_stop("e%eigenvalues()")
#endif
#ifdef __SOLVE_TRIDIAGONAL
     call e%timer_stop("e%solve_tridiagonal()")
#endif
358
359
#endif

360
     if (myid .eq. 0) then
361
362
363
#ifdef TEST_SOLVER_2STAGE
       call e%print_times(elpa_int_value_to_string(KERNEL_KEY, kernel))
#else
364
#ifdef __EIGENVECTORS
365
       call e%print_times("e%eigenvectors()")
366
367
368
369
370
371
372
#endif
#ifdef __EIGENVALUES
       call e%print_times("e%eigenvalues()")
#endif
#ifdef __SOLVE_TRIDIAGONAL
     call e%print_times("e%solve_tridiagonal()")
#endif
373
#endif
374
     endif
375
376

#ifdef __EIGENVECTORS
Pavel Kus's avatar
Pavel Kus committed
377
378
379
#ifdef TEST_MATRIX_ANALYTIC
     status = check_correctness_analytic(na, nev, ev, z, nblk, myid, np_rows, np_cols, my_prow, my_pcol)
#else
380
     status = check_correctness(na, nev, as, z, ev, sc_desc, myid)
Pavel Kus's avatar
Pavel Kus committed
381
#endif     
382
     if (status /= 0) then
Andreas Marek's avatar
Andreas Marek committed
383
       if (myid == 0) print *, "Result incorrect!"
384
385
       call exit(status)
     endif
Andreas Marek's avatar
Andreas Marek committed
386
     if (myid == 0) print *, ""
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#endif
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
     status = 0
     ! analytic solution
     do ii=1, na
#ifdef TEST_DOUBLE
       ev_analytic(ii) = diagonalElement + 2.0 * subdiagonalElement *cos( pi*real(ii,kind=rk8)/ real(na+1,kind=rk8) )
#else
       ev_analytic(ii) = diagonalElement + 2.0 * subdiagonalElement *cos( pi*real(ii,kind=rk4)/ real(na+1,kind=rk4) )
#endif
     enddo

     ! sort analytic solution:

     ! this hack is neihter elegant, nor optimized: for huge matrixes it might be expensive
     ! a proper sorting algorithmus might be implemented here

     tmp    = minval(ev_analytic)
     loctmp = minloc(ev_analytic, 1)

     ev_analytic(loctmp) = ev_analytic(1)
     ev_analytic(1) = tmp

     do ii=2, na
       tmp = ev_analytic(ii)
       do j= ii, na
         if (ev_analytic(j) .lt. tmp) then
           tmp    = ev_analytic(j)
           loctmp = j
         endif
       enddo
       ev_analytic(loctmp) = ev_analytic(ii)
       ev_analytic(ii) = tmp
     enddo

     ! compute a simple error max of eigenvalues
     maxerr = 0.0
     maxerr = maxval( (ev(:) - ev_analytic(:))/ev_analytic(:) , 1)

#ifdef TEST_DOUBLE
     if (maxerr .gt. 8.e-13) then
#else
     if (maxerr .gt. 8.e-4) then
#endif
       status = 1
       if (myid .eq. 0) then
         print *,"Eigenvalues differ from analytic solution: maxerr = ",maxerr
       endif
     endif

     if (status /= 0) then
       call exit(status)
     endif
#ifdef __SOLVE_TRIDIAGONAL
     ! check eigenvectors
     status = check_correctness(na, nev, as, z, ev, sc_desc, myid)
     if (status /= 0) then
       if (myid == 0) print *, "Result incorrect!"
       call exit(status)
     endif
     if (myid == 0) print *, ""
#endif

#endif
451
452

#ifdef TEST_ALL_KERNELS
Pavel Kus's avatar
Pavel Kus committed
453
454
455
#ifdef TEST_MATRIX_ANALYTIC
     call prepare_matrix_analytic(na, a, nblk, myid, np_rows, np_cols, my_prow, my_pcol)
#else
456
     a(:,:) = as(:,:)
Pavel Kus's avatar
Pavel Kus committed
457
#endif
458
459
460
461
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
     d = ds
     sd = sds
#endif
462
463
   end do
#endif
Andreas Marek's avatar
Andreas Marek committed
464

465
466
467
468
   call elpa_deallocate(e)
   call elpa_uninit()

   deallocate(a)
Pavel Kus's avatar
Pavel Kus committed
469
#ifdef TEST_MATRIX_RANDOM
470
   deallocate(as)
Pavel Kus's avatar
Pavel Kus committed
471
#endif
472
473
474
   deallocate(z)
   deallocate(ev)

475
476
477
478
479
480
#ifdef __EIGENVALUES
   deallocate(d, ds)
   deallocate(sd, sds)
   deallocate(ev_analytic)
#endif

481
482
483
484
485
486
487
#ifdef WITH_MPI
   call blacs_gridexit(my_blacs_ctxt)
   call mpi_finalize(mpierr)
#endif

   call exit(status)

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
#if defined(__EIGENVALUES) || defined(__SOLVE_TRIDIAGONAL)
   contains

     !Processor col for global col number
     pure function pcol(global_col, nblk, np_cols) result(local_col)
       implicit none
       integer(kind=c_int), intent(in) :: global_col, nblk, np_cols
       integer(kind=c_int)             :: local_col
       local_col = MOD((global_col-1)/nblk,np_cols)
     end function

     !Processor row for global row number
     pure function prow(global_row, nblk, np_rows) result(local_row)
       implicit none
       integer(kind=c_int), intent(in) :: global_row, nblk, np_rows
       integer(kind=c_int)             :: local_row
       local_row = MOD((global_row-1)/nblk,np_rows)
     end function

     function map_global_array_index_to_local_index(iGLobal, jGlobal, iLocal, jLocal , nblk, np_rows, np_cols, my_prow, my_pcol) &
       result(possible)
       implicit none

       integer(kind=c_int)              :: pi, pj, li, lj, xi, xj
       integer(kind=c_int), intent(in)  :: iGlobal, jGlobal, nblk, np_rows, np_cols, my_prow, my_pcol
       integer(kind=c_int), intent(out) :: iLocal, jLocal
       logical                       :: possible

       possible = .true.
       iLocal = 0
       jLocal = 0

       pi = prow(iGlobal, nblk, np_rows)

       if (my_prow .ne. pi) then
         possible = .false.
         return
       endif

       pj = pcol(jGlobal, nblk, np_cols)

       if (my_pcol .ne. pj) then
         possible = .false.
         return
       endif
       li = (iGlobal-1)/(np_rows*nblk) ! block number for rows
       lj = (jGlobal-1)/(np_cols*nblk) ! block number for columns

       xi = mod( (iGlobal-1),nblk)+1   ! offset in block li
       xj = mod( (jGlobal-1),nblk)+1   ! offset in block lj

       iLocal = li * nblk + xi
       jLocal = lj * nblk + xj

     end function
#endif
544
end program