elpa2.F90 27.7 KB
Newer Older
1
!   This file is part of ELPA.
2
3
4
5
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), fomerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
14
15
16
17
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
18
!    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
!    enhancements authored by Intel Corporation which is not part of
20
!    the ELPA consortium.
21
22
!
!    More information can be found here:
23
!    http://elpa.mpcdf.mpg.de/
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"
64
!> \brief Fortran module which provides the routines to use the 2-stage ELPA solver
65
66
67
68
module ELPA2

! Version 1.1.2, 2011-02-21

69
  use elpa_utilities
70
  use elpa1, only : elpa_print_times, time_evp_back, time_evp_fwd, time_evp_solve
71
  use elpa2_utilities
72

73
74
75
76
77
78
  implicit none

  PRIVATE ! By default, all routines contained are private

  ! The following routines are public:

79
80
81
82
  public :: solve_evp_real_2stage_double               !< old, deprecated interface: Driver routine for real double-precision eigenvalue problem. will be deleted at some point
  public :: solve_evp_complex_2stage_double            !< old, deprecated interface: Driver routine for complex double-precision eigenvalue problem. will be deleted at some point
  public :: elpa_solve_evp_real_2stage_double          !< Driver routine for real double-precision 2-stage eigenvalue problem
  public :: elpa_solve_evp_complex_2stage_double       !< Driver routine for complex double-precision 2-stage eigenvalue problem
83

84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
!-------------------------------------------------------------------------------
!>  \brief solve_evp_real_2stage: Old, deprecated interface for elpa_solve_evp_real_2stage_double
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
120
121
122
!>  \param useQR (optional)                     use QR decomposition
!>  \param useGPU (optional)                    decide whether to use GPUs or not

123
124
125
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
126
127
128
129
  interface solve_evp_real_2stage
    module procedure solve_evp_real_2stage_double
  end interface

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
!-------------------------------------------------------------------------------
!>  \brief elpa_solve_evp_real_2stage_double: Fortran function to solve the real double-precision eigenvalue problem with a 2 stage approach. This is called by "elpa_solve_evp_real_double"
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
165
166
!>  \param useQR (optional)                     use QR decomposition
!>  \param useGPU (optional)                    decide whether to use GPUs or not
167
!>  \param bandwidth (optional)                 the bandwidth of an allready banded-matrix
168
169
170
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
171
172
173
174
  interface elpa_solve_evp_real_2stage_double
    module procedure solve_evp_real_2stage_double
  end interface

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
!-------------------------------------------------------------------------------
!>  \brief solve_evp_complex_2stage: Old, deprecated interface for elpa_solve_evp_complex_2stage_double
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
210
211
!>  \param useGPU (optional)                    decide whether to use GPUs or not
!>
212
213
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
214
215
216
217
  interface solve_evp_complex_2stage
    module procedure solve_evp_complex_2stage_double
  end interface

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
!-------------------------------------------------------------------------------
!>  \brief elpa_solve_evp_complex_2stage_double: Fortran function to solve the complex double-precision eigenvalue problem with a 2 stage approach. This is called by "elpa_solve_evp_complex_double"
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
253
!>  \param useGPU (optional)                    decide whether to use GPUs or not
254
!>  \param bandwidth (optional)                 the bandwidth of an allready banded-matrix
255
!>
256
257
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
258
259
260
261
  interface elpa_solve_evp_complex_2stage_double
    module procedure solve_evp_complex_2stage_double
  end interface

262
263
#ifdef WANT_SINGLE_PRECISION_REAL
  public :: solve_evp_real_2stage_single
264
  public :: elpa_solve_evp_real_2stage_single
265
266
267
268
#endif

#ifdef WANT_SINGLE_PRECISION_COMPLEX
  public :: solve_evp_complex_2stage_single
269
  public :: elpa_solve_evp_complex_2stage_single
270
271
#endif

272
#ifdef WANT_SINGLE_PRECISION_REAL
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
!-------------------------------------------------------------------------------
!>  \brief elpa_solve_evp_real_2stage_single: Fortran function to solve the real single-precision eigenvalue problem with a 2 stage approach. This is called by "elpa_solve_evp_real_single"
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
308
309
!>  \param useQR (optional)                     use QR decomposition
!>  \param useGPU (optional)                    decide whether to use GPUs or not
310
!>  \param bandwidth (optional)                 the bandwidth of an allready banded-matrix
311
312
313
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
314
315
316
317
318
319
  interface elpa_solve_evp_real_2stage_single
    module procedure solve_evp_real_2stage_single
  end interface
#endif

#ifdef WANT_SINGLE_PRECISION_COMPLEX
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
!-------------------------------------------------------------------------------
!>  \brief elpa_solve_evp_complex_2stage_single: Fortran function to solve the complex double-precision eigenvalue problem with a 2 stage approach. This is called by "elpa_solve_evp_complex_single"
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
355
!>  \param useGPU (optional)                    decide whether to use GPUs or not
356
!>  \param bandwidth (optional)                 the bandwidth of an allready banded-matrix
357
!>
358
359
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
360
  interface elpa_solve_evp_complex_2stage_single
361
362
363
    module procedure solve_evp_complex_2stage_single
  end interface
#endif
364

365
  contains
366
367
368

#define REALCASE 1
#define DOUBLE_PRECISION 1
Andreas Marek's avatar
Andreas Marek committed
369
#include "precision_macros.h"
370
!-------------------------------------------------------------------------------
371
!>  \brief solve_evp_real_2stage_double: Fortran function to solve the double-precision real eigenvalue problem with a 2 stage approach
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
405
406
!>  \param useQR (optional)                     use QR decomposition
!>  \param useGPU (optional)                    decide whether to use GPUs or not
407
408
409
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
410
411
412
#include "elpa2_template.X90"
#undef REALCASE
#undef DOUBLE_PRECISION
413

414
#ifdef WANT_SINGLE_PRECISION_REAL
415
416
#define REALCASE 1
#define SINGLE_PRECISION 1
Andreas Marek's avatar
Andreas Marek committed
417
#include "precision_macros.h"
418
419
!-------------------------------------------------------------------------------
!>  \brief solve_evp_real_2stage_single: Fortran function to solve the single-precision real eigenvalue problem with a 2 stage approach
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
453
454
!>  \param useQR (optional)                     use QR decomposition
!>  \param useGPU (optional)                    decide whether GPUs should be used or not
455
!>
456
!>  \result success                             logical, false if error occured
457
!-------------------------------------------------------------------------------
458
459
460
#include "elpa2_template.X90"
#undef REALCASE
#undef SINGLE_PRECISION
461
462
463

#endif /* WANT_SINGLE_PRECISION_REAL */

464
465
#define COMPLEXCASE 1
#define DOUBLE_PRECISION 1
Andreas Marek's avatar
Andreas Marek committed
466
#include "precision_macros.h"
467
!>  \brief solve_evp_complex_2stage_double: Fortran function to solve the double-precision complex eigenvalue problem with a 2 stage approach
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
500
501
!>  \param useGPU (optional)                    decide whether GPUs should be used or not
!>
502
503
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
504
505
506
#include "elpa2_template.X90"
#undef COMPLEXCASE
#undef DOUBLE_PRECISION
507
508

#ifdef WANT_SINGLE_PRECISION_COMPLEX
509
510
511

#define COMPLEXCASE 1
#define SINGLE_PRECISION 1
Andreas Marek's avatar
Andreas Marek committed
512
#include "precision_macros.h"
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

!>  \brief solve_evp_complex_2stage_single: Fortran function to solve the single-precision complex eigenvalue problem with a 2 stage approach
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
546
547
!>  \param THIS_COMPLEX_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>  \param useGPU (optional)                   decide whether GPUs should be used or not
548
549
550
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
551
552
553
#include "elpa2_template.X90"
#undef COMPLEXCASE
#undef SINGLE_PRECISION
554

555

556
#endif /* WANT_SINGLE_PRECISION_COMPLEX */
557
558

end module ELPA2