real_128bit_256bit_512bit_BLOCK_template.c 497 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//    This file is part of ELPA.
//
//    The ELPA library was originally created by the ELPA consortium,
//    consisting of the following organizations:
//
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
//      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//      and
//    - IBM Deutschland GmbH
//
18
//
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
//    This particular source code file contains additions, changes and
//    enhancements authored by Intel Corporation which is not part of
//    the ELPA consortium.
//
//    More information can be found here:
//    http://elpa.mpcdf.mpg.de/
//
//    ELPA is free software: you can redistribute it and/or modify
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
//    along with ELPA. If not, see <http://www.gnu.org/licenses/>
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
// Author: Andreas Marek, MPCDF, based on the double precision case of A. Heinecke
//
#include "config-f90.h"

50
51
52
53
54
55
#define CONCAT_8ARGS(a, b, c, d, e, f, g, h) CONCAT2_8ARGS(a, b, c, d, e, f, g, h)
#define CONCAT2_8ARGS(a, b, c, d, e, f, g, h) a ## b ## c ## d ## e ## f ## g ## h

#define CONCAT_7ARGS(a, b, c, d, e, f, g) CONCAT2_7ARGS(a, b, c, d, e, f, g)
#define CONCAT2_7ARGS(a, b, c, d, e, f, g) a ## b ## c ## d ## e ## f ## g

56
57
58
59
60
61
62
63
64
65
66
67
#define CONCAT_6ARGS(a, b, c, d, e, f) CONCAT2_6ARGS(a, b, c, d, e, f)
#define CONCAT2_6ARGS(a, b, c, d, e, f) a ## b ## c ## d ## e ## f

#define CONCAT_5ARGS(a, b, c, d, e) CONCAT2_5ARGS(a, b, c, d, e)
#define CONCAT2_5ARGS(a, b, c, d, e) a ## b ## c ## d ## e

#define CONCAT_4ARGS(a, b, c, d) CONCAT2_4ARGS(a, b, c, d)
#define CONCAT2_4ARGS(a, b, c, d) a ## b ## c ## d

#define CONCAT_3ARGS(a, b, c) CONCAT2_3ARGS(a, b, c)
#define CONCAT2_3ARGS(a, b, c) a ## b ## c

68
#if VEC_SET == 128 || VEC_SET == 256 || VEC_SET == 512
69
70
#include <x86intrin.h>
#endif
71
#if VEC_SET == 1281
72
73
74
75
76
77
#include <fjmfunc.h>
#include <emmintrin.h>
#endif
#include <stdio.h>
#include <stdlib.h>

78
79
80
81
82
#ifdef BLOCK6
#define PREFIX hexa
#define BLOCK 6
#endif

83
84
85
86
87
88
89
90
91
92
#ifdef BLOCK4
#define PREFIX quad
#define BLOCK 4
#endif

#ifdef BLOCK2
#define PREFIX double
#define BLOCK 2
#endif

93
#if VEC_SET == 128
94
95
96
#define SIMD_SET SSE
#endif

97
#if VEC_SET == 1281
98
99
#define SIMD_SET SPARC64
#endif
100
101
102
103
104

#if VEC_SET == 256
#define SIMD_SET AVX_AVX2
#endif

105
106
107
108
#if VEC_SET == 512
#define SIMD_SET AVX512
#endif

109
110
#define __forceinline __attribute__((always_inline)) static

111
#if VEC_SET == 128 || VEC_SET == 1281
112
113
#ifdef DOUBLE_PRECISION_REAL
#define offset 2
114
115
116
117
118
119
120
#define __SIMD_DATATYPE __m128d
#define _SIMD_LOAD _mm_load_pd
#define _SIMD_STORE _mm_store_pd
#define _SIMD_ADD _mm_add_pd
#define _SIMD_MUL _mm_mul_pd
#define _SIMD_SUB _mm_sub_pd
#define _SIMD_XOR _mm_xor_pd
121
122
123
#if VEC_SET == 128
#define _SIMD_SET _mm_set_pd
#define _SIMD_SET1 _mm_set1_pd
124
#endif
125
#endif /* DOUBLE_PRECISION_REAL */
126
127
128
129
130
131
132
133
134
#ifdef SINGLE_PRECISION_REAL
#define offset 4
#define __SIMD_DATATYPE __m128
#define _SIMD_LOAD _mm_load_ps
#define _SIMD_STORE _mm_store_ps
#define _SIMD_ADD _mm_add_ps
#define _SIMD_MUL _mm_mul_ps
#define _SIMD_SUB _mm_sub_ps
#define _SIMD_XOR _mm_xor_ps
135
136
137
138
139
#if VEC_SET == 128
#define _SIMD_SET _mm_set_ps
#define _SIMD_SET1 _mm_set1_ps
#endif 
#endif /* SINGLE_PRECISION_REAL */
140
#endif /* VEC_SET == 128 || VEC_SET == 1281 */
141

142
143
144
145
146
147
148
149
#if VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define offset 4
#define __SIMD_DATATYPE __m256d
#define _SIMD_LOAD _mm256_load_pd
#define _SIMD_STORE _mm256_store_pd
#define _SIMD_ADD _mm256_add_pd
#define _SIMD_MUL _mm256_mul_pd
150
#define _SIMD_SUB _mm256_sub_pd
151
#define _SIMD_SET1 _mm256_set1_pd
152
153
154
155
156
157
#define _SIMD_XOR _mm256_xor_pd
#define _SIMD_BROADCAST _mm256_broadcast_sd
#ifdef HAVE_AVX2
#ifdef __FMA4__
#define __ELPA_USE_FMA__
#define _mm256_FMA_pd(a,b,c) _mm256_macc_pd(a,b,c)
158
159
160
161
#define _mm256_NFMA_pd(a,b,c) _mm256_nmacc_pd(a,b,c)
#error "This should be prop _mm256_msub_pd instead of _mm256_msub"
#define _mm256_FMSUB_pd(a,b,c) _mm256_msub(a,b,c)
#endif /* __FMA4__ */
162
163
164
#ifdef __AVX2__
#define __ELPA_USE_FMA__
#define _mm256_FMA_pd(a,b,c) _mm256_fmadd_pd(a,b,c)
165
166
167
168
#define _mm256_NFMA_pd(a,b,c) _mm256_fnmadd_pd(a,b,c)
#define _mm256_FMSUB_pd(a,b,c) _mm256_fmsub_pd(a,b,c)
#endif /* __AVX2__ */
#ifdef __ELPA_USE_FMA__
169
#define _SIMD_FMA _mm256_FMA_pd
170
171
#define _SIMD_NFMA _mm256_NFMA_pd
#define _SIMD_FMSUB _mm256_FMSUB_pd
172
173
174
175
176
177
178
179
180
181
182
#endif
#endif /* HAVE_AVX2 */
#endif /* DOUBLE_PRECISION_REAL */

#ifdef SINGLE_PRECISION_REAL
#define offset 8
#define __SIMD_DATATYPE __m256
#define _SIMD_LOAD _mm256_load_ps
#define _SIMD_STORE _mm256_store_ps
#define _SIMD_ADD _mm256_add_ps
#define _SIMD_MUL _mm256_mul_ps
183
#define _SIMD_SUB _mm256_sub_ps
184
#define _SIMD_SET1 _mm256_set1_ps
185
186
187
188
189
190
#define _SIMD_XOR _mm256_xor_ps
#define _SIMD_BROADCAST _mm256_broadcast_ss
#ifdef HAVE_AVX2
#ifdef __FMA4__
#define __ELPA_USE_FMA__
#define _mm256_FMA_ps(a,b,c) _mm256_macc_ps(a,b,c)
191
192
193
194
#define _mm256_NFMA_ps(a,b,c) _mm256_nmacc_ps(a,b,c)
#error "This should be prop _mm256_msub_ps instead of _mm256_msub"
#define _mm256_FMSUB_ps(a,b,c) _mm256_msub(a,b,c)
#endif /* __FMA4__ */
195
196
197
#ifdef __AVX2__
#define __ELPA_USE_FMA__
#define _mm256_FMA_ps(a,b,c) _mm256_fmadd_ps(a,b,c)
198
199
200
201
#define _mm256_NFMA_ps(a,b,c) _mm256_fnmadd_ps(a,b,c)
#define _mm256_FMSUB_ps(a,b,c) _mm256_fmsub_ps(a,b,c)
#endif /* __AVX2__ */
#ifdef __ELPA_USE_FMA__
202
#define _SIMD_FMA _mm256_FMA_ps
203
204
#define _SIMD_NFMA _mm256_NFMA_ps
#define _SIMD_FMSUB _mm256_FMSUB_ps
205
206
207
208
209
#endif
#endif /* HAVE_AVX2 */
#endif /* SINGLE_PRECISION_REAL */
#endif /* VEC_SET == 256 */

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#if VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define offset 8
#define __SIMD_DATATYPE __m512d
#define __SIMD_INTEGER  __m512i
#define _SIMD_LOAD _mm512_load_pd
#define _SIMD_STORE _mm512_store_pd
#define _SIMD_ADD _mm512_add_pd
#define _SIMD_MUL _mm512_mul_pd
#define _SIMD_SUB _mm512_sub_pd
#define _SIMD_SET1 _mm512_set1_pd
#ifdef HAVE_AVX512_XEON
#define _SIMD_XOR _mm512_xor_pd
#endif
#ifdef HAVE_AVX512
#define __ELPA_USE_FMA__
#define _mm512_FMA_pd(a,b,c) _mm512_fmadd_pd(a,b,c)
227
228
#define _mm512_NFMA_pd(a,b,c) _mm512_fnmadd_pd(a,b,c)
#define _mm512_FMSUB_pd(a,b,c) _mm512_fmsub_pd(a,b,c)
229
230
#ifdef __ELPA_USE_FMA__
#define _SIMD_FMA _mm512_FMA_pd
231
232
#define _SIMD_NFMA _mm512_NFMA_pd
#define _SIMD_FMSUB _mm512_FMSUB_pd
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#endif
#endif /* HAVE_AVX512 */
#endif /* DOUBLE_PRECISION_REAL */

#ifdef SINGLE_PRECISION_REAL
#define offset 16
#define __SIMD_DATATYPE __m512
#define __SIMD_INTEGER  __m512i
#define _SIMD_LOAD _mm512_load_ps
#define _SIMD_STORE _mm512_store_ps
#define _SIMD_ADD _mm512_add_ps
#define _SIMD_MUL _mm512_mul_ps
#define _SIMD_SUB _mm512_sub_ps
#define _SIMD_SET1 _mm512_set1_ps
#ifdef HAVE_AVX512_XEON
#define _SIMD_XOR _mm512_xor_ps
#endif
#ifdef HAVE_AVX512
#define __ELPA_USE_FMA__
#define _mm512_FMA_ps(a,b,c) _mm512_fmadd_ps(a,b,c)
253
254
#define _mm512_NFMA_ps(a,b,c) _mm512_fnmadd_ps(a,b,c)
#define _mm512_FMSUB_ps(a,b,c) _mm512_fmsub_ps(a,b,c)
255
256
#ifdef __ELPA_USE_FMA__
#define _SIMD_FMA _mm512_FMA_ps
257
258
#define _SIMD_NFMA _mm512_NFMA_ps
#define _SIMD_FMSUB _mm512_FMSUB_ps
259
260
261
262
263
#endif
#endif /* HAVE_AVX512 */
#endif /* SINGLE_PRECISION_REAL */
#endif /* VEC_SET == 512 */

264
#ifdef DOUBLE_PRECISION_REAL
265
#define WORD_LENGTH double
266
267
#define DATA_TYPE double
#define DATA_TYPE_PTR double*
268
269
270
271
272
273
274
275
#endif
#ifdef SINGLE_PRECISION_REAL
#define WORD_LENGTH single
#define DATA_TYPE float
#define DATA_TYPE_PTR float*
#endif

#if VEC_SET == 128
276
277
278
#undef __AVX__
#endif

279
280

#if VEC_SET == 128 || VEC_SET == 1281
281
282
//Forward declaration
#ifdef DOUBLE_PRECISION_REAL
283
284
#undef ROW_LENGTH
#define ROW_LENGTH 2
285
#endif
286
287
288
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 4
289
#endif
290
#endif /* VEC_SET == 128 || VEC_SET == 1281 */
291

292
293
294
295
296
297
298
299
300
301
#if VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET == 256 */
302
303
304
305
306
307
308
309
310
311
312

#if VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == 512 */
313
__forceinline void CONCAT_8ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq, int ldh, 
314
#ifdef BLOCK2
315
	DATA_TYPE s);
316
317
#endif
#ifdef BLOCK4
318
	DATA_TYPE s_1_2, DATA_TYPE s_1_3, DATA_TYPE s_2_3, DATA_TYPE s_1_4, DATA_TYPE s_2_4, DATA_TYPE s_3_4);
319
#endif
320
321
#ifdef BLOCK6
	DATA_TYPE_PTR scalarprods);
322
#endif
323

324
#if VEC_SET == 128 || VEC_SET == 1281
325
326
327
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 4
328
#endif
329
330
331
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 8
332
#endif
333
334
335
336
337
338
339
340
341
342
343
344
#endif /* VEC_SET == 128 || VEC_SET == 1281 */

#if VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == 256 */
345
346
347
348
349
350
351
352
353
354
355

#if VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 16
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 32
#endif
#endif /* VEC_SET == 512 */
356
__forceinline void CONCAT_8ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq, int ldh, 
357
#ifdef BLOCK2
358
	DATA_TYPE s);
359
360
#endif
#ifdef BLOCK4
361
	DATA_TYPE s_1_2, DATA_TYPE s_1_3, DATA_TYPE s_2_3, DATA_TYPE s_1_4, DATA_TYPE s_2_4, DATA_TYPE s_3_4);
362
#endif
363
364
#ifdef BLOCK6
	DATA_TYPE_PTR scalarprods);
365
#endif
366

367
#if VEC_SET == 128 || VEC_SET == 1281 
368
369
370
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 6
371
372
#endif
#ifdef SINGLE_PRECISION_REAL
373
374
#undef ROW_LENGTH
#define ROW_LENGTH 12
375
#endif
376
377
378
379
380
381
382
383
384
385
386
387
388
#endif /* VEC_SET == 128 || VEC_SET == 1281  */

#if VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 12
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 24
#endif
#endif /* VEC_SET == 256 */

389
390
391
392
393
394
395
396
397
398
399
#if VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 24
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 48
#endif
#endif /* VEC_SET == 512 */

400
__forceinline void CONCAT_8ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq, int ldh,
401
#ifdef BLOCK2
402
	DATA_TYPE s);
403
404
#endif
#ifdef BLOCK4
405
	DATA_TYPE s_1_2, DATA_TYPE s_1_3, DATA_TYPE s_2_3, DATA_TYPE s_1_4, DATA_TYPE s_2_4, DATA_TYPE s_3_4);
406
#endif
407
408
#ifdef BLOCK6
	DATA_TYPE_PTR scalarprods);
409
#endif
410

411
#if VEC_SET == 128 || VEC_SET == 1281 
412
413
414
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 8
415
#endif
416
417
418
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 16
419
#endif
420
421
422
423
424
425
426
427
428
429
430
431
432
#endif /* VEC_SET == 128 || VEC_SET == 1281  */

#if VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 16
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 32
#endif
#endif /* VEC_SET == 256 */

433
434
435
436
437
438
439
440
441
442
443
#if VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 32
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 64
#endif
#endif /* VEC_SET == 512 */

444
__forceinline void CONCAT_8ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq, int ldh, 
445
#ifdef BLOCK2
446
	DATA_TYPE s);
447
448
#endif
#ifdef BLOCK4
449
	DATA_TYPE s_1_2, DATA_TYPE s_1_3, DATA_TYPE s_2_3, DATA_TYPE s_1_4, DATA_TYPE s_2_4, DATA_TYPE s_3_4);
450
#endif
451
452
#ifdef BLOCK6
	DATA_TYPE_PTR scalarprods);
453
#endif
454

455
#if  VEC_SET == 128 || VEC_SET == 1281
456
457
458
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 10
459
#endif
460
461
462
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 20
463
#endif
464
465
466
467
468
469
470
471
472
473
474
475
476
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */

#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 20
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 40
#endif
#endif /*  VEC_SET == 256 */

477
478
479
480
481
482
483
484
485
486
#if VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 40
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 80
#endif
#endif /* VEC_SET == 512 */
487

488
__forceinline void CONCAT_8ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq, int ldh, 
489
#ifdef BLOCK2
490
	DATA_TYPE s);
491
492
#endif
#ifdef BLOCK4
493
494
495
496
	DATA_TYPE s_1_2, DATA_TYPE s_1_3, DATA_TYPE s_2_3, DATA_TYPE s_1_4, DATA_TYPE s_2_4, DATA_TYPE s_3_4);
#endif
#ifdef BLOCK6
	DATA_TYPE_PTR scalarprods);
497
498
#endif

499
#if  VEC_SET == 128 || VEC_SET == 1281
500
#ifdef DOUBLE_PRECISION_REAL
501
502
#undef ROW_LENGTH
#define ROW_LENGTH 12
503
504
#endif
#ifdef SINGLE_PRECISION_REAL
505
506
507
#undef ROW_LENGTH
#define ROW_LENGTH 24
#endif
508
509
510
511
512
513
514
515
516
517
518
519
#endif /* VEC_SET == 128 || VEC_SET == 1281 */

#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 24
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 48
#endif
#endif /*  VEC_SET == 256 */
520

521
522
523
524
525
526
527
528
529
530
531
#if VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 48
#endif
#ifdef SINGLE_PRECISION_REAL
#undef ROW_LENGTH
#define ROW_LENGTH 96
#endif
#endif /* VEC_SET == 512 */

532
533
534
__forceinline void CONCAT_8ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq, int ldh,
#ifdef BLOCK2
	DATA_TYPE s);
535
#endif
536
537
538
539
540
541
542
543
#ifdef BLOCK4
	DATA_TYPE s_1_2, DATA_TYPE s_1_3, DATA_TYPE s_2_3, DATA_TYPE s_1_4, DATA_TYPE s_2_4, DATA_TYPE s_3_4);
#endif
#ifdef BLOCK6
	DATA_TYPE_PTR scalarprods);
#endif

void CONCAT_7ARGS(PREFIX,_hh_trafo_real_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int* pnb, int* pnq, int* pldq, int* pldh);
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine double_hh_trafo_real_SSE_2hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                                bind(C, name="double_hh_trafo_real_SSE_2hv_double")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_double)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine double_hh_trafo_real_SSE_2hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>              bind(C, name="double_hh_trafo_real_SSE_2hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int) :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value  :: q
!f>     real(kind=c_float)  :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#ifdef HAVE_SPARC64_SSE
!f> interface
!f>   subroutine double_hh_trafo_real_SPARC64_2hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>              bind(C, name="double_hh_trafo_real_SPARC64_2hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int) :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value  :: q
!f>     real(kind=c_double) :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#ifdef HAVE_SPARC64_SSE
!f> interface
!f>   subroutine double_hh_trafo_real_SPARC64_2hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>              bind(C, name="double_hh_trafo_real_SPARC64_2hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int) :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value  :: q
!f>     real(kind=c_float)  :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine double_hh_trafo_real_AVX_AVX2_2hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                                bind(C, name="double_hh_trafo_real_AVX_AVX2_2hv_double")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_double)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine double_hh_trafo_real_AVX_AVX2_2hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>                                bind(C, name="double_hh_trafo_real_AVX_AVX2_2hv_single")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)       :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_float)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine double_hh_trafo_real_AVX512_2hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="double_hh_trafo_real_AVX512_2hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value      :: q
!f>     real(kind=c_double)     :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine double_hh_trafo_real_AVX512_2hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="double_hh_trafo_real_AVX512_2hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value      :: q
!f>     real(kind=c_float)      :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine quad_hh_trafo_real_SSE_4hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                                bind(C, name="quad_hh_trafo_real_SSE_4hv_double")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_double)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine quad_hh_trafo_real_SSE_4hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>              bind(C, name="quad_hh_trafo_real_SSE_4hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int) :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value  :: q
!f>     real(kind=c_float)  :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#ifdef HAVE_SPARC64_SSE
!f> interface
!f>   subroutine quad_hh_trafo_real_SPARC64_4hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>              bind(C, name="quad_hh_trafo_real_SPARC64_4hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int) :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value  :: q
!f>     real(kind=c_double) :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#ifdef HAVE_SPARC64_SSE
!f> interface
!f>   subroutine quad_hh_trafo_real_SPARC64_4hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>              bind(C, name="quad_hh_trafo_real_SPARC64_4hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int) :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value  :: q
!f>     real(kind=c_float)  :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine quad_hh_trafo_real_AVX_AVX2_4hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                                bind(C, name="quad_hh_trafo_real_AVX_AVX2_4hv_double")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_double)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine quad_hh_trafo_real_AVX_AVX2_4hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>              bind(C, name="quad_hh_trafo_real_AVX_AVX2_4hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int) :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value  :: q
!f>     real(kind=c_float)  :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine quad_hh_trafo_real_AVX512_4hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="quad_hh_trafo_real_AVX512_4hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value      :: q
!f>     real(kind=c_double)     :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine quad_hh_trafo_real_AVX512_4hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="quad_hh_trafo_real_AVX512_4hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value      :: q
!f>     real(kind=c_float)      :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
764
765
766
/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
767
!f>   subroutine hexa_hh_trafo_real_SSE_6hv_double(q, hh, pnb, pnq, pldq, pldh) &
768
769
770
771
772
773
774
775
776
777
778
779
!f>                                bind(C, name="hexa_hh_trafo_real_SSE_6hv_double")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_double)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#ifdef HAVE_SPARC64_SSE
!f> interface
780
!f>   subroutine hexa_hh_trafo_real_SPARC64_6hv_double(q, hh, pnb, pnq, pldq, pldh) &
781
782
783
784
785
786
787
788
789
790
791
792
!f>                                bind(C, name="hexa_hh_trafo_real_SPARC64_6hv_double")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_double)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
793
!f>   subroutine hexa_hh_trafo_real_SSE_6hv_single(q, hh, pnb, pnq, pldq, pldh) &
794
795
796
797
798
799
800
801
802
803
804
805
!f>                                bind(C, name="hexa_hh_trafo_real_SSE_6hv_single")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_float)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#ifdef HAVE_SPARC64_SSE
!f> interface
806
!f>   subroutine hexa_hh_trafo_real_SPARC64_6hv_single(q, hh, pnb, pnq, pldq, pldh) &
807
808
809
810
811
812
813
814
815
816
!f>                                bind(C, name="hexa_hh_trafo_real_SPARC64_6hv_single")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        type(c_ptr), value        :: q
!f>        real(kind=c_float)        :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine hexa_hh_trafo_real_AVX_AVX2_6hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="hexa_hh_trafo_real_AVX_AVX2_6hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value      :: q
!f>     real(kind=c_double)     :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine hexa_hh_trafo_real_AVX_AVX2_6hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="hexa_hh_trafo_real_AVX_AVX2_6hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value      :: q
!f>     real(kind=c_float)      :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine hexa_hh_trafo_real_AVX512_6hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="hexa_hh_trafo_real_AVX512_6hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value      :: q
!f>     real(kind=c_double)     :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine hexa_hh_trafo_real_AVX512_6hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="hexa_hh_trafo_real_AVX512_6hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     type(c_ptr), value      :: q
!f>     real(kind=c_float)      :: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/
869

870
void CONCAT_7ARGS(PREFIX,_hh_trafo_real_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int* pnb, int* pnq, int* pldq, int* pldh)
871
872
873
874
875
876
877
878
{
  int i;
  int nb = *pnb;
  int nq = *pldq;
  int ldq = *pldq;
  int ldh = *pldh;
  int worked_on;

879
880
  worked_on = 0;

881
882
883
#ifdef BLOCK2
  // calculating scalar product to compute
  // 2 householder vectors simultaneously
884
  DATA_TYPE s = hh[(ldh)+1]*1.0;
885
886
887
888
889
#endif

#ifdef BLOCK4
  // calculating scalar products to compute
  // 4 householder vectors simultaneously
890
891
892
893
894
895
896
  DATA_TYPE s_1_2 = hh[(ldh)+1];  
  DATA_TYPE s_1_3 = hh[(ldh*2)+2];
  DATA_TYPE s_2_3 = hh[(ldh*2)+1];
  DATA_TYPE s_1_4 = hh[(ldh*3)+3];
  DATA_TYPE s_2_4 = hh[(ldh*3)+2];
  DATA_TYPE s_3_4 = hh[(ldh*3)+1];

897
898
  // calculate scalar product of first and fourth householder Vector
  // loop counter = 2
899
900
901
  s_1_2 += hh[2-1] * hh[(2+ldh)];          
  s_2_3 += hh[(ldh)+2-1] * hh[2+(ldh*2)];  
  s_3_4 += hh[(ldh*2)+2-1] * hh[2+(ldh*3)];
902
903

  // loop counter = 3
904
905
906
  s_1_2 += hh[3-1] * hh[(3+ldh)];          
  s_2_3 += hh[(ldh)+3-1] * hh[3+(ldh*2)];  
  s_3_4 += hh[(ldh*2)+3-1] * hh[3+(ldh*3)];
907

908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
  s_1_3 += hh[3-2] * hh[3+(ldh*2)];        
  s_2_4 += hh[(ldh*1)+3-2] * hh[3+(ldh*3)];
#endif /* BLOCK4 */

#ifdef BLOCK6
  // calculating scalar products to compute
  // 6 householder vectors simultaneously
  DATA_TYPE scalarprods[15];

  scalarprods[0] = hh[(ldh+1)];  
  scalarprods[1] = hh[(ldh*2)+2];
  scalarprods[2] = hh[(ldh*2)+1];
  scalarprods[3] = hh[(ldh*3)+3];
  scalarprods[4] = hh[(ldh*3)+2];
  scalarprods[5] = hh[(ldh*3)+1];
  scalarprods[6] = hh[(ldh*4)+4];
  scalarprods[7] = hh[(ldh*4)+3];
  scalarprods[8] = hh[(ldh*4)+2];
  scalarprods[9] = hh[(ldh*4)+1];
  scalarprods[10] = hh[(ldh*5)+5];
  scalarprods[11] = hh[(ldh*5)+4];
  scalarprods[12] = hh[(ldh*5)+3];
  scalarprods[13] = hh[(ldh*5)+2];
  scalarprods[14] = hh[(ldh*5)+1];

  // calculate scalar product of first and fourth householder Vector
  // loop counter = 2
  scalarprods[0] += hh[1] * hh[(2+ldh)];           
  scalarprods[2] += hh[(ldh)+1] * hh[2+(ldh*2)];   
  scalarprods[5] += hh[(ldh*2)+1] * hh[2+(ldh*3)]; 
  scalarprods[9] += hh[(ldh*3)+1] * hh[2+(ldh*4)]; 
  scalarprods[14] += hh[(ldh*4)+1] * hh[2+(ldh*5)];

  // loop counter = 3
  scalarprods[0] += hh[2] * hh[(3+ldh)];          
  scalarprods[2] += hh[(ldh)+2] * hh[3+(ldh*2)];  
  scalarprods[5] += hh[(ldh*2)+2] * hh[3+(ldh*3)];
  scalarprods[9] += hh[(ldh*3)+2] * hh[3+(ldh*4)];
  scalarprods[14] += hh[(ldh*4)+2] * hh[3+(ldh*5)];

  scalarprods[1] += hh[1] * hh[3+(ldh*2)];         
  scalarprods[4] += hh[(ldh*1)+1] * hh[3+(ldh*3)]; 
  scalarprods[8] += hh[(ldh*2)+1] * hh[3+(ldh*4)]; 
  scalarprods[13] += hh[(ldh*3)+1] * hh[3+(ldh*5)];

  // loop counter = 4
  scalarprods[0] += hh[3] * hh[(4+ldh)];           
  scalarprods[2] += hh[(ldh)+3] * hh[4+(ldh*2)];   
  scalarprods[5] += hh[(ldh*2)+3] * hh[4+(ldh*3)]; 
  scalarprods[9] += hh[(ldh*3)+3] * hh[4+(ldh*4)]; 
  scalarprods[14] += hh[(ldh*4)+3] * hh[4+(ldh*5)];

  scalarprods[1] += hh[2] * hh[4+(ldh*2)];         
  scalarprods[4] += hh[(ldh*1)+2] * hh[4+(ldh*3)]; 
  scalarprods[8] += hh[(ldh*2)+2] * hh[4+(ldh*4)]; 
  scalarprods[13] += hh[(ldh*3)+2] * hh[4+(ldh*5)];

  scalarprods[3] += hh[1] * hh[4+(ldh*3)];         
  scalarprods[7] += hh[(ldh)+1] * hh[4+(ldh*4)];   
  scalarprods[12] += hh[(ldh*2)+1] * hh[4+(ldh*5)];

  // loop counter = 5
  scalarprods[0] += hh[4] * hh[(5+ldh)];           
  scalarprods[2] += hh[(ldh)+4] * hh[5+(ldh*2)];   
  scalarprods[5] += hh[(ldh*2)+4] * hh[5+(ldh*3)]; 
  scalarprods[9] += hh[(ldh*3)+4] * hh[5+(ldh*4)]; 
  scalarprods[14] += hh[(ldh*4)+4] * hh[5+(ldh*5)];

  scalarprods[1] += hh[3] * hh[5+(ldh*2)];         
  scalarprods[4] += hh[(ldh*1)+3] * hh[5+(ldh*3)]; 
  scalarprods[8] += hh[(ldh*2)+3] * hh[5+(ldh*4)]; 
  scalarprods[13] += hh[(ldh*3)+3] * hh[5+(ldh*5)];

  scalarprods[3] += hh[2] * hh[5+(ldh*3)];         
  scalarprods[7] += hh[(ldh)+2] * hh[5+(ldh*4)];   
  scalarprods[12] += hh[(ldh*2)+2] * hh[5+(ldh*5)];

  scalarprods[6] += hh[1] * hh[5+(ldh*4)];         
  scalarprods[11] += hh[(ldh)+1] * hh[5+(ldh*5)];  


#endif /* BLOCK6 */
990

991
#if VEC_SET == 128 || VEC_SET == 256 || VEC_SET == 512
992
993
994
995
996
997
998
  #pragma ivdep
#endif
  for (i = BLOCK; i < nb; i++)
    {
#ifdef BLOCK2
      s += hh[i-1] * hh[(i+ldh)];
#endif
999

1000
#ifdef BLOCK4
1001
1002
1003
      s_1_2 += hh[i-1] * hh[(i+ldh)];           
      s_2_3 += hh[(ldh)+i-1] * hh[i+(ldh*2)];   
      s_3_4 += hh[(ldh*2)+i-1] * hh[i+(ldh*3)]; 
1004

1005
1006
1007
1008
1009
      s_1_3 += hh[i-2] * hh[i+(ldh*2)];         
      s_2_4 += hh[(ldh*1)+i-2] * hh[i+(ldh*3)]; 

      s_1_4 += hh[i-3] * hh[i+(ldh*3)];         
#endif /* BLOCK4 */
1010

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
#ifdef BLOCK6
      scalarprods[0] += hh[i-1] * hh[(i+ldh)];           
      scalarprods[2] += hh[(ldh)+i-1] * hh[i+(ldh*2)];   
      scalarprods[5] += hh[(ldh*2)+i-1] * hh[i+(ldh*3)]; 
      scalarprods[9] += hh[(ldh*3)+i-1] * hh[i+(ldh*4)]; 
      scalarprods[14] += hh[(ldh*4)+i-1] * hh[i+(ldh*5)];

      scalarprods[1] += hh[i-2] * hh[i+(ldh*2)];         
      scalarprods[4] += hh[(ldh*1)+i-2] * hh[i+(ldh*3)]; 
      scalarprods[8] += hh[(ldh*2)+i-2] * hh[i+(ldh*4)]; 
      scalarprods[13] += hh[(ldh*3)+i-2] * hh[i+(ldh*5)];

      scalarprods[3] += hh[i-3] * hh[i+(ldh*3)];         
      scalarprods[7] += hh[(ldh)+i-3] * hh[i+(ldh*4)];   
      scalarprods[12] += hh[(ldh*2)+i-3] * hh[i+(ldh*5)];

      scalarprods[6] += hh[i-4] * hh[i+(ldh*4)];         
      scalarprods[11] += hh[(ldh)+i-4] * hh[i+(ldh*5)];  

      scalarprods[10] += hh[i-5] * hh[i+(ldh*5)];        
#endif /* BLOCK6 */
1032
1033
1034
1035

    }

  // Production level kernel calls with padding
1036
1037
#ifdef BLOCK2

1038
#if  VEC_SET == 128 || VEC_SET == 1281
1039
#ifdef DOUBLE_PRECISION_REAL
1040
1041
1042
#define STEP_SIZE 12
#define ROW_LENGTH 12
#define UPPER_BOUND 10
1043
1044
#endif
#ifdef SINGLE_PRECISION_REAL
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
#define STEP_SIZE 24
#define ROW_LENGTH 24
#define UPPER_BOUND 20
#endif
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */

#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define STEP_SIZE 24
#define ROW_LENGTH 24
#define UPPER_BOUND 20
#endif
#ifdef SINGLE_PRECISION_REAL
#define STEP_SIZE 48
#define ROW_LENGTH 48
#define UPPER_BOUND 40
#endif
1062
#endif /*  VEC_SET == 256 */
1063

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define STEP_SIZE 32
#define ROW_LENGTH 32
#define UPPER_BOUND 24
#endif
#ifdef SINGLE_PRECISION_REAL
#define STEP_SIZE 64
#define ROW_LENGTH 64
#define UPPER_BOUND 48
#endif
#endif /*  VEC_SET == 512 */


1078
  for (i = 0; i < nq - UPPER_BOUND; i+= STEP_SIZE )
1079
    {
1080
1081
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_2hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
      worked_on += ROW_LENGTH;
1082
1083
1084
1085
1086
1087
1088
    }

  if (nq == i)
    {
      return;
    }

1089
1090
#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
1091
#ifdef DOUBLE_PRECISION_REAL
1092
#define ROW_LENGTH 10
1093
1094
#endif
#ifdef SINGLE_PRECISION_REAL
1095
#define ROW_LENGTH 20
1096
#endif
1097
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */
1098

1099
#if  VEC_SET == 256
1100
#ifdef DOUBLE_PRECISION_REAL
1101
#define ROW_LENGTH 20
1102
1103
#endif
#ifdef SINGLE_PRECISION_REAL
1104
#define ROW_LENGTH 40
1105
#endif
1106
#endif /* VEC_SET == 256 */
1107

1108
1109
1110
1111
1112
1113
1114
1115
1116
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 24
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 48
#endif
#endif /* VEC_SET == 512 */

1117
  if (nq-i == ROW_LENGTH)
1118
    {
1119
1120
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_2hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
      worked_on += ROW_LENGTH;
1121
    }
1122
1123
1124
1125
1126

#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 8
1127
#endif
1128
1129
1130
1131
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */
1132

1133
1134
1135
1136
#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
1137
#ifdef SINGLE_PRECISION_REAL
1138
1139
1140
1141
#define ROW_LENGTH 32
#endif
#endif /* VEC_SET == 256 */

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 32
#endif
#endif /* VEC_SET == 512 */


1152
  if (nq-i == ROW_LENGTH)
1153
    {
1154
1155
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_2hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
      worked_on += ROW_LENGTH;
1156
    }
1157
1158
1159
1160
1161

#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 6
1162
#endif
1163
1164
1165
1166
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 12
#endif
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */
1167

1168
#if  VEC_SET == 256
1169
#ifdef DOUBLE_PRECISION_REAL
1170
1171
1172
1173
1174
1175
1176
#define ROW_LENGTH 12
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 24
#endif
#endif /* VEC_SET == 256 */

1177
1178
1179
1180
1181
1182
1183
1184
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == 512 */
1185
  if (nq-i == ROW_LENGTH)
1186
    {
1187
1188
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_2hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
      worked_on += ROW_LENGTH;
1189
1190
    }

1191
1192
#if VEC_SET == 128 || VEC_SET == 1281 || VEC_SET == 256

1193
1194
1195
1196
1197
#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 4
#endif
1198
#ifdef SINGLE_PRECISION_REAL
1199
#define ROW_LENGTH 8
1200
#endif
1201
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */
1202

1203
#if  VEC_SET == 256
1204
#ifdef DOUBLE_PRECISION_REAL
1205
1206
1207
1208
1209
1210
1211
1212
1213
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == 256 */


  if (nq-i == ROW_LENGTH)
1214
    {
1215
1216
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_2hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
      worked_on += ROW_LENGTH;
1217
    }
1218
1219
1220
1221
1222
1223
1224
1225

#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 2
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 4
1226
#endif
1227
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */
1228

1229
1230
1231
1232
#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 4
#endif
1233
#ifdef SINGLE_PRECISION_REAL
1234
1235
1236
1237
1238
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET == 256 */

  if (nq-i == ROW_LENGTH)
1239
    {
1240
1241
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_2hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
      worked_on += ROW_LENGTH;
1242
1243
    }

1244
1245
#endif /* VEC_SET == 128 || VEC_SET == 1281 || VEC_SET == 256 */

1246
1247
1248
#endif /* BLOCK2 */

#ifdef BLOCK4
1249
1250
1251
1252


#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
1253
#ifdef DOUBLE_PRECISION_REAL
1254
1255
1256
1257
1258
1259
1260
1261
#define ROW_LENGTH 6
#define STEP_SIZE 6
#define UPPER_BOUND 4
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 12
#define STEP_SIZE 12
#define UPPER_BOUND 8
1262
#endif
1263
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */
1264

1265
1266
1267
1268
1269
1270
#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 12
#define STEP_SIZE 12
#define UPPER_BOUND 8
#endif
1271
#ifdef SINGLE_PRECISION_REAL
1272
1273
1274
1275
1276
1277
#define ROW_LENGTH 24
#define STEP_SIZE 24
#define UPPER_BOUND 16
#endif
#endif /* VEC_SET == 256 */

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 32
#define STEP_SIZE 32
#define UPPER_BOUND 24
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 64
#define STEP_SIZE 64
#define UPPER_BOUND 48
#endif
#endif /* VEC_SET == 512 */
1290
  for (i = 0; i < nq - UPPER_BOUND; i+= STEP_SIZE )
1291
    {
1292
1293
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_4hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
      worked_on += ROW_LENGTH;
1294
1295
1296
1297
1298
1299
1300
    }

  if (nq == i)
    {
      return;
    }

1301
1302
1303

#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
1304
#ifdef DOUBLE_PRECISION_REAL
1305
1306
1307
1308
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 8
1309
#endif
1310
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */
1311

1312
1313
1314
1315
#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 8
#endif
1316
#ifdef SINGLE_PRECISION_REAL
1317
1318
1319
1320
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == 256 */

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 24
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 48
#endif
#endif /* VEC_SET == 512 */


1331
  if (nq-i == ROW_LENGTH )
1332
    {
1333
1334
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_4hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
      worked_on += ROW_LENGTH;
1335
1336
    }

1337
1338
#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
1339
#ifdef DOUBLE_PRECISION_REAL
1340
#define ROW_LENGTH 2
1341
#endif
1342
1343
1344
1345
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 4
#endif
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */
1346

1347
1348
1349
1350
#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 4
#endif
1351
#ifdef SINGLE_PRECISION_REAL
1352
#define ROW_LENGTH 8
1353
#endif
1354
1355
#endif /* VEC_SET == 256 */

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 32
#endif
#endif /* VEC_SET == 512 */

   if (nq-i == ROW_LENGTH )
     {
       CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_4hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
       worked_on += ROW_LENGTH;
     }

#if VEC_SET == 512

#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == 512 */

1382
1383
1384
1385
1386
   if (nq-i == ROW_LENGTH )
     {
       CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_4hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
       worked_on += ROW_LENGTH;
     }
1387

1388
1389
#endif /* VEC_SET == 512 */

1390
1391
#endif /* BLOCK4 */

1392
#ifdef BLOCK6
1393
1394
1395

#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
1396
#ifdef DOUBLE_PRECISION_REAL
1397
1398
1399
#define ROW_LENGTH 4
#define STEP_SIZE 4
#define UPPER_BOUND 2
1400
1401
#endif
#ifdef SINGLE_PRECISION_REAL
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
#define ROW_LENGTH 8
#define STEP_SIZE 8
#define UPPER_BOUND 4
#endif
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */

#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 8
#define STEP_SIZE 8
#define UPPER_BOUND 4
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 16
#define STEP_SIZE 16
#define UPPER_BOUND 8
1418
#endif
1419
1420
#endif /* VEC_SET == 256 */

1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 32
#define STEP_SIZE 32
#define UPPER_BOUND 24
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 64
#define STEP_SIZE 64
#define UPPER_BOUND 48
#endif
#endif /* VEC_SET == 512 */

1434
1435
1436
1437
1438
  for (i = 0; i < nq - UPPER_BOUND; i+= STEP_SIZE)
    { 
      CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_6hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, scalarprods);
      worked_on += ROW_LENGTH;
    }
1439
1440
1441
1442
    if (nq == i)
      {
        return;
      }
1443
1444
1445

#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
1446
#ifdef DOUBLE_PRECISION_REAL
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
#define ROW_LENGTH 2
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 4
#endif
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */

#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 4
1457
1458
#endif
#ifdef SINGLE_PRECISION_REAL
1459
1460
1461
1462
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET == 256 */

1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 24
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 48
#endif
#endif /* VEC_SET == 512 */


1473
    if (nq -i == ROW_LENGTH )
1474
      {
1475
1476
        CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_6hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, scalarprods);
        worked_on += ROW_LENGTH;
1477
      }
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
#if VEC_SET == 512

#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 32
#endif
#endif /* VEC_SET == 512 */


    if (nq -i == ROW_LENGTH )
      {
        CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_6hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, scalarprods);
        worked_on += ROW_LENGTH;
      }

#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == 512 */


    if (nq -i == ROW_LENGTH )
      {
        CONCAT_6ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_6hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, scalarprods);
        worked_on += ROW_LENGTH;
      }
#endif /* VEC_SET == 512 */

1513
1514
#endif /* BLOCK6 */

1515
1516
1517
#ifdef WITH_DEBUG
  if (worked_on != nq)
    {
1518
      printf("Error in real SIMD_SET BLOCK BLOCK kernel %d %d\n", worked_on, nq);
1519
1520
1521
1522
1523
      abort();
    }
#endif
}

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
#undef ROW_LENGTH
#if  VEC_SET == 128 || VEC_SET == 1281
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 12
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 24
#endif
#endif /*  VEC_SET == 128 || VEC_SET == 1281 */

#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 24
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 48
#endif
#endif /* VEC_SET == 256 */
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551

#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
#define ROW_LENGTH 48
#endif
#ifdef SINGLE_PRECISION_REAL
#define ROW_LENGTH 96
#endif
#endif /* VEC_SET == 512 */

1552
1553
/*
 * Unrolled kernel that computes
1554
 * ROW_LENGTH rows of Q simultaneously, a
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
 * matrix Vector product with two householder
 */
#ifdef BLOCK2
/*
 * vectors + a rank 2 update is performed
 */
#endif
#ifdef BLOCK4
/*
 * vectors + a rank 1 update is performed
 */
#endif
1567
__forceinline void CONCAT_8ARGS(hh_trafo_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq, int ldh,
1568
#ifdef BLOCK2
1569
               DATA_TYPE s)
1570
1571
#endif
#ifdef BLOCK4
1572
1573
1574
1575
               DATA_TYPE s_1_2, DATA_TYPE s_1_3, DATA_TYPE s_2_3, DATA_TYPE s_1_4, DATA_TYPE s_2_4, DATA_TYPE s_3_4)
#endif 
#ifdef BLOCK6
               DATA_TYPE_PTR scalarprods)
1576
1577
1578
1579
1580
1581
1582
1583
#endif
  {
#ifdef BLOCK2
    /////////////////////////////////////////////////////
    // Matrix Vector Multiplication, Q [10 x nb+1] * hh
    // hh contains two householder vectors, with offset 1
    /////////////////////////////////////////////////////
#endif
1584
#if defined(BLOCK4) || defined(BLOCK6)
1585
1586
1587
1588
1589
1590
1591
1592
1593
    /////////////////////////////////////////////////////
    // Matrix Vector Multiplication, Q [10 x nb+3] * hh
    // hh contains four householder vectors
    /////////////////////////////////////////////////////
#endif

    int i;

#ifdef BLOCK2
1594
#if VEC_SET == 128
1595
1596
    // Needed bit mask for floating point sign flip
#ifdef DOUBLE_PRECISION_REAL
1597
1598
1599
1600
1601
    __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm_set1_epi64x(0x8000000000000000LL);
#endif
#ifdef SINGLE_PRECISION_REAL
    __SIMD_DATATYPE sign = _mm_castsi128_ps(_mm_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000));
#endif
1602
#endif /* VEC_SET == 128 */
1603
1604
1605
1606

#if  VEC_SET == 256
#ifdef DOUBLE_PRECISION_REAL
        __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm256_set1_epi64x(0x8000000000000000);
1607
1608
#endif
#ifdef SINGLE_PRECISION_REAL
1609
1610
1611
1612
        __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm256_set1_epi32(0x80000000);
#endif
#endif /* VEC_SET == 256 */

1613
1614
#if  VEC_SET == 512
#ifdef DOUBLE_PRECISION_REAL
1615
        __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm512_set1_epi64(0x8000000000000000);
1616
1617
1618
1619
1620
1621
#endif
#ifdef SINGLE_PRECISION_REAL
        __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm512_set1_epi32(0x80000000);
#endif
#endif /* VEC_SET == 512 */

1622
1623
1624
1625
1626
1627
1628
    __SIMD_DATATYPE x1 = _SIMD_LOAD(&q[ldq]);
    __SIMD_DATATYPE x2 = _SIMD_LOAD(&q[ldq+offset]);
    __SIMD_DATATYPE x3 = _SIMD_LOAD(&q[ldq+2*offset]);
    __SIMD_DATATYPE x4 = _SIMD_LOAD(&q[ldq+3*offset]);
    __SIMD_DATATYPE x5 = _SIMD_LOAD(&q[ldq+4*offset]);
    __SIMD_DATATYPE x6 = _SIMD_LOAD(&q[ldq+5*offset]);

1629
1630
#if VEC_SET == 128 || VEC_SET == 512
    __SIMD_DATATYPE h1 = _SIMD_SET1(hh[ldh+1]);
1631
1632
#endif
#if VEC_SET == 1281
1633
    __SIMD_DATATYPE h1 = _SIMD_SET(hh[ldh+1], hh[ldh+1]);
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
#endif
#if VEC_SET == 256
    __SIMD_DATATYPE h1 = _SIMD_BROADCAST(&hh[ldh+1]);
#endif
 
    __SIMD_DATATYPE h2;
#ifdef __ELPA_USE_FMA__
    __SIMD_DATATYPE q1 = _SIMD_LOAD(q);
    __SIMD_DATATYPE y1 = _SIMD_FMA(x1, h1, q1);
    __SIMD_DATATYPE q2 = _SIMD_LOAD(&q[offset]);
    __SIMD_DATATYPE y2 = _SIMD_FMA(x2, h1, q2);
    __SIMD_DATATYPE q3 = _SIMD_LOAD(&q[2*offset]);
    __SIMD_DATATYPE y3 = _SIMD_FMA(x3, h1, q3);
    __SIMD_DATATYPE q4 = _SIMD_LOAD(&q[3*offset]);
    __SIMD_DATATYPE y4 = _SIMD_FMA(x4, h1, q4);
    __SIMD_DATATYPE q5 = _SIMD_LOAD(&q[4*offset]);
    __SIMD_DATATYPE y5 = _SIMD_FMA(x5, h1, q5);
    __SIMD_DATATYPE q6 = _SIMD_LOAD(&q[5*offset]);
    __SIMD_DATATYPE y6 = _SIMD_FMA(x6, h1, q6);
#else
    __SIMD_DATATYPE q1 = _SIMD_LOAD(q);
    __SIMD_DATATYPE y1 = _SIMD_ADD(q1, _SIMD_MUL(x1, h1));
    __SIMD_DATATYPE q2 = _SIMD_LOAD(&q[offset]);
    __SIMD_DATATYPE y2 = _SIMD_ADD(q2, _SIMD_MUL(x2, h1));
    __SIMD_DATATYPE q3 = _SIMD_LOAD(&q[2*offset]);
    __SIMD_DATATYPE y3 = _SIMD_ADD(q3, _SIMD_MUL(x3, h1));
    __SIMD_DATATYPE q4 = _SIMD_LOAD(&q[3*offset]);
    __SIMD_DATATYPE y4 = _SIMD_ADD(q4, _SIMD_MUL(x4, h1));
    __SIMD_DATATYPE q5 = _SIMD_LOAD(&q[4*offset]);
    __SIMD_DATATYPE y5 = _SIMD_ADD(q5, _SIMD_MUL(x5, h1));
    __SIMD_DATATYPE q6 = _SIMD_LOAD(&q[5*offset]);
    __SIMD_DATATYPE y6 = _SIMD_ADD(q6, _SIMD_MUL(x6, h1));
#endif
1667
1668
1669
#endif /* BLOCK2 */

#ifdef BLOCK4
1670
1671
1672
1673
1674
    __SIMD_DATATYPE a1_1 = _SIMD_LOAD(&q[ldq*3]);
    __SIMD_DATATYPE a2_1 = _SIMD_LOAD(&q[ldq*2]);
    __SIMD_DATATYPE a3_1 = _SIMD_LOAD(&q[ldq]);  
    __SIMD_DATATYPE a4_1 = _SIMD_LOAD(&q[0]);    

1675
#if VEC_SET == 128 || VEC_SET == 512
1676
1677
1678
1679
1680
1681
    __SIMD_DATATYPE h_2_1 = _SIMD_SET1(hh[ldh+1]);    
    __SIMD_DATATYPE h_3_2 = _SIMD_SET1(hh[(ldh*2)+1]);
    __SIMD_DATATYPE h_3_1 = _SIMD_SET1(hh[(ldh*2)+2]);
    __SIMD_DATATYPE h_4_3 = _SIMD_SET1(hh[(ldh*3)+1]);
    __SIMD_DATATYPE h_4_2 = _SIMD_SET1(hh[(ldh*3)+2]);
    __SIMD_DATATYPE h_4_1 = _SIMD_SET1(hh[(ldh*3)+3]);
1682
1683
1684
#endif

#if VEC_SET == 1281
1685
1686
1687
1688
1689
1690
    __SIMD_DATATYPE h_2_1 = _SIMD_SET(hh[ldh+1], hh[ldh+1]);
    __SIMD_DATATYPE h_3_2 = _SIMD_SET(hh[(ldh*2)+1], hh[(ldh*2)+1]);
    __SIMD_DATATYPE h_3_1 = _SIMD_SET(hh[(ldh*2)+2], hh[(ldh*2)+2]);
    __SIMD_DATATYPE h_4_3 = _SIMD_SET(hh[(ldh*3)+1], hh[(ldh*3)+1]);
    __SIMD_DATATYPE h_4_2 = _SIMD_SET(hh[(ldh*3)+2], hh[(ldh*3)+2]);
    __SIMD_DATATYPE h_4_1 = _SIMD_SET(hh[(ldh*3)+3], hh[(ldh*3)+3]);
1691
1692
#endif

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
#if VEC_SET == 256
    __SIMD_DATATYPE h_2_1 = _SIMD_BROADCAST(&hh[ldh+1]);
    __SIMD_DATATYPE h_3_2 = _SIMD_BROADCAST(&hh[(ldh*2)+1]);
    __SIMD_DATATYPE h_3_1 = _SIMD_BROADCAST(&hh[(ldh*2)+2]);
    __SIMD_DATATYPE h_4_3 = _SIMD_BROADCAST(&hh[(ldh*3)+1]);
    __SIMD_DATATYPE h_4_2 = _SIMD_BROADCAST(&hh[(ldh*3)+2]);
    __SIMD_DATATYPE h_4_1 = _SIMD_BROADCAST(&hh[(ldh*3)+3]);
#endif

#ifdef __ELPA_USE_FMA__
    register __SIMD_DATATYPE w1 = _SIMD_FMA(a3_1, h_4_3, a4_1);
    w1 = _SIMD_FMA(a2_1, h_4_2, w1);
    w1 = _SIMD_FMA(a1_1, h_4_1, w1);
    register __SIMD_DATATYPE z1 = _SIMD_FMA(a2_1, h_3_2, a3_1);
    z1 = _SIMD_FMA(a1_1, h_3_1, z1);
    register __SIMD_DATATYPE y1 = _SIMD_FMA(a1_1, h_2_1, a2_1);
    register __SIMD_DATATYPE x1 = a1_1;
#else
1711
1712
1713
1714
1715
1716
1717
    register __SIMD_DATATYPE w1 = _SIMD_ADD(a4_1, _SIMD_MUL(a3_1, h_4_3));
    w1 = _SIMD_ADD(w1, _SIMD_MUL(a2_1, h_4_2));                          
    w1 = _SIMD_ADD(w1, _SIMD_MUL(a1_1, h_4_1));                          
    register __SIMD_DATATYPE z1 = _SIMD_ADD(a3_1, _SIMD_MUL(a2_1, h_3_2));
    z1 = _SIMD_ADD(z1, _SIMD_MUL(a1_1, h_3_1));                          
    register __SIMD_DATATYPE y1 = _SIMD_ADD(a2_1, _SIMD_MUL(a1_1, h_2_1));
    register __SIMD_DATATYPE x1 = a1_1;
1718
#endif /* __ELPA_USE_FMA__ */
1719
1720
1721
1722
1723
1724

    __SIMD_DATATYPE a1_2 = _SIMD_LOAD(&q[(ldq*3)+offset]);                  
    __SIMD_DATATYPE a2_2 = _SIMD_LOAD(&q[(ldq*2)+offset]);
    __SIMD_DATATYPE a3_2 = _SIMD_LOAD(&q[ldq+offset]);
    __SIMD_DATATYPE a4_2 = _SIMD_LOAD(&q[0+offset]);

1725
1726
1727
1728
1729
1730
1731
1732
1733
#ifdef __ELPA_USE_FMA__
    register __SIMD_DATATYPE w2 = _SIMD_FMA(a3_2, h_4_3, a4_2);
    w2 = _SIMD_FMA(a2_2, h_4_2, w2);
    w2 = _SIMD_FMA(a1_2, h_4_1, w2);
    register __SIMD_DATATYPE z2 = _SIMD_FMA(a2_2, h_3_2, a3_2);
    z2 = _SIMD_FMA(a1_2, h_3_1, z2);
    register __SIMD_DATATYPE y2 = _SIMD_FMA(a1_2, h_2_1, a2_2);
    register __SIMD_DATATYPE x2 = a1_2;
#else
1734
1735
1736
1737
1738
1739
1740
    register __SIMD_DATATYPE w2 = _SIMD_ADD(a4_2, _SIMD_MUL(a3_2, h_4_3));
    w2 = _SIMD_ADD(w2, _SIMD_MUL(a2_2, h_4_2));
    w2 = _SIMD_ADD(w2, _SIMD_MUL(a1_2, h_4_1));
    register __SIMD_DATATYPE z2 = _SIMD_ADD(a3_2, _SIMD_MUL(a2_2, h_3_2));
    z2 = _SIMD_ADD(z2, _SIMD_MUL(a1_2, h_3_1));
    register __SIMD_DATATYPE y2 = _SIMD_ADD(a2_2, _SIMD_MUL(a1_2, h_2_1));
    register __SIMD_DATATYPE x2 = a1_2;
1741
#endif /* __ELPA_USE_FMA__ */
1742
1743
1744
1745
1746
1747

    __SIMD_DATATYPE a1_3 = _SIMD_LOAD(&q[(ldq*3)+2*offset]);
    __SIMD_DATATYPE a2_3 = _SIMD_LOAD(&q[(ldq*2)+2*offset]);
    __SIMD_DATATYPE a3_3 = _SIMD_LOAD(&q[ldq+2*offset]);
    __SIMD_DATATYPE a4_3 = _SIMD_LOAD(&q[0+2*offset]);

1748
1749
1750
1751
1752
1753
1754
1755
1756
#ifdef __ELPA_USE_FMA__
    register __SIMD_DATATYPE w3 = _SIMD_FMA(a3_3, h_4_3, a4_3);
    w3 = _SIMD_FMA(a2_3, h_4_2, w3);
    w3 = _SIMD_FMA(a1_3, h_4_1, w3);
    register __SIMD_DATATYPE z3 = _SIMD_FMA(a2_3, h_3_2, a3_3);
    z3 = _SIMD_FMA(a1_3, h_3_1, z3);
    register __SIMD_DATATYPE y3 = _SIMD_FMA(a1_3, h_2_1, a2_3);
    register __SIMD_DATATYPE x3 = a1_3;
#else
1757
1758
1759
1760
1761
1762
1763
    register __SIMD_DATATYPE w3 = _SIMD_ADD(a4_3, _SIMD_MUL(a3_3, h_4_3));
    w3 = _SIMD_ADD(w3, _SIMD_MUL(a2_3, h_4_2));
    w3 = _SIMD_ADD(w3, _SIMD_MUL(a1_3, h_4_1));
    register __SIMD_DATATYPE z3 = _SIMD_ADD(a3_3, _SIMD_MUL(a2_3, h_3_2));
    z3 = _SIMD_ADD(z3, _SIMD_MUL(a1_3, h_3_1));
    register __SIMD_DATATYPE y3 = _SIMD_ADD(a2_3, _SIMD_MUL(a1_3, h_2_1));
    register __SIMD_DATATYPE x3 = a1_3;
1764
#endif /* __ELPA_USE_FMA__ */
1765
1766
1767
1768
1769
1770

    __SIMD_DATATYPE a1_4 = _SIMD_LOAD(&q[(ldq*3)+3*offset]);
    __SIMD_DATATYPE a2_4 = _SIMD_LOAD(&q[(ldq*2)+3*offset]);
    __SIMD_DATATYPE a3_4 = _SIMD_LOAD(&q[ldq+3*offset]);
    __SIMD_DATATYPE a4_4 = _SIMD_LOAD(&q[0+3*offset]);

1771
1772
1773
1774
1775
1776
1777
1778
1779
#ifdef __ELPA_USE_FMA__
    register __SIMD_DATATYPE w4 = _SIMD_FMA(a3_4, h_4_3, a4_4);
    w4 = _SIMD_FMA(a2_4, h_4_2, w4);
    w4 = _SIMD_FMA(a1_4, h_4_1, w4);
    register __SIMD_DATATYPE z4 = _SIMD_FMA(a2_4, h_3_2, a3_4);
    z4 = _SIMD_FMA(a1_4, h_3_1, z4);
    register __SIMD_DATATYPE y4 = _SIMD_FMA(a1_4, h_2_1, a2_4);
    register __SIMD_DATATYPE x4 = a1_4;
#else
1780
1781
1782
1783
1784
1785
1786
    register __SIMD_DATATYPE w4 = _SIMD_ADD(a4_4, _SIMD_MUL(a3_4, h_4_3));
    w4 = _SIMD_ADD(w4, _SIMD_MUL(a2_4, h_4_2));
    w4 = _SIMD_ADD(w4, _SIMD_MUL(a1_4, h_4_1));
    register __SIMD_DATATYPE z4 = _SIMD_ADD(a3_4, _SIMD_MUL(a2_4, h_3_2));
    z4 = _SIMD_ADD(z4, _SIMD_MUL(a1_4, h_3_1));
    register __SIMD_DATATYPE y4 = _SIMD_ADD(a2_4, _SIMD_MUL(a1_4, h_2_1));
    register __SIMD_DATATYPE x4 = a1_4;
1787
#endif /* __ELPA_USE_FMA__ */
1788
1789
1790
1791
1792
1793

    __SIMD_DATATYPE a1_5 = _SIMD_LOAD(&q[(ldq*3)+4*offset]);
    __SIMD_DATATYPE a2_5 = _SIMD_LOAD(&q[(ldq*2)+4*offset]);
    __SIMD_DATATYPE a3_5 = _SIMD_LOAD(&q[ldq+4*offset]);
    __SIMD_DATATYPE a4_5 = _SIMD_LOAD(&q[0+4*offset]);