test_analytic.F90 6.34 KB
Newer Older
Pavel Kus's avatar
Pavel Kus committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
!#include "assert.h"  ! why complains?
module test_analytic

  use test_util

  interface prepare_matrix_analytic
    module procedure prepare_matrix_analytic_real_double
  end interface

  interface check_correctness_analytic
    module procedure check_correctness_analytic_real_double
  end interface

  contains
  
  subroutine prepare_matrix_analytic_real_double (na, a, nblk, myid, np_rows, &
                            np_cols, my_prow, my_pcol)
    use elpa_utilities
    implicit none

    integer(kind=ik), intent(in)    :: na, nblk, myid, np_rows, np_cols, my_prow, my_pcol
    real(kind=rk8), intent(inout)   :: a(:,:)
   
    integer(kind=ik) :: globI, globJ, locI, locJ, levels

    if(.not. decompose(na, levels)) then 
      print *, "can not decomopse matrix size"
      stop 1
    end if 
    
    do globI = 1, na
      do globJ = 1, na
        if(map_global_array_index_to_local_index(globI, globJ, locI, locJ, &
                 nblk, np_rows, np_cols, my_prow, my_pcol)) then
           a(locI, locJ) = analytic_matrix(levels, globI, globJ)
        end if
      end do
    end do

  end subroutine 

  function check_correctness_analytic_real_double (na, nev, ev, z, nblk, myid, np_rows, &
                            np_cols, my_prow, my_pcol) result(status)
    use elpa_utilities
    implicit none

    integer(kind=ik), intent(in)    :: na, nev, nblk, myid, np_rows, np_cols, my_prow, my_pcol
    integer(kind=ik)                :: status
    real(kind=rk8), intent(inout)   :: z(:,:)
    real(kind=rk8), intent(inout)   :: ev(:)
   
    integer(kind=ik) :: globI, globJ, locI, locJ, levels
    real(kind=rk8)   :: diff, max_z_diff, max_ev_diff, glob_max_z_diff, max_curr_z_diff_minus, max_curr_z_diff_plus
    real(kind=rk8)   :: computed, expected

    if(.not. decompose(na, levels)) then 
      print *, "can not decomopse matrix size"
      stop 1
    end if 
    
    max_z_diff = 0.0_rk8
    max_ev_diff = 0.0_rk8
    do globJ = 1, nev
      diff = abs(ev(globJ) - analytic_eigenvalues(levels, globJ))
      max_ev_diff = max(diff, max_ev_diff)

      ! calculated eigenvector can be in opposite direction
      max_curr_z_diff_minus = 0.0_rk8
      max_curr_z_diff_plus  = 0.0_rk8
      do globI = 1, na
        if(map_global_array_index_to_local_index(globI, globJ, locI, locJ, &
                 nblk, np_rows, np_cols, my_prow, my_pcol)) then
           computed = z(locI, locJ)
           expected = analytic_eigenvectors(levels, globI, globJ)
           max_curr_z_diff_minus = max(abs(computed - expected), max_curr_z_diff_minus)
           max_curr_z_diff_plus = max(abs(computed + expected), max_curr_z_diff_plus)
        end if
      end do
      ! we have max difference of one of the eigenvectors, update global
      max_z_diff = max(max_z_diff, min(max_curr_z_diff_minus, max_curr_z_diff_plus))
    end do

#ifdef WITH_MPI
    call mpi_allreduce(max_z_diff, glob_max_z_diff, 1, MPI_REAL8, MPI_MAX, MPI_COMM_WORLD, mpierr)
#else
    glob_max_z_diff = max_z_diff
#endif
    if(myid == 0) print *, 'Maximal error in eigenvalues      :', max_ev_diff 
    if(myid == 0) print *, 'Maximal error in eigenvectors     :', glob_max_z_diff 
    status = 0
    if (max_ev_diff .gt. 5e-14_rk8 .or. max_ev_diff .eq. 0.0_rk8) status = 1
    if (glob_max_z_diff .gt. 6e-13_rk8 .or. glob_max_z_diff .eq. 0.0_rk8) status = 1
  end function 

  function decompose(num, decomposition) result(possible)
    implicit none
    integer(kind=ik), intent(in)   :: num
    integer(kind=ik), intent(out)  :: decomposition
    logical                        :: possible
    integer(kind=ik)               :: reminder
    
    decomposition = 0
    possible = .true. 
    reminder = num
    do while (reminder > 1)
      if (MOD(reminder, 2) == 0) then
        decomposition = decomposition + 1
        reminder = reminder / 2
      else
        possible = .false.
      end if
    end do 
  end function
  
#define ANALYTIC_MATRIX 0
#define ANALYTIC_EIGENVECTORS 1
#define ANALYTIC_EIGENVALUES 2
  
  function analytic_matrix(levels, i, j) result(element)
    implicit none
    integer(kind=ik), intent(in) :: levels, i, j
    real(kind=rk8)               :: element

    element = analytic(levels, i, j, ANALYTIC_MATRIX)

  end function

  function analytic_eigenvectors(levels, i, j) result(element)
    implicit none
    integer(kind=ik), intent(in) :: levels, i, j
    real(kind=rk8)               :: element

    element = analytic(levels, i, j, ANALYTIC_EIGENVECTORS)

  end function

  function analytic_eigenvalues(levels, i) result(element)
    implicit none
    integer(kind=ik), intent(in) :: levels, i
    real(kind=rk8)               :: element

    element = analytic(levels, i, i, ANALYTIC_EIGENVALUES)

  end function

  

  function analytic(n, i, j, what) result(element)
    implicit none
    integer(kind=ik), intent(in)   :: n, i, j, what
    real(kind=rk8)                 :: element, am
    real(kind=rk8)                 :: a, s, c, mat(2,2)
    integer(kind=ik)               :: ii, jj, m 

!    assert(i < 2**n)
!    assert(j < 2**n)
!    assert(i >= 0)
!    assert(j >= 0) 
    ! go to zero-based indexing
    ii = i - 1
    jj = j - 1
    a = get_a(n)
    s = 0.5_rk8
    c = sqrt(3.0_rk8)/2.0_rk8
    element = 1.0_rk8
    do  m = 1, n
      am = a**(2**(m-1))
      if(what == ANALYTIC_MATRIX) then 
        mat = reshape((/ c*c + am * s*s, (1.0_rk8-am) * s*c,  &
                         (1.0_rk8-am) * s*c, s*s + am * c*c  /), &
                                    (/2, 2/))
      else if(what == ANALYTIC_EIGENVECTORS) then
        mat = reshape((/ c, s,  &
                         -s,  c  /), &
                              (/2, 2/))
      else if(what == ANALYTIC_EIGENVALUES) then
        mat = reshape((/ 1.0_rk8, 0.0_rk8,  &
                         0.0_rk8, am  /), &
                               (/2, 2/))
      else
        !assert(0)
      end if
!      write(*,*) "calc value, elem: ", element, ", mat: ", mod(ii,2), mod(jj,2),  mat(mod(ii,2), mod(jj,2)), "am ", am
!      write(*,*) " matrix mat", mat
      element = element * mat(mod(ii,2) + 1, mod(jj,2) + 1) 
      ii = ii / 2
      jj = jj / 2
    end do
    !write(*,*) "returning value ", element
  end function
  
  function get_a(n) result (a)
    implicit none
    integer(kind=ik), intent(in)   :: n
    real(kind=rk8)                 :: a
    real(kind=rk8), parameter      :: largest_ev = 2.0

    a = exp(log(largest_ev)/(2**n-1))
  end function



end module