elpa_impl.F90 84 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56
57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62

63
   !> \brief methods available with the elpa_impl_t type
64
   contains
65
     !> \brief the puplic methods
66
     ! con-/destructor
67
68
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
69

70
     ! KV store
71
72
73
74
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
75

76
77
78
79
80
81

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times


82
     !> \brief the private methods
83

84
     procedure, private :: elpa_eigenvectors_d                  !< private methods to implement the solve step for real/complex
85
                                                                !< double/single matrices
86
87
88
     procedure, private :: elpa_eigenvectors_f
     procedure, private :: elpa_eigenvectors_dc
     procedure, private :: elpa_eigenvectors_fc
89

Andreas Marek's avatar
Andreas Marek committed
90
91
92
93
94
95
     procedure, private :: elpa_eigenvalues_d                   !< private methods to implement the solve step for real/complex
                                                                !< double/single matrices; only the eigenvalues are computed
     procedure, private :: elpa_eigenvalues_f
     procedure, private :: elpa_eigenvalues_dc
     procedure, private :: elpa_eigenvalues_fc

96
97
     procedure, private :: elpa_hermitian_multiply_d            !< private methods to implement a "hermitian" multiplication of matrices a and b
     procedure, private :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
Andreas Marek's avatar
Andreas Marek committed
98
     procedure, private :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
99
     procedure, private :: elpa_hermitian_multiply_fc
100

Andreas Marek's avatar
Andreas Marek committed
101
     procedure, private :: elpa_cholesky_d                      !< private methods to implement the cholesky factorisation of
102
                                                                !< real/complex double/single matrices
103
104
105
     procedure, private :: elpa_cholesky_f
     procedure, private :: elpa_cholesky_dc
     procedure, private :: elpa_cholesky_fc
106

Andreas Marek's avatar
Andreas Marek committed
107
     procedure, private :: elpa_invert_trm_d                    !< private methods to implement the inversion of a triangular
108
                                                                !< real/complex double/single matrix
109
110
111
     procedure, private :: elpa_invert_trm_f
     procedure, private :: elpa_invert_trm_dc
     procedure, private :: elpa_invert_trm_fc
112

Andreas Marek's avatar
Andreas Marek committed
113
114
     procedure, private :: elpa_solve_tridi_d                   !< private methods to implement the solve step for a real valued
     procedure, private :: elpa_solve_tridi_f                   !< double/single tridiagonal matrix
115

116
     procedure, private :: associate_int => elpa_associate_int  !< private method to set some pointers
117

118
  end type elpa_impl_t
119

120
  !> \brief the implementation of the private methods
121
  contains
122
123
124
125
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
126
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
127
128
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
129
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
130

131
132
133
134
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
135

Andreas Marek's avatar
Andreas Marek committed
136
      ! check whether init has ever been called
137
      if ( elpa_initialized() .ne. ELPA_OK) then
138
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
139
140
        if(present(error)) then
          error = ELPA_ERROR
141
        endif
Andreas Marek's avatar
Andreas Marek committed
142
143
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
144

145
      obj%index = elpa_index_instance_c()
146
147

      ! Associate some important integer pointers for convenience
148
149
150
151
152
153
154
155
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
156
157
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
158

159
160
161
162
163
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
164
    !c> elpa_t elpa_allocate();
165
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
166
167
168
169
170
171
172
173
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

174
175
176
177
178
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
179
    !c> void elpa_deallocate(elpa_t handle);
180
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
181
182
183
184
185
186
187
188
189
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


190
191
192
193
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
194
    function elpa_setup(self) result(error)
195
      use elpa1_impl, only : elpa_get_communicators_impl
196
      class(elpa_impl_t), intent(inout) :: self
197
198
199
      integer                           :: error
      integer                           :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                           mpierr, process_row, process_col, timings
200

201
#ifdef WITH_MPI
202
203
204
205
      error = ELPA_ERROR
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
206

207
208
209
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
210
        mpierr = elpa_get_communicators_impl(&
211
212
213
                        mpi_comm_parent, &
                        process_row, &
                        process_col, &
214
215
                        mpi_comm_rows, &
                        mpi_comm_cols)
216

217
218
219
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

220
        error = ELPA_OK
221
      endif
222

223
224
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
        error = ELPA_OK
225
      endif
226
227
228
#else
      error = ELPA_OK
#endif
229

230
#ifdef HAVE_DETAILED_TIMINGS
231
232
      call self%get("timings",timings)
      if (timings == 1) then
233
234
        call self%timer%enable()
      endif
235
#endif
236

237
    end function
238

239
240
241
242
243
244
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
245
    !c> int elpa_setup(elpa_t handle);
246
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
247
248
249
250
251
252
253
254
255
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


256
257
258
259
260
261
262
263
264
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
265
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
266
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
267
268
269
270
271
272
273
274
275
276
277
278
279
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


280
281
282
283
284
285
286
287
288
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
289
290
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
291
292
293
294
295
296
297
298
299
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
300
301
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
302
303


304
305
306
307
308
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
309
    function elpa_is_set(self, name) result(state)
310
311
      use iso_c_binding
      use elpa_generated_fortran_interfaces
312
      class(elpa_impl_t)       :: self
313
      character(*), intent(in) :: name
314
      integer                  :: state
315

316
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
317
318
    end function

319
320
321
322
323
324
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
325
326
327
328
329
330
331
332
333
334
335
336
337
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
338
339
340
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
341
342
343
344
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
345

346
347
      nullify(string)

348
      call self%get(option_name, val, actual_error)
349
350
351
352
353
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
354
355
      endif

356
357
358
359
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
360

361
362
363
364
      if (present(error)) then
        error = actual_error
      endif
    end function
365

Andreas Marek's avatar
Andreas Marek committed
366

367
368
369
370
371
372
373
374
375
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
376
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
377
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
378
379
380
381
382
383
384
385
386
387
388
389
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

390

391
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
392
393
394
395
396
397
398
399
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
400
401
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
402
403
404
405
406
407
408
409
410
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
411
412
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
413
414


415
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
416
      use iso_c_binding
417
      use elpa_generated_fortran_interfaces
418
419
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
420
421
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
422

423
424
      type(c_ptr)                    :: value_p

425
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
426
427
428
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
429
430
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
431

432

433
434
435
436
437
438
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

439
#ifdef HAVE_DETAILED_TIMINGS
440
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
441
442
443
#else
      s = -1.0
#endif
444
445
446
447
448
    end function


    subroutine elpa_print_times(self)
      class(elpa_impl_t), intent(in) :: self
449
#ifdef HAVE_DETAILED_TIMINGS
450
      call self%timer%print()
451
#endif
452
453
    end subroutine

454
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
455
    !>
456
457
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
479
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
480
481
      use elpa2_impl
      use elpa1_impl
482
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
483
      use iso_c_binding
484
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
485

486
487
488
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
489
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
490
#endif
491
      real(kind=c_double) :: ev(self%na)
492

493
      integer, optional   :: error
494
      integer(kind=c_int) :: solver
495
      logical             :: success_l
496

497

498
499
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
500
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
501

502
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
503
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
504
505
506
507
      else
        print *,"unknown solver"
        stop
      endif
508

509
      if (present(error)) then
510
        if (success_l) then
511
          error = ELPA_OK
512
        else
513
          error = ELPA_ERROR
514
515
516
517
518
519
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

520
521
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
522
523
524
525
526
527
528
529
530
531
532
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

533
      call elpa_eigenvectors_d(self, a, ev, q, error)
534
535
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
536

537
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
538
    !>
539
540
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
562
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
563
564
      use elpa2_impl
      use elpa1_impl
565
566
      use elpa_utilities, only : error_unit
      use iso_c_binding
567
      class(elpa_impl_t)  :: self
568
569
570
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
571
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
572
#endif
573
      real(kind=c_float)  :: ev(self%na)
574

575
      integer, optional   :: error
576
      integer(kind=c_int) :: solver
577
#ifdef WANT_SINGLE_PRECISION_REAL
578
      logical             :: success_l
579

580
581
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
582
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
583

584
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
585
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
586
587
588
589
      else
        print *,"unknown solver"
        stop
      endif
590

591
      if (present(error)) then
592
        if (success_l) then
593
          error = ELPA_OK
594
        else
595
          error = ELPA_ERROR
596
597
598
599
600
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
601
      print *,"This installation of the ELPA library has not been build with single-precision support"
602
      error = ELPA_ERROR
603
604
605
#endif
    end subroutine

606

607
608
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
609
610
611
612
613
614
615
616
617
618
619
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

620
      call elpa_eigenvectors_f(self, a, ev, q, error)
621
622
623
    end subroutine


624
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
625
    !>
626
627
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
649
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
650
651
      use elpa2_impl
      use elpa1_impl
652
653
      use elpa_utilities, only : error_unit
      use iso_c_binding
654
      class(elpa_impl_t)             :: self
655

656
657
658
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
659
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
660
#endif
661
      real(kind=c_double)            :: ev(self%na)
662

663
      integer, optional              :: error
664
      integer(kind=c_int)            :: solver
665
      logical                        :: success_l
666

667
668
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
669
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
670

671
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
672
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
673
674
675
676
      else
        print *,"unknown solver"
        stop
      endif
677

678
      if (present(error)) then
679
        if (success_l) then
680
          error = ELPA_OK
681
        else
682
          error = ELPA_ERROR
683
684
685
686
687
688
689
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


690
691
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
692
693
694
695
696
697
698
699
700
701
702
703
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

704
      call elpa_eigenvectors_dc(self, a, ev, q, error)
705
706
707
    end subroutine


708
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
709
    !>
710
711
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
733
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
734
735
      use elpa2_impl
      use elpa1_impl
736
737
738
      use elpa_utilities, only : error_unit

      use iso_c_binding
739
      class(elpa_impl_t)            :: self
740
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
741
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
742
#else
Andreas Marek's avatar
Andreas Marek committed
743
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
744
#endif
Andreas Marek's avatar
Andreas Marek committed
745
      real(kind=c_float)            :: ev(self%na)
746

747
      integer, optional             :: error
748
      integer(kind=c_int)           :: solver
749
#ifdef WANT_SINGLE_PRECISION_COMPLEX
750
      logical                       :: success_l
751

752
753
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
754
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
755

756
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
757
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
758
759
760
761
      else
        print *,"unknown solver"
        stop
      endif
762

763
      if (present(error)) then
764
        if (success_l) then
765
          error = ELPA_OK
766
        else
767
          error = ELPA_ERROR
768
769
770
771
772
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
773
      print *,"This installation of the ELPA library has not been build with single-precision support"
774
      error = ELPA_ERROR
775
776
777
#endif
    end subroutine

778

779
780
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
781
782
783
784
785
786
787
788
789
790
791
792
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

793
      call elpa_eigenvectors_fc(self, a, ev, q, error)
794
795
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self

#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
912
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_f(elpa_t handle, float *a, float *ev, int *error);
    subroutine elpa_eigenvalues_f_c(handle, a_p, ev_p,  error) bind(C, name="elpa_eigenvalues_f")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_f(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_dc: class method to solve the eigenvalue problem for double complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_dc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)             :: self

#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

      integer, optional              :: error
      integer(kind=c_int)            :: solver
      logical                        :: success_l

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


    !c> void elpa_eigenvalues_dc(elpa_t handle, double complex *a, double *ev, int *error);
    subroutine elpa_eigenvalues_dc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_dc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_dc(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_fc: class method to solve the eigenvalue problem for float complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_fc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit

      use iso_c_binding
      class(elpa_impl_t)            :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)            :: ev(self%na)

      integer, optional             :: error
      integer(kind=c_int)           :: solver
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1072
      logical                       :: success_l
Andreas Marek's avatar
Andreas Marek committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_fc(elpa_t handle, float complex *a, float *ev, int *error);
    subroutine elpa_eigenvalues_fc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_fc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_fc(self, a, ev, error)
    end subroutine



Andreas Marek's avatar
Andreas Marek committed
1119
    !> \brief  elpa_hermitian_multiply_d: class method to perform C : = A**T * B for double real matrices
1120
1121
1122
    !>         where   A is a square matrix (self%na,self%na) which is optionally upper or lower triangular
    !>                 B is a (self%na,ncb) matrix
    !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar
Andreas Marek committed
1123
1124
1125
1126
1127
1128
1129
    !>                   triangle may be computed
    !>
    !> the MPI commicators and the block-cyclic distribution block size are already known to the type.
    !> Thus the class method "setup" must be called BEFORE this method is used
    !>
    !> \details
    !>
1130
    !> \param  self                 class(elpa_t), the ELPA object
Andreas Marek's avatar
Andreas Marek committed
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    !> \param  uplo_a               'U' if A is upper triangular
    !>                              'L' if A is lower triangular
    !>                              anything else if A is a full matrix
    !>                              Please note: This pertains to the original A (as set in the calling program)
    !>                                           whereas the transpose of A is used for calculations
    !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
    !>                              i.e. it may contain arbitrary numbers
    !> \param uplo_c                'U' if only the upper diagonal part of C is needed
    !>                              'L' if only the upper diagonal part of C is needed
    !>                              anything else if the full matrix C is needed
    !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
    !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
    !> \param ncb                   Number of columns  of global matrices B and C
    !> \param a                     matrix a
1145
1146
    !> \param local_nrows           number of rows of local (sub) matrix a, set with class method set("local_nrows",value)
    !> \param local_ncols           number of columns of local (sub) matrix a, set with class method set("local_ncols",value)
Andreas Marek's avatar
Andreas Marek committed
1147
1148
1149
1150
1151
1152
1153
    !> \param b                     matrix b
    !> \param nrows_b               number of rows of local (sub) matrix b
    !> \param ncols_b               number of columns of local (sub) matrix b
    !> \param c                     matrix c
    !> \param nrows_c               number of rows of local (sub) matrix c
    !> \param ncols_c               number of columns of local (sub) matrix c
    !> \param error                 optional argument, error code which can be queried with elpa_strerr
1154
    subroutine elpa_hermitian_multiply_d (self,uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
1155
                                          c, nrows_c, ncols_c, error)
1156
      use iso_c_binding
1157
      use elpa1_auxiliary_impl
1158
      class(elpa_impl_t)              :: self
1159
      character*1                     :: uplo_a, uplo_c
1160
      integer(kind=c_int), intent(in) :: nrows_b, ncols_b, nrows_c, ncols_c, ncb
1161
#ifdef USE_ASSUMED_SIZE
1162
      real(kind=c_double)             :: a(self%local_nrows,*), b(nrows_b,*), c(nrows_c,*)
1163
#else
1164
      real(kind=c_double)             :: a(self%local_nrows,self%local_ncols), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
1165
#endif
1166
      integer, optional               :: error
1167
1168
      logical                         :: success_l

1169
      success_l = elpa_mult_at_b_real_double_impl(self, uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
1170
                                                  c, nrows_c, ncols_c)
1171
      if (present(error)) then
1172
        if (success_l) then
1173
          error = ELPA_OK
1174
        else
1175
          error = ELPA_ERROR
1176
1177
        endif
      else if (.not. success_l) then
1178
        write(error_unit,'(a)') "ELPA: Error in hermitian_multiply() and you did not check for errors!"
1179
1180
1181
      endif
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
1182
    !> \brief  elpa_hermitian_multiply_f: class method to perform C : = A**T * B for float real matrices