elpa_c_interface.F90 16.8 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
Andreas Marek's avatar
Andreas Marek committed
8
9
10
11
12
13
14
15
16
17
18
19
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
20
!    http://elpa.mpcdf.mpg.de/
Andreas Marek's avatar
Andreas Marek committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".

#include "config-f90.h"
Andreas Marek's avatar
Andreas Marek committed
51
  !c> #include <complex.h>
Andreas Marek's avatar
Andreas Marek committed
52

53
  !c> /*! \brief C old, deprecated interface to create the MPI communicators for ELPA
54
55
56
57
58
59
60
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
Andreas Marek's avatar
Andreas Marek committed
61
  !c> int elpa_get_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
62
  function get_elpa_row_col_comms_wrapper_c_name1(mpi_comm_world, my_prow, my_pcol, &
Andreas Marek's avatar
Andreas Marek committed
63
64
65
66
67
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="elpa_get_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

Andreas Marek's avatar
Andreas Marek committed
68
    implicit none
Andreas Marek's avatar
Andreas Marek committed
69
70
71
72
73
74
75
76
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  !c> #include <complex.h>

  !c> /*! \brief C interface to create the MPI communicators for ELPA
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
  !c> int get_elpa_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
  function get_elpa_row_col_comms_wrapper_c_name2(mpi_comm_world, my_prow, my_pcol, &
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="get_elpa_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

    implicit none
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function



106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  !c>  /*! \brief C interface to solve the real eigenvalue problem with 1-stage solver
  !c>  *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c>*/
128
  !c> int elpa_solve_evp_real_1stage(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
129
130
  function solve_elpa1_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
Andreas Marek's avatar
Andreas Marek committed
131
132
133
134
135
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage")

    use, intrinsic :: iso_c_binding
    use elpa1, only : solve_evp_real

Andreas Marek's avatar
Andreas Marek committed
136
    implicit none
Andreas Marek's avatar
Andreas Marek committed
137
    integer(kind=c_int)                    :: success
138
139
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
Andreas Marek's avatar
Andreas Marek committed
140
141
142

    logical                                :: successFortran

143
    successFortran = solve_evp_real(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
144
145
146
147
148
149
150
151

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
152
153


154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
  !c> /*! \brief C interface to solve the complex eigenvalue problem with 1-stage solver
  !c> *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
176
  !c> int elpa_solve_evp_complex_1stage(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
177
178
  function solve_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
Andreas Marek's avatar
Andreas Marek committed
179
180
181
182
183
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage")

    use, intrinsic :: iso_c_binding
    use elpa1, only : solve_evp_complex

Andreas Marek's avatar
Andreas Marek committed
184
    implicit none
Andreas Marek's avatar
Andreas Marek committed
185
    integer(kind=c_int)                    :: success
186
187
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
Andreas Marek's avatar
Andreas Marek committed
188
189
190
191
    real(kind=c_double)                    :: ev(1:na)

    logical                                :: successFortran

192
    successFortran = solve_evp_complex(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
193
194
195
196
197
198
199
200

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  !c> /*! \brief C interface to solve the real eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
226
  !c> int elpa_solve_evp_real_2stage(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
227
228
  function solve_elpa2_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
Andreas Marek's avatar
Andreas Marek committed
229
230
231
232
233
234
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage")

    use, intrinsic :: iso_c_binding
    use elpa2, only : solve_evp_real_2stage

Andreas Marek's avatar
Andreas Marek committed
235
    implicit none
Andreas Marek's avatar
Andreas Marek committed
236
    integer(kind=c_int)                    :: success
237
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
238
239
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_REAL_ELPA_KERNEL_API, useQR
240
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), ev(1:na), q(1:ldq,1:matrixCols)
Andreas Marek's avatar
Andreas Marek committed
241
242
243
244
245
246
247
248
249
250
251



    logical                                :: successFortran, useQRFortran

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

Andreas Marek's avatar
Andreas Marek committed
252
253
    successFortran = solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
Andreas Marek's avatar
Andreas Marek committed
254
255
256
257
258
259
260
261
262
263
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

  !c> /*! \brief C interface to solve the complex eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
290
  !c> int elpa_solve_evp_complex_2stage(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
291
292
  function solve_elpa2_evp_complex_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
Andreas Marek's avatar
Andreas Marek committed
293
294
295
296
297
298
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage")

    use, intrinsic :: iso_c_binding
    use elpa2, only : solve_evp_complex_2stage

Andreas Marek's avatar
Andreas Marek committed
299
    implicit none
Andreas Marek's avatar
Andreas Marek committed
300
    integer(kind=c_int)                    :: success
301
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
302
303
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
304
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
Andreas Marek's avatar
Andreas Marek committed
305
306
307
    real(kind=c_double)                    :: ev(1:na)
    logical                                :: successFortran

308
    successFortran = solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
Andreas Marek's avatar
Andreas Marek committed
309
310
311
312
313
314
315
316
317
318
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function