USERS_GUIDE.md 27.4 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
## Users guide for the *ELPA* library ##
Andreas Marek's avatar
Andreas Marek committed
2 3 4 5 6 7 8

This document provides the guide for using the *ELPA* library in user applications.

### Online and local documentation ###

Local documentation (via man pages) should be available (if *ELPA* has been installed with the documentation):

9
For example "man elpa_get_communicators" should provide the documentation for the *ELPA* function which sets
Andreas Marek's avatar
Andreas Marek committed
10 11
the necessary communicators.

12
Also a [online doxygen documentation] (http://elpa.mpcdf.mpg.de/html/Documentation/ELPA-2016.05.004/html/index.html)
Andreas Marek's avatar
Andreas Marek committed
13 14
for each *ELPA* release is available.

Andreas Marek's avatar
Andreas Marek committed
15
### General concept of the *ELPA* library ###
Andreas Marek's avatar
Andreas Marek committed
16

Andreas Marek's avatar
Andreas Marek committed
17 18 19 20 21 22
The *ELPA* library consists of two main parts:
- *ELPA 1stage* solver
- *ELPA 2stage* solver

Both variants of the *ELPA* solvers are available for real or complex valued matrices.

23
Thus *ELPA* provides the following user functions (see man pages or [online] (http://elpa.mpcdf.mpg.de/html/Documentation/ELPA-2016.05.004/html/index.html) for details):
Andreas Marek's avatar
Andreas Marek committed
24

Andreas Marek's avatar
Andreas Marek committed
25 26 27 28 29
- elpa_get_communicators        : set the row / column communicators for *ELPA*
- elpa_solve_evp_complex_1stage : solve a complex valued eigenvale proplem with the *ELPA 1stage* solver
- elpa_solve_evp_real_1stage    : solve a real valued eigenvale proplem with the *ELPA 1stage* solver
- elpa_solve_evp_complex_2stage : solve a complex valued eigenvale proplem with the *ELPA 2stage* solver
- elpa_solve_evp_real_2stage    : solve a real valued eigenvale proplem with the *ELPA 2stage* solver
Andreas Marek's avatar
Andreas Marek committed
30

31 32 33 34 35 36 37 38 39
*NEW*

- elpa_solve_evp_real      : driver for *ELPA 1stage* or *ELPA 2stage* solver
- elpa_solve_evp_complex   : driver for *ELPA 1stage* or *ELPA 2stage* solver





Andreas Marek's avatar
Andreas Marek committed
40 41 42 43 44 45 46 47 48 49
Furthermore *ELPA* provides the utility binary "print_available_elpa2_kernels": it tells the user
which *ELPA 2stage* compute kernels have been installed and which default kernels are set

If you want to solve an eigenvalue problem with *ELPA*, you have to decide whether you
want to use *ELPA 1stage* or *ELPA 2stage* solver. Normally, *ELPA 2stage* is the better
choice since it is faster, but there a matrix dimensions where *ELPA 1stage* is supperior.

Independent of the choice of the solver, the concept of calling *ELPA* is always the same:

#### MPI version of *ELPA* ####
Andreas Marek's avatar
Andreas Marek committed
50 51 52 53 54

In this case, *ELPA* relies on a BLACS distributed matrix.
To solve a Eigenvalue problem of this matrix with *ELPA*, one has

1. to include the *ELPA* header (C case) or module (Fortran)
55 56
2. to create row and column MPI communicators for ELPA (with "elpa_get_communicators")
3. to call to the *ELPA driver* or directly call *ELPA 1stage* or *ELPA 2stage* for the matrix.
Andreas Marek's avatar
Andreas Marek committed
57

Andreas Marek's avatar
Andreas Marek committed
58
Here is a very simple MPI code snippet for using *ELPA 1stage*: For the definition of all variables
Andreas Marek's avatar
Andreas Marek committed
59 60
please have a look at the man pages and/or the online documentation (see above). A full version
of a simple example program can be found in ./test_project/src.
Andreas Marek's avatar
Andreas Marek committed
61 62 63 64 65


   ! All ELPA routines need MPI communicators for communicating within
   ! rows or columns of processes, these are set in get_elpa_communicators

Andreas Marek's avatar
Andreas Marek committed
66
   success = elpa_get_communicators(mpi_comm_world, my_prow, my_pcol, &
Andreas Marek's avatar
Andreas Marek committed
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
                                    mpi_comm_rows, mpi_comm_cols)

   if (myid==0) then
     print '(a)','| Past split communicator setup for rows and columns.'
   end if

   ! Determine the necessary size of the distributed matrices,
   ! we use the Scalapack tools routine NUMROC for that.

   na_rows = numroc(na, nblk, my_prow, 0, np_rows)
   na_cols = numroc(na, nblk, my_pcol, 0, np_cols)

   !-------------------------------------------------------------------------------
   ! Calculate eigenvalues/eigenvectors

   if (myid==0) then
     print '(a)','| Entering one-step ELPA solver ... '
     print *
   end if

Andreas Marek's avatar
Andreas Marek committed
87
   success = elpa_solve_evp_real_1stage(na, nev, a, na_rows, ev, z, na_rows, nblk, &
Andreas Marek's avatar
Andreas Marek committed
88
                                   matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
89 90 91 92 93 94 95

   if (myid==0) then
     print '(a)','| One-step ELPA solver complete.'
     print *
   end if


Andreas Marek's avatar
Andreas Marek committed
96
#### Shared-memory version of *ELPA* ####
Andreas Marek's avatar
Andreas Marek committed
97

Andreas Marek's avatar
Andreas Marek committed
98
If the *ELPA* library has been compiled with the configure option "--with-mpi=0",
Andreas Marek's avatar
Andreas Marek committed
99 100 101 102
no MPI will be used.

Still the **same** call sequence as in the MPI case can be used (see above).

Andreas Marek's avatar
Andreas Marek committed
103
#### Setting the row and column communicators ####
Andreas Marek's avatar
Andreas Marek committed
104

Andreas Marek's avatar
Andreas Marek committed
105 106 107
SYNOPSIS
   FORTRAN INTERFACE
       use elpa1
108

109
       success = elpa_get_communicators (mpi_comm_global, my_prow, my_pcol, mpi_comm_rows, mpi_comm_cols)
110

Andreas Marek's avatar
Andreas Marek committed
111 112 113 114 115 116 117 118 119 120 121
       integer, intent(in)   mpi_comm_global:  global communicator for the calculation
       integer, intent(in)   my_prow:          row coordinate of the calling process in the process grid
       integer, intent(in)   my_pcol:          column coordinate of the calling process in the process grid
       integer, intent(out)  mpi_comm_row:     communicator for communication within rows of processes
       integer, intent(out)  mpi_comm_row:     communicator for communication within columns of processes

       integer               success:          return value indicating success or failure of the underlying MPI_COMM_SPLIT function

   C INTERFACE
       #include "elpa_generated.h"

122
       success = elpa_get_communicators (int mpi_comm_world, int my_prow, my_pcol, int *mpi_comm_rows, int *Pmpi_comm_cols);
Andreas Marek's avatar
Andreas Marek committed
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

       int mpi_comm_global:  global communicator for the calculation
       int my_prow:          row coordinate of the calling process in the process grid
       int my_pcol:          column coordinate of the calling process in the process grid
       int *mpi_comm_row:    pointer to the communicator for communication within rows of processes
       int *mpi_comm_row:    pointer to the communicator for communication within columns of processes

       int  success:         return value indicating success or failure of the underlying MPI_COMM_SPLIT function


#### Using *ELPA 1stage* ####

After setting up the *ELPA* row and column communicators (by calling get_elpa_communicators),
only the real or complex valued solver has to be called:

SYNOPSIS
   FORTRAN INTERFACE
       use elpa1
Andreas Marek's avatar
Andreas Marek committed
141
       success = elpa_solve_evp_real_1stage (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows,
Andreas Marek's avatar
Andreas Marek committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
       mpi_comm_cols)

       With the definintions of the input and output variables:

       integer, intent(in)    na:            global dimension of quadratic matrix a to solve
       integer, intent(in)    nev:           number of eigenvalues to be computed; the first nev eigenvalules are calculated
       real*8,  intent(inout) a:             locally distributed part of the matrix a. The local dimensions are lda x matrixCols
       integer, intent(in)    lda:           leading dimension of locally distributed matrix a
       real*8,  intent(inout) ev:            on output the first nev computed eigenvalues
       real*8,  intent(inout) q:             on output the first nev computed eigenvectors
       integer, intent(in)    ldq:           leading dimension of matrix q which stores the eigenvectors
       integer, intent(in)    nblk:          blocksize of block cyclic distributin, must be the same in both directions
       integer, intent(in)    matrixCols:    number of columns of locally distributed matrices a and q
       integer, intent(in)    mpi_comm_rows: communicator for communication in rows. Constructed with get_elpa_communicators(3)
       integer, intent(in)    mpi_comm_cols: communicator for communication in colums. Constructed with get_elpa_communicators(3)

       logical                success:       return value indicating success or failure

   C INTERFACE
       #include "elpa.h"

Andreas Marek's avatar
Andreas Marek committed
163
       success = elpa_solve_evp_real_1stage (int na, int nev,  double *a, int lda,  double *ev, double *q, int ldq, int nblk, int matrixCols, int
Andreas Marek's avatar
Andreas Marek committed
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
       mpi_comm_rows, int mpi_comm_cols);

       With the definintions of the input and output variables:

       int     na:            global dimension of quadratic matrix a to solve
       int     nev:           number of eigenvalues to be computed; the first nev eigenvalules are calculated
       double *a:             pointer to locally distributed part of the matrix a. The local dimensions are lda x matrixCols
       int     lda:           leading dimension of locally distributed matrix a
       double *ev:            pointer to memory containing on output the first nev computed eigenvalues
       double *q:             pointer to memory containing on output the first nev computed eigenvectors
       int     ldq:           leading dimension of matrix q which stores the eigenvectors
       int     nblk:          blocksize of block cyclic distributin, must be the same in both directions
       int     matrixCols:    number of columns of locally distributed matrices a and q
       int     mpi_comm_rows: communicator for communication in rows. Constructed with get_elpa_communicators(3)
       int     mpi_comm_cols: communicator for communication in colums. Constructed with get_elpa_communicators(3)

       int     success:       return value indicating success (1) or failure (0)

DESCRIPTION
       Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators mpi_comm_rows and mpi_comm_cols are obtained with the
       get_elpa_communicators(3) function. The distributed quadratic marix a has global dimensions na x na, and a local size lda x matrixCols.
       The solver will compute the first nev eigenvalues, which will be stored on exit in ev. The eigenvectors corresponding to the eigenvalues
       will be stored in q. All memory of the arguments must be allocated outside the call to the solver.

   FORTRAN INTERFACE
       use elpa1
Andreas Marek's avatar
Andreas Marek committed
190
       success = elpa_solve_evp_complex_1stage (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows,
Andreas Marek's avatar
Andreas Marek committed
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
       mpi_comm_cols)

       With the definintions of the input and output variables:

       integer,     intent(in)    na:            global dimension of quadratic matrix a to solve
       integer,     intent(in)    nev:           number of eigenvalues to be computed; the first nev eigenvalules are calculated
       complex*16,  intent(inout) a:             locally distributed part of the matrix a. The local dimensions are lda x matrixCols
       integer,     intent(in)    lda:           leading dimension of locally distributed matrix a
       real*8,      intent(inout) ev:            on output the first nev computed eigenvalues
       complex*16,  intent(inout) q:             on output the first nev computed eigenvectors
       integer,     intent(in)    ldq:           leading dimension of matrix q which stores the eigenvectors
       integer,     intent(in)    nblk:          blocksize of block cyclic distributin, must be the same in both directions
       integer,     intent(in)    matrixCols:    number of columns of locally distributed matrices a and q
       integer,     intent(in)    mpi_comm_rows: communicator for communication in rows. Constructed with get_elpa_communicators(3)
       integer, intent(in)        mpi_comm_cols: communicator for communication in colums. Constructed with get_elpa_communicators(3)

       logical                    success:       return value indicating success or failure

   C INTERFACE
       #include "elpa.h"
       #include <complex.h>

Andreas Marek's avatar
Andreas Marek committed
213
       success = elpa_solve_evp_complex_1stage (int na, int nev,  double complex *a, int lda,  double *ev, double complex*q, int ldq, int nblk, int
Andreas Marek's avatar
Andreas Marek committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
       matrixCols, int mpi_comm_rows, int mpi_comm_cols);

       With the definintions of the input and output variables:

       int             na:            global dimension of quadratic matrix a to solve
       int             nev:           number of eigenvalues to be computed; the first nev eigenvalules are calculated
       double complex *a:             pointer to locally distributed part of the matrix a. The local dimensions are lda x matrixCols
       int             lda:           leading dimension of locally distributed matrix a
       double         *ev:            pointer to memory containing on output the first nev computed eigenvalues
       double complex *q:             pointer to memory containing on output the first nev computed eigenvectors
       int             ldq:           leading dimension of matrix q which stores the eigenvectors
       int             nblk:          blocksize of block cyclic distributin, must be the same in both directions
       int             matrixCols:    number of columns of locally distributed matrices a and q
       int             mpi_comm_rows: communicator for communication in rows. Constructed with get_elpa_communicators(3)
       int             mpi_comm_cols: communicator for communication in colums. Constructed with get_elpa_communicators(3)

       int             success:       return value indicating success (1) or failure (0)

DESCRIPTION
       Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators mpi_comm_rows and mpi_comm_cols are obtained with the
       get_elpa_communicators(3) function. The distributed quadratic marix a has global dimensions na x na, and a local size lda x matrixCols.
       The solver will compute the first nev eigenvalues, which will be stored on exit in ev. The eigenvectors corresponding to the eigenvalues
       will be stored in q. All memory of the arguments must be allocated outside the call to the solver.


The *ELPA 1stage* solver, does not need or accept any other parameters than in the above
specification.

#### Using *ELPA 2stage* ####

The *ELPA 2stage* solver can be used in the same manner, as the *ELPA 1stage* solver.
However, the 2 stage solver, can be used with different compute kernels, which offers
more possibilities for configuration.

It is recommended to first call the utillity program

elpa2_print_kernels

which will tell all the compute kernels that can be used with *ELPA 2stage*". It will
also give information, whether a kernel can be set via environment variables.

##### Using the default kernels #####

If no kernel is set either via an environment variable or the *ELPA 2stage API* then
the default kernels will be set.

##### Setting the *ELPA 2stage* compute kernels #####

If the *ELPA* installation allows setting ther compute kernels with enviroment variables,
setting the variables "REAL_ELPA_KERNEL" and "COMPLEX_ELPA_KERNEL" will set the compute
kernels. The environment variable setting will take precedence over all other settings!

It is also possible to set the *ELPA 2stage* compute kernels via the API.

SYNOPSIS
   FORTRAN INTERFACE
Andreas Marek's avatar
Andreas Marek committed
270 271 272
       use elpa1
       use elpa2
       success = elpa_solve_evp_real_2stage (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows,
Andreas Marek's avatar
Andreas Marek committed
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
       mpi_comm_cols, mpi_comm_all, THIS_REAL_ELPA_KERNEL, useQr=useQR)

       With the definintions of the input and output variables:

       integer, intent(in)            na:            global dimension of quadratic matrix a to solve
       integer, intent(in)            nev:           number of eigenvalues to be computed; the first nev eigenvalules are calculated
       real*8,  intent(inout)         a:             locally distributed part of the matrix a. The local dimensions are lda x matrixCols
       integer, intent(in)            lda:           leading dimension of locally distributed matrix a
       real*8,  intent(inout)         ev:            on output the first nev computed eigenvalues
       real*8,  intent(inout)         q:             on output the first nev computed eigenvectors
       integer, intent(in)            ldq:           leading dimension of matrix q which stores the eigenvectors
       integer, intent(in)            nblk:          blocksize of block cyclic distributin, must be the same in both directions
       integer, intent(in)            matrixCols:    number of columns of locally distributed matrices a and q
       integer, intent(in)            mpi_comm_rows: communicator for communication in rows. Constructed with get_elpa_communicators(3)
       integer, intent(in)            mpi_comm_cols: communicator for communication in colums. Constructed with get_elpa_communicators(3)
       integer, intent(in)            mpi_comm_all:  communicator for all processes in the processor set involved in ELPA
       logical, intent(in), optional: useQR:         optional argument; switches to QR-decomposition if set to .true.

      logical                        success:       return value indicating success or failure

   C INTERFACE
       #include "elpa.h"

Andreas Marek's avatar
Andreas Marek committed
296
       success = elpa_solve_evp_real_2stage (int na, int nev,  double *a, int lda,  double *ev, double *q, int ldq, int nblk, int matrixCols, int
Andreas Marek's avatar
Andreas Marek committed
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
       mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_ELPA_REAL_KERNEL, int useQr);

       With the definintions of the input and output variables:

       int     na:            global dimension of quadratic matrix a to solve
       int     nev:           number of eigenvalues to be computed; the first nev eigenvalules are calculated
       double *a:             pointer to locally distributed part of the matrix a. The local dimensions are lda x matrixCols
       int     lda:           leading dimension of locally distributed matrix a
       double *ev:            pointer to memory containing on output the first nev computed eigenvalues
       double *q:             pointer to memory containing on output the first nev computed eigenvectors
       int     ldq:           leading dimension of matrix q which stores the eigenvectors
       int     nblk:          blocksize of block cyclic distributin, must be the same in both directions
       int     matrixCols:    number of columns of locally distributed matrices a and q
       int     mpi_comm_rows: communicator for communication in rows. Constructed with get_elpa_communicators(3)
       int     mpi_comm_cols: communicator for communication in colums. Constructed with get_elpa_communicators(3)
       int     mpi_comm_all:  communicator for all processes in the processor set involved in ELPA
       int     useQR:         if set to 1 switch to QR-decomposition

       int     success:       return value indicating success (1) or failure (0)


DESCRIPTION
       Solve the real eigenvalue problem with the 2-stage solver. The ELPA communicators mpi_comm_rows and mpi_comm_cols are obtained with the
       get_elpa_communicators(3) function. The distributed quadratic marix a has global dimensions na x na, and a local size lda x matrixCols.
       The solver will compute the first nev eigenvalues, which will be stored on exit in ev. The eigenvectors corresponding to the eigenvalues
       will be stored in q. All memory of the arguments must be allocated outside the call to the solver.

SYNOPSIS
   FORTRAN INTERFACE
Andreas Marek's avatar
Andreas Marek committed
326 327 328
       use elpa1
       use elpa2
       success = elpa_solve_evp_real_2stage (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows,
Andreas Marek's avatar
Andreas Marek committed
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
       mpi_comm_cols, mpi_comm_all, THIS_REAL_ELPA_KERNEL)

       With the definintions of the input and output variables:

       integer,     intent(in)    na:            global dimension of quadratic matrix a to solve
       integer,     intent(in)    nev:           number of eigenvalues to be computed; the first nev eigenvalules are calculated
       complex*16,  intent(inout) a:             locally distributed part of the matrix a. The local dimensions are lda x matrixCols
       integer,     intent(in)    lda:           leading dimension of locally distributed matrix a
       real*8,      intent(inout) ev:            on output the first nev computed eigenvalues
       complex*16,  intent(inout) q:             on output the first nev computed eigenvectors
       integer,     intent(in)    ldq:           leading dimension of matrix q which stores the eigenvectors
       integer,     intent(in)    nblk:          blocksize of block cyclic distributin, must be the same in both directions
       integer,     intent(in)    matrixCols:    number of columns of locally distributed matrices a and q
       integer,     intent(in)    mpi_comm_rows: communicator for communication in rows. Constructed with get_elpa_communicators(3)
       integer,     intent(in)    mpi_comm_cols: communicator for communication in colums. Constructed with get_elpa_communicators(3)
       integer,     intent(in)    mpi_comm_all:  communicator for all processes in the processor set involved in ELPA
       logical                    success:       return value indicating success or failure

   C INTERFACE
       #include "elpa.h"
       #include <complex.h>

Andreas Marek's avatar
Andreas Marek committed
351
       success = elpa_solve_evp_complex_2stage (int na, int nev,  double complex *a, int lda,  double *ev, double complex *q, int ldq, int nblk, int
Andreas Marek's avatar
Andreas Marek committed
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
       matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_ELPA_REAL_KERNEL);

       With the definintions of the input and output variables:

       int             na:            global dimension of quadratic matrix a to solve
       int             nev:           number of eigenvalues to be computed; the first nev eigenvalules are calculated
       double complex *a:             pointer to locally distributed part of the matrix a. The local dimensions are lda x matrixCols
       int             lda:           leading dimension of locally distributed matrix a
       double         *ev:            pointer to memory containing on output the first nev computed eigenvalues
       double complex *q:             pointer to memory containing on output the first nev computed eigenvectors
       int             ldq:           leading dimension of matrix q which stores the eigenvectors
       int             nblk:          blocksize of block cyclic distributin, must be the same in both directions
       int             matrixCols:    number of columns of locally distributed matrices a and q
       int             mpi_comm_rows: communicator for communication in rows. Constructed with get_elpa_communicators(3)
       int             mpi_comm_cols: communicator for communication in colums. Constructed with get_elpa_communicators(3)
       int             mpi_comm_all:  communicator for all processes in the processor set involved in ELPA
       int             success:       return value indicating success (1) or failure (0)
Andreas Marek's avatar
Andreas Marek committed
369

Andreas Marek's avatar
Andreas Marek committed
370 371 372 373 374
DESCRIPTION
       Solve the complex eigenvalue problem with the 2-stage solver. The ELPA communicators mpi_comm_rows and mpi_comm_cols are obtained with the
       get_elpa_communicators(3) function. The distributed quadratic marix a has global dimensions na x na, and a local size lda x matrixCols.
       The solver will compute the first nev eigenvalues, which will be stored on exit in ev. The eigenvectors corresponding to the eigenvalues
       will be stored in q. All memory of the arguments must be allocated outside the call to the solver.
Andreas Marek's avatar
Andreas Marek committed
375 376


377 378 379 380 381 382 383 384 385 386 387

##### Setting up *ELPA 1stage* or *ELPA 2stage* with the *ELPA driver interface* #####

Since release ELPA 2016.005.004 a driver routine allows to choose more easily which solver (1stage or 2stage) will be used

 SYNOPSIS

 FORTRAN INTERFACE

  use elpa

Andreas Marek's avatar
Andreas Marek committed
388
  success = elpa_solve_evp_real (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, THIS_REAL_ELPA_KERNEL=THIS_REAL_ELPA_KERNEL, useQr=useQR, method=method)
389 390 391 392 393 394

  Generalized interface to the ELPA 1stage and 2stage solver for real-valued problems

  With the definintions of the input and output variables:


Andreas Marek's avatar
Andreas Marek committed
395
  integer, intent(in)            na:                    global dimension of quadratic matrix a to solve
396

Andreas Marek's avatar
Andreas Marek committed
397
  integer, intent(in)            nev:                   number of eigenvalues to be computed; the first nev eigenvalules are calculated
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

  real*8,  intent(inout)         a:                     locally distributed part of the matrix a. The local dimensions are lda x matrixCols

  integer, intent(in)            lda:                   leading dimension of locally distributed matrix a

  real*8,  intent(inout)         ev:                    on output the first nev computed eigenvalues"

  real*8,  intent(inout)         q:                     on output the first nev computed eigenvectors"

  integer, intent(in)            ldq:                   leading dimension of matrix q which stores the eigenvectors

  integer, intent(in)            nblk:                  blocksize of block cyclic distributin, must be the same in both directions

  integer, intent(in)            matrixCols:            number of columns of locally distributed matrices a and q

  integer, intent(in)            mpi_comm_rows:         communicator for communication in rows. Constructed with elpa_get_communicators

  integer, intent(in)            mpi_comm_cols:         communicator for communication in colums. Constructed with elpa_get_communicators

  integer, intent(in)            mpi_comm_all:          communicator for all processes in the processor set involved in ELPA

  integer, intent(in), optional: THIS_REAL_ELPA_KERNEL: optional argument, choose the compute kernel for 2-stage solver

  logical, intent(in), optional: useQR:                 optional argument; switches to QR-decomposition if set to .true.

  character(*), optional         method:                use 1stage solver if "1stage", use 2stage solver if "2stage", (at the moment) use 2stage solver if "auto"

  logical                        success:               return value indicating success or failure


 C INTERFACE

 #include "elpa.h"

Andreas Marek's avatar
Andreas Marek committed
432
 success = elpa_solve_evp_real (int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_ELPA_REAL_KERNEL, int useQr, char *method);"
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472


 With the definintions of the input and output variables:"


 int     na:                    global dimension of quadratic matrix a to solve

 int     nev:                   number of eigenvalues to be computed; the first nev eigenvalules are calculated

 double *a:                     pointer to locally distributed part of the matrix a. The local dimensions are lda x matrixCols

 int     lda:                   leading dimension of locally distributed matrix a

 double *ev:                    pointer to memory containing on output the first nev computed eigenvalues

 double *q:                     pointer to memory containing on output the first nev computed eigenvectors

 int     ldq:                   leading dimension of matrix q which stores the eigenvectors

 int     nblk:                  blocksize of block cyclic distributin, must be the same in both directions

 int     matrixCols:            number of columns of locally distributed matrices a and q

 int     mpi_comm_rows:         communicator for communication in rows. Constructed with elpa_get_communicators

 int     mpi_comm_cols:         communicator for communication in colums. Constructed with elpa_get_communicators

 int     mpi_comm_all:          communicator for all processes in the processor set involved in ELPA

 int     THIS_ELPA_REAL_KERNEL: choose the compute kernel for 2-stage solver

 int     useQR:                 if set to 1 switch to QR-decomposition

 char   *method:                use 1stage solver if "1stage", use 2stage solver if "2stage", (at the moment) use 2stage solver if "auto"

 int     success:               return value indicating success (1) or failure (0)

 DESCRIPTION
 Solve the real eigenvalue problem. The value of method desides whether the 1stage or 2stage solver is used. The ELPA communicators mpi_comm_rows and mpi_comm_cols are obtained with the elpa_get_communicators function. The distributed quadratic marix a has global dimensions na x na, and a local size lda x matrixCols. The solver will compute the first nev eigenvalues, which will be stored on exit in ev. The eigenvectors corresponding to the eigenvalues will be stored in q. All memory of the arguments must be allocated outside the call to the solver.