elpa_c_interface.F90 45.8 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
Andreas Marek's avatar
Andreas Marek committed
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
Andreas Marek's avatar
Andreas Marek committed
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
Andreas Marek's avatar
Andreas Marek committed
14
15
16
17
18
19
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
20
!    http://elpa.mpcdf.mpg.de/
Andreas Marek's avatar
Andreas Marek committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
42
! Author: Andreas Marek, MCPDF
Andreas Marek's avatar
Andreas Marek committed
43
#include "config-f90.h"
Andreas Marek's avatar
Andreas Marek committed
44
  !c> #include <complex.h>
Andreas Marek's avatar
Andreas Marek committed
45

46
  !c> /*! \brief C old, deprecated interface, will be deleted. Use "elpa_get_communicators"
47
48
49
50
51
52
53
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
54
  !c> int get_elpa_row_col_comms(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
55
  function get_elpa_row_col_comms_wrapper_c_name1(mpi_comm_world, my_prow, my_pcol, &
Andreas Marek's avatar
Andreas Marek committed
56
                                          mpi_comm_rows, mpi_comm_cols)     &
57
                                          result(mpierr) bind(C,name="get_elpa_row_col_comms")
Andreas Marek's avatar
Andreas Marek committed
58
59
60
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

Andreas Marek's avatar
Andreas Marek committed
61
    implicit none
Andreas Marek's avatar
Andreas Marek committed
62
63
64
65
66
67
68
69
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function
70
71
  !c> #include <complex.h>

72
  !c> /*! \brief C old, deprecated interface, will be deleted. Use "elpa_get_communicators"
73
74
75
76
77
78
79
80
81
82
83
84
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
  !c> int get_elpa_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
  function get_elpa_row_col_comms_wrapper_c_name2(mpi_comm_world, my_prow, my_pcol, &
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="get_elpa_communicators")
    use, intrinsic :: iso_c_binding
85
    use elpa1, only : get_elpa_communicators
86
87
88
89
90
91

    implicit none
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

92
    mpierr = get_elpa_communicators(mpi_comm_world, my_prow, my_pcol, &
93
94
95
96
                                    mpi_comm_rows, mpi_comm_cols)

  end function

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  !c> #include <complex.h>

  !c> /*! \brief C interface to create ELPA communicators
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
  !c> int elpa_get_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
  function elpa_get_communicators_wrapper_c(mpi_comm_world, my_prow, my_pcol, &
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="elpa_get_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : elpa_get_communicators

    implicit none
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = elpa_get_communicators(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function
123
124


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  !c>  /*! \brief C interface to solve the real eigenvalue problem with 1-stage solver
  !c>  *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c>*/
147
  !c> int elpa_solve_evp_real_1stage(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
148
149
  function solve_elpa1_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
Andreas Marek's avatar
Andreas Marek committed
150
151
152
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage")

    use, intrinsic :: iso_c_binding
153
    use elpa1, only : elpa_solve_evp_real_1stage
Andreas Marek's avatar
Andreas Marek committed
154

Andreas Marek's avatar
Andreas Marek committed
155
    implicit none
Andreas Marek's avatar
Andreas Marek committed
156
    integer(kind=c_int)                    :: success
157
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
158
    real(kind=c_double)                    :: ev(1:na)
159
#ifdef USE_ASSUMED_SIZE
160
161
162
163
    real(kind=c_double)                    :: a(lda,*), q(ldq,*)
#else
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
Andreas Marek's avatar
Andreas Marek committed
164
165
    logical                                :: successFortran

166
    successFortran = elpa_solve_evp_real_1stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
167
168
169
170
171
172
173
174

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
175
176


177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
  !c> /*! \brief C interface to solve the complex eigenvalue problem with 1-stage solver
  !c> *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
199
  !c> int elpa_solve_evp_complex_1stage(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
200
201
  function solve_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
Andreas Marek's avatar
Andreas Marek committed
202
203
204
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage")

    use, intrinsic :: iso_c_binding
205
    use elpa1, only : elpa_solve_evp_complex_1stage
Andreas Marek's avatar
Andreas Marek committed
206

Andreas Marek's avatar
Andreas Marek committed
207
    implicit none
Andreas Marek's avatar
Andreas Marek committed
208
    integer(kind=c_int)                    :: success
209
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
210
#ifdef USE_ASSUMED_SIZE
211
212
    complex(kind=c_double_complex)         :: a(lda,*), q(ldq,*)
#else
213
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
214
#endif
Andreas Marek's avatar
Andreas Marek committed
215
216
217
218
    real(kind=c_double)                    :: ev(1:na)

    logical                                :: successFortran

219
    successFortran = elpa_solve_evp_complex_1stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
220
221
222
223
224
225
226
227

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  !c> /*! \brief C interface to solve the real eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
253
  !c> int elpa_solve_evp_real_2stage(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
254
255
  function solve_elpa2_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
Andreas Marek's avatar
Andreas Marek committed
256
257
258
259
260
261
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage")

    use, intrinsic :: iso_c_binding
    use elpa2, only : solve_evp_real_2stage

Andreas Marek's avatar
Andreas Marek committed
262
    implicit none
Andreas Marek's avatar
Andreas Marek committed
263
    integer(kind=c_int)                    :: success
264
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
265
266
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_REAL_ELPA_KERNEL_API, useQR
267
    real(kind=c_double)                    :: ev(1:na)
268
#ifdef USE_ASSUMED_SIZE
269
270
271
272
    real(kind=c_double)                    :: a(lda,*), q(ldq,*)
#else
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
Andreas Marek's avatar
Andreas Marek committed
273
274
275
276
277
278
279
280
    logical                                :: successFortran, useQRFortran

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

Andreas Marek's avatar
Andreas Marek committed
281
282
    successFortran = solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
Andreas Marek's avatar
Andreas Marek committed
283
284
285
286
287
288
289
290
291
292
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

  !c> /*! \brief C interface to solve the complex eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
314
  !c> *  \param THIS_COMPLEX_ELPA_KERNEL_API  specify used ELPA2 kernel via API
315
316
317
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
318
  !c> int elpa_solve_evp_complex_2stage(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
319
320
  function solve_elpa2_evp_complex_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
Andreas Marek's avatar
Andreas Marek committed
321
322
323
324
325
326
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage")

    use, intrinsic :: iso_c_binding
    use elpa2, only : solve_evp_complex_2stage

Andreas Marek's avatar
Andreas Marek committed
327
    implicit none
Andreas Marek's avatar
Andreas Marek committed
328
    integer(kind=c_int)                    :: success
329
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
330
331
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
332
#ifdef USE_ASSUMED_SIZE
333
334
    complex(kind=c_double_complex)         :: a(lda,*), q(ldq,*)
#else
335
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
336
#endif
Andreas Marek's avatar
Andreas Marek committed
337
338
339
    real(kind=c_double)                    :: ev(1:na)
    logical                                :: successFortran

340
    successFortran = solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
Andreas Marek's avatar
Andreas Marek committed
341
342
343
344
345
346
347
348
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
  end function
  !c> /*! \brief C interface to driver function "elpa_solve_evp_real"
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *  \param method                      choose whether to use ELPA 1stage or 2stage solver
  !c> *                                     possible values: "1stage" => use ELPA 1stage solver
  !c> *                                                      "2stage" => use ELPA 2stage solver
  !c> *                                                       "auto"   => (at the moment) use ELPA 2stage solver
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
  !c> int elpa_solve_evp_real(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR, char *method);
  function elpa_solve_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
                                  THIS_REAL_ELPA_KERNEL_API, useQR, method)           &
                                  result(success) bind(C,name="elpa_solve_evp_real")

    use, intrinsic :: iso_c_binding
    use elpa, only : elpa_solve_evp_real

    implicit none
    integer(kind=c_int)                      :: success
    integer(kind=c_int), value, intent(in)   :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                                mpi_comm_all
    integer(kind=c_int), value, intent(in)   :: THIS_REAL_ELPA_KERNEL_API, useQR
    real(kind=c_double)                      :: ev(1:na)
#ifdef USE_ASSUMED_SIZE
    real(kind=c_double)                      :: a(lda,*), q(ldq,*)
#else
    real(kind=c_double)                      :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
    logical                                  :: successFortran, useQRFortran
    character(kind=c_char,len=1), intent(in) :: method(*)
    character(len=6)                         :: methodFortran
    integer(kind=c_int)                      :: charCount

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

    charCount = 1
    do
      if (method(charCount) == c_null_char) exit
      charCount = charCount + 1
    enddo
    charCount = charCount - 1

    if (charCount .ge. 1)  then
      methodFortran(1:charCount) = transfer(method(1:charCount), methodFortran)

      successFortran = elpa_solve_evp_real(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran, methodFortran)
    else
      successFortran = elpa_solve_evp_real(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)
    endif

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function


  !c> /*! \brief C interface to driver function "elpa_solve_evp_complex"
  !c> *
  !c> *  \param  na                           Order of matrix a
  !c> *  \param  nev                          Number of eigenvalues needed.
  !c> *                                       The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                            Distributed matrix for which eigenvalues are to be computed.
  !c> *                                       Distribution is like in Scalapack.
  !c> *                                       The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                           Leading dimension of a
  !c> *  \param ev(na)                        On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                             On output: Eigenvectors of a
  !c> *                                       Distribution is like in Scalapack.
  !c> *                                       Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                       even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                           Leading dimension of q
  !c> *  \param nblk                          blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                    distributed number of matrix columns
  !c> *  \param mpi_comm_rows                 MPI-Communicator for rows
  !c> *  \param mpi_comm_cols                 MPI-Communicator for columns
  !c> *  \param mpi_coll_all                  MPI communicator for the total processor set
  !c> *  \param THIS_COMPLEX_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param method                        choose whether to use ELPA 1stage or 2stage solver
  !c> *                                       possible values: "1stage" => use ELPA 1stage solver
  !c> *                                                        "2stage" => use ELPA 2stage solver
  !c> *                                                         "auto"   => (at the moment) use ELPA 2stage solver
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
  !c> int elpa_solve_evp_complex(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API, char *method);
  function elpa_solve_evp_complex_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
                                  THIS_COMPLEX_ELPA_KERNEL_API, method)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex")

    use, intrinsic :: iso_c_binding
    use elpa, only : elpa_solve_evp_complex

    implicit none
    integer(kind=c_int)                      :: success
    integer(kind=c_int), value, intent(in)   :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
                                                mpi_comm_all
    integer(kind=c_int), value, intent(in)   :: THIS_COMPLEX_ELPA_KERNEL_API
#ifdef USE_ASSUMED_SIZE
    complex(kind=c_double_complex)           :: a(lda,*), q(ldq,*)
#else
    complex(kind=c_double_complex)           :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
    real(kind=c_double)                      :: ev(1:na)
    character(kind=c_char,len=1), intent(in) :: method(*)
    character(len=6)                         :: methodFortran
    integer(kind=c_int)                      :: charCount

    logical                                  :: successFortran


    charCount = 1
    do
      if (method(charCount) == c_null_char) exit
      charCount = charCount + 1
    enddo
    charCount = charCount - 1

    if (charCount .ge. 1)  then
      methodFortran(1:charCount) = transfer(method(1:charCount), methodFortran)
      successFortran = elpa_solve_evp_complex(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API, methodFortran)
    else
      successFortran = elpa_solve_evp_complex(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)
    endif

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

Andreas Marek's avatar
Andreas Marek committed
515
516
  end function

Andreas Marek's avatar
Andreas Marek committed
517
518
  !c> /*! \brief  C interface to solve tridiagonal eigensystem with divide and conquer method
  !c> *\details
519
  !c>
Andreas Marek's avatar
Andreas Marek committed
520
521
522
523
524
525
526
527
528
529
530
531
532
  !c> *\param na                    Matrix dimension
  !c> *\param nev                   number of eigenvalues/vectors to be computed
  !c> *\param d                     array d(na) on input diagonal elements of tridiagonal matrix, on
  !c> *                             output the eigenvalues in ascending order
  !c> *\param e                     array e(na) on input subdiagonal elements of matrix, on exit destroyed
  !c> *\param q                     on exit : matrix q(ldq,matrixCols) contains the eigenvectors
  !c> *\param ldq                   leading dimension of matrix q
  !c> *\param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *\param matrixCols            columns of matrix q
  !c> *\param mpi_comm_rows         MPI communicator for rows
  !c> *\param mpi_comm_cols         MPI communicator for columns
  !c> *\param wantDebug             give more debug information if 1, else 0
  !c> *\result success              int 1 on success, else 0
533
534
535
536
537
538
539
540
541
542
543
544
  !c> */
  !c> int elpa_solve_tridi(int na, int nev, double *d, double *e, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_solve_tridi_wrapper(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
           result(success) bind(C,name="elpa_solve_tridi")

    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_solve_tridi

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, ldq, nblk, matrixCols,  mpi_comm_cols, mpi_comm_rows
    integer(kind=c_int), value             :: wantDebug
545
    real(kind=c_double)                    :: d(1:na), e(1:na)
546
#ifdef USE_ASSUMED_SIZE
547
548
549
550
    real(kind=c_double)                    :: q(ldq,*)
#else
    real(kind=c_double)                    :: q(1:ldq, 1:matrixCols)
#endif
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    logical                                :: successFortran, wantDebugFortran

    if (wantDebug .ne. 0) then
      wantDebugFortran = .true.
    else
      wantDebugFortran = .false.
    endif

    successFortran = elpa_solve_tridi(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

Andreas Marek's avatar
Andreas Marek committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
  !c> /*! \brief  C interface for elpa_mult_at_b_real: Performs C : = A**T * B
  !c> *        where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c> *                B is a (na,ncb) matrix
  !c> *                C is a (na,ncb) matrix where optionally only the upper or lower
  !c> *                  triangle may be computed
  !c> *\details
  !c> *\param  uplo_a               'U' if A is upper triangular
  !c> *                             'L' if A is lower triangular
  !c> *                             anything else if A is a full matrix
  !c> *                             Please note: This pertains to the original A (as set in the calling program)
  !c> *                                          whereas the transpose of A is used for calculations
  !c> *                             If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c> *                             i.e. it may contain arbitrary numbers
  !c> *\param uplo_c                'U' if only the upper diagonal part of C is needed
  !c> *                             'L' if only the upper diagonal part of C is needed
  !c> *                             anything else if the full matrix C is needed
  !c> *                             Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c> *                                           written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> *\param na                    Number of rows/columns of A, number of rows of B and C
  !c> *\param ncb                   Number of columns  of B and C
  !c> *\param a                     matrix a
  !c> *\param lda                   leading dimension of matrix a
  !c> *\param ldaCols               columns of matrix a
  !c> *\param b                     matrix b
  !c> *\param ldb                   leading dimension of matrix b
  !c> *\param ldbCols               columns of matrix b
  !c> *\param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *\param  mpi_comm_rows        MPI communicator for rows
  !c> *\param  mpi_comm_cols        MPI communicator for columns
  !c> *\param c                     matrix c
  !c> *\param ldc                   leading dimension of matrix c
  !c> *\param ldcCols               columns of matrix c
  !c> *\result success              int report success (1) or failure (0)
602
603
  !c> */

604
605
606
607
  !c> int elpa_mult_at_b_real(char uplo_a, char uplo_c, int na, int ncb, double *a, int lda, int ldaCols, double *b, int ldb, int ldbCols, int nlbk, int mpi_comm_rows, int mpi_comm_cols, double *c, int ldc, int ldcCols);
  function elpa_mult_at_b_real_wrapper(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                       nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols) &
                                       bind(C,name="elpa_mult_at_b_real") result(success)
608
609
610
611
612
613
    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_mult_at_b_real

    implicit none

    character(1,C_CHAR), value  :: uplo_a, uplo_c
614
615
    integer(kind=c_int), value  :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc, &
                                   ldaCols, ldbCols, ldcCols
616
    integer(kind=c_int)         :: success
617
#ifdef USE_ASSUMED_SIZE
618
    real(kind=c_double)         :: a(lda,*), b(ldb,*), c(ldc,*)
619
620
621
#else
    real(kind=c_double)         :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
622
623
    logical                     :: successFortran

624
625
    successFortran = elpa_mult_at_b_real(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, nblk, &
                                         mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)
626
627
628
629
630
631
632
633
634

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

Andreas Marek's avatar
Andreas Marek committed
635
636
637
638
639
640
  !c> /*! \brief C interface for elpa_mult_ah_b_complex: Performs C : = A**H * B
  !c> *        where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c> *                B is a (na,ncb) matrix
  !c> *                C is a (na,ncb) matrix where optionally only the upper or lower
  !c> *                  triangle may be computed
  !c> *\details
641
  !c>
Andreas Marek's avatar
Andreas Marek committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
  !c> *\param  uplo_a               'U' if A is upper triangular
  !c> *                             'L' if A is lower triangular
  !c> *                             anything else if A is a full matrix
  !c> *                             Please note: This pertains to the original A (as set in the calling program)
  !c> *                                          whereas the transpose of A is used for calculations
  !c> *                             If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c> *                             i.e. it may contain arbitrary numbers
  !c> *\param uplo_c                'U' if only the upper diagonal part of C is needed
  !c> *                             'L' if only the upper diagonal part of C is needed
  !c> *                             anything else if the full matrix C is needed
  !c> *                             Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c> *                                           written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> *\param na                    Number of rows/columns of A, number of rows of B and C
  !c> *\param ncb                   Number of columns  of B and C
  !c> *\param a                     matrix a
  !c> *\param lda                   leading dimension of matrix a
  !c> *\param ldaCols               columns of matrix a
  !c> *\param b                     matrix b
  !c> *\param ldb                   leading dimension of matrix b
  !c> *\param ldbCols               columns of matrix b
  !c> *\param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *\param  mpi_comm_rows        MPI communicator for rows
  !c> *\param  mpi_comm_cols        MPI communicator for columns
  !c> *\param c                     matrix c
  !c> *\param ldc                   leading dimension of matrix c
  !c> *\param ldcCols               columns of matrix c
  !c> *\result success              int reports success (1) or failure (0)
669
670
671
  !c> */

  !c> int elpa_mult_ah_b_complex(char uplo_a, char uplo_c, int na, int ncb, double complex *a, int lda, double complex *b, int ldb, int nblk, int mpi_comm_rows, int mpi_comm_cols, double complex *c, int ldc);
672
673
674
  function elpa_mult_ah_b_complex_wrapper( uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, nblk, &
                                           mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols) &
                                           result(success) bind(C,name="elpa_mult_ah_b_complex")
675
676
677
678
679
680
    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_mult_ah_b_complex

    implicit none

    character(1,C_CHAR), value     :: uplo_a, uplo_c
681
    integer(kind=c_int), value     :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc, ldaCols, ldbCols, ldcCols
682
    integer(kind=c_int)            :: success
683
#ifdef USE_ASSUMED_SIZE
684
    complex(kind=c_double_complex) :: a(lda,*), b(ldb,*), c(ldc,*)
685
686
687
#else
    complex(kind=c_double_complex) :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
688
689
    logical                        :: successFortran

690
691
    successFortran = elpa_mult_ah_b_complex(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, nblk, &
                                            mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)
692
693
694
695
696
697
698
699
700

    if (successFortran) then
      success = 1
    else
      success = 0
     endif

  end function

Andreas Marek's avatar
Andreas Marek committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
  !c> /*! \brief  C interface to elpa_invert_trm_real: Inverts a upper triangular matrix
  !c> *\details
  !c> *\param  na                   Order of matrix
  !c> *\param  a(lda,matrixCols)    Distributed matrix which should be inverted
  !c> *                             Distribution is like in Scalapack.
  !c> *                             Only upper triangle is needs to be set.
  !c> *                             The lower triangle is not referenced.
  !c> *\param  lda                  Leading dimension of a
  !c> *\param                       matrixCols  local columns of matrix a
  !c> *\param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
  !c> *\param  mpi_comm_rows        MPI communicator for rows
  !c> *\param  mpi_comm_cols        MPI communicator for columns
  !c> *\param wantDebug             int more debug information on failure if 1, else 0
  !c> *\result succes               int reports success (1) or failure (0)
715
716
717
718
719
720
721
722
723
724
725
726
727
  !c> */

  !c> int elpa_invert_trm_real(int na, double *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_invert_trm_real_wrapper(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
        result(success) bind(C,name="elpa_invert_trm_real")
   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_invert_trm_real

   implicit none

   integer(kind=c_int), value  :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols
   integer(kind=c_int), value  :: wantDebug
   integer(kind=c_int)         :: success
728
#ifdef USE_ASSUMED_SIZE
729
730
   real(kind=c_double)         :: a(lda,*)
#else
731
   real(kind=c_double)         :: a(lda,matrixCols)
732
#endif
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
   logical                     :: wantDebugFortran, successFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_invert_trm_real(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function

Andreas Marek's avatar
Andreas Marek committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
 !c> /*! \brief  C interface to elpa_invert_trm_complex: Inverts a complex upper triangular matrix
 !c> *\details
 !c> *\param  na                   Order of matrix
 !c> *\param  a(lda,matrixCols)    Distributed matrix which should be inverted
 !c> *                             Distribution is like in Scalapack.
 !c> *                             Only upper triangle is needs to be set.
 !c> *                             The lower triangle is not referenced.
 !c> *\param  lda                  Leading dimension of a
 !c> *\param                       matrixCols  local columns of matrix a
 !c> *\param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> *\param  mpi_comm_rows        MPI communicator for rows
 !c> *\param  mpi_comm_cols        MPI communicator for columns
 !c> *\param wantDebug             int more debug information on failure if 1, else 0
 !c> *\result succes               int reports success (1) or failure (0)
765
766
767
768
769
770
771
772
773
774
775
776
777
778
 !c> */

 !c> int elpa_invert_trm_complex(int na, double complex *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
 function elpa_invert_trm_complex_wrapper(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) result(success) &
   bind(C,name="elpa_invert_trm_complex")

   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_invert_trm_complex

   implicit none

   integer(kind=c_int), value     :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols
   integer(kind=c_int), value     :: wantDebug
   integer(kind=c_int)            :: success
779
#ifdef USE_ASSUMED_SIZE
780
781
   complex(kind=c_double_complex) :: a(lda, *)
#else
782
   complex(kind=c_double_complex) :: a(lda, matrixCols)
783
#endif
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
   logical                        :: successFortran, wantDebugFortran


   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_invert_trm_complex(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif
 end function

Andreas Marek's avatar
Andreas Marek committed
802
803
 !c> /*! \brief  elpa_cholesky_real: Cholesky factorization of a real symmetric matrix
 !c> *\details
804
 !c>
Andreas Marek's avatar
Andreas Marek committed
805
806
807
808
809
810
811
812
813
814
815
816
817
 !c> *\param  na                   Order of matrix
 !c> *\param  a(lda,matrixCols)    Distributed matrix which should be factorized.
 !c> *                             Distribution is like in Scalapack.
 !c> *                             Only upper triangle is needs to be set.
 !c> *                             On return, the upper triangle contains the Cholesky factor
 !c> *                             and the lower triangle is set to 0.
 !c> *\param  lda                  Leading dimension of a
 !c> *\param  matrixCols           local columns of matrix a
 !c> *\param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> *\param  mpi_comm_rows        MPI communicator for rows
 !c> *\param  mpi_comm_cols        MPI communicator for columns
 !c> *\param wantDebug             int more debug information on failure if 1, else 0
 !c> *\result succes               int reports success (1) or failure (0)
818
819
820
821
822
823
824
825
826
827
828
829
830
 !c> */

 !c> int elpa_cholesky_real(int na, double *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
 function elpa_cholesky_real_wrapper(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) result(success) &
       bind(C,name="elpa_cholesky_real")

   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_cholesky_real

   implicit none

   integer(kind=c_int), value :: na, lda, nblk, matrixCols,  mpi_comm_rows, mpi_comm_cols, wantDebug
   integer(kind=c_int)        :: success
831
#ifdef USE_ASSUMED_SIZE
832
833
   real(kind=c_double)        :: a(lda,*)
#else
834
   real(kind=c_double)        :: a(lda,matrixCols)
835
#endif
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
   logical                    :: successFortran, wantDebugFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_cholesky_real(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function

Andreas Marek's avatar
Andreas Marek committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
 !c> /*! \brief  C interface elpa_cholesky_complex: Cholesky factorization of a complex hermitian matrix
 !c> *\details
 !c> *\param  na                   Order of matrix
 !c> *\param  a(lda,matrixCols)    Distributed matrix which should be factorized.
 !c> *                             Distribution is like in Scalapack.
 !c> *                             Only upper triangle is needs to be set.
 !c> *                             On return, the upper triangle contains the Cholesky factor
 !c> *                             and the lower triangle is set to 0.
 !c> *\param  lda                  Leading dimension of a
 !c> *\param                       matrixCols  local columns of matrix a
 !c> *\param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> *\param  mpi_comm_rows        MPI communicator for rows
 !c> *\param  mpi_comm_cols        MPI communicator for columns
 !c> *\param wantDebug             int more debug information on failure, if 1, else 0
 !c> *\result succes               int reports success (1) or failure (0)
869
870
871
 !c> */

 !c> int elpa_cholesky_complex(int na, double complex *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
Andreas Marek's avatar
Andreas Marek committed
872
873
 function elpa_cholesky_complex_wrapper(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) result(success) &
       bind(C,name="elpa_cholesky_complex")
874
875
876
877
878
879
880
   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_cholesky_complex

   implicit none

   integer(kind=c_int), value     :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug
   integer(kind=c_int)            :: success
881
#ifdef USE_ASSUMED_SIZE
882
883
   complex(kind=c_double_complex) :: a(lda,*)
#else
884
   complex(kind=c_double_complex) :: a(lda,matrixCols)
885
#endif
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
   logical                        :: wantDebugFortran, successFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_cholesky_complex(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function