elpa_c_interface.F90 15.4 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
!    http://elpa.rzg.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".

#include "config-f90.h"
Andreas Marek's avatar
Andreas Marek committed
50
  !c> #include <complex.h>
Andreas Marek's avatar
Andreas Marek committed
51

52
53
54
55
56
57
58
59
  !c> /*! \brief C interface to create the MPI communicators for ELPA
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
Andreas Marek's avatar
Andreas Marek committed
60
61
62
63
64
65
66
  !c> int elpa_get_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
  function get_elpa_row_col_comms_wrapper(mpi_comm_world, my_prow, my_pcol, &
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="elpa_get_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

Andreas Marek's avatar
Andreas Marek committed
67
    implicit none
Andreas Marek's avatar
Andreas Marek committed
68
69
70
71
72
73
74
75
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  !c>  /*! \brief C interface to solve the real eigenvalue problem with 1-stage solver
  !c>  *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c>*/
98
99
100
  !c> int elpa_solve_evp_real_stage1(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
  function solve_elpa1_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
Andreas Marek's avatar
Andreas Marek committed
101
102
103
104
105
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage")

    use, intrinsic :: iso_c_binding
    use elpa1, only : solve_evp_real

Andreas Marek's avatar
Andreas Marek committed
106
    implicit none
Andreas Marek's avatar
Andreas Marek committed
107
    integer(kind=c_int)                    :: success
108
109
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
Andreas Marek's avatar
Andreas Marek committed
110
111
112

    logical                                :: successFortran

113
    successFortran = solve_evp_real(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
114
115
116
117
118
119
120
121

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  !c> /*! \brief C interface to solve the complex eigenvalue problem with 1-stage solver
  !c> *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
Andreas Marek's avatar
Andreas Marek committed
144
  !c> int elpa_solve_evp_complex_stage1(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
145
146
  function solve_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
Andreas Marek's avatar
Andreas Marek committed
147
148
149
150
151
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage")

    use, intrinsic :: iso_c_binding
    use elpa1, only : solve_evp_complex

Andreas Marek's avatar
Andreas Marek committed
152
    implicit none
Andreas Marek's avatar
Andreas Marek committed
153
    integer(kind=c_int)                    :: success
154
155
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
Andreas Marek's avatar
Andreas Marek committed
156
157
158
159
    real(kind=c_double)                    :: ev(1:na)

    logical                                :: successFortran

160
    successFortran = solve_evp_complex(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
161
162
163
164
165
166
167
168

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
  !c> /*! \brief C interface to solve the real eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
Andreas Marek's avatar
Andreas Marek committed
194
  !c> int elpa_solve_evp_real_stage2(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
195
196
  function solve_elpa2_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
Andreas Marek's avatar
Andreas Marek committed
197
198
199
200
201
202
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage")

    use, intrinsic :: iso_c_binding
    use elpa2, only : solve_evp_real_2stage

Andreas Marek's avatar
Andreas Marek committed
203
    implicit none
Andreas Marek's avatar
Andreas Marek committed
204
    integer(kind=c_int)                    :: success
205
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
206
207
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_REAL_ELPA_KERNEL_API, useQR
208
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
Andreas Marek's avatar
Andreas Marek committed
209
210
211
212
213
214
215
216
217
218
219



    logical                                :: successFortran, useQRFortran

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

Andreas Marek's avatar
Andreas Marek committed
220
221
    successFortran = solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
Andreas Marek's avatar
Andreas Marek committed
222
223
224
225
226
227
228
229
230
231
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

  !c> /*! \brief C interface to solve the complex eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
Andreas Marek's avatar
Andreas Marek committed
258
  !c> int elpa_solve_evp_complex_stage2(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
259
260
  function solve_elpa2_evp_complex_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
Andreas Marek's avatar
Andreas Marek committed
261
262
263
264
265
266
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage")

    use, intrinsic :: iso_c_binding
    use elpa2, only : solve_evp_complex_2stage

Andreas Marek's avatar
Andreas Marek committed
267
    implicit none
Andreas Marek's avatar
Andreas Marek committed
268
    integer(kind=c_int)                    :: success
269
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
270
271
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
272
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
Andreas Marek's avatar
Andreas Marek committed
273
274
275
    real(kind=c_double)                    :: ev(1:na)
    logical                                :: successFortran

276
    successFortran = solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
Andreas Marek's avatar
Andreas Marek committed
277
278
279
280
281
282
283
284
285
286
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function