elpa2.F90 57.2 KB
Newer Older
1
!   This file is part of ELPA.
2
3
4
5
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), fomerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
14
15
16
17
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
18
!    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
!    enhancements authored by Intel Corporation which is not part of
20
!    the ELPA consortium.
21
22
!
!    More information can be found here:
23
!    http://elpa.mpcdf.mpg.de/
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"
64
!> \brief Fortran module which provides the routines to use the 2-stage ELPA solver
65
66
67
68
module ELPA2

! Version 1.1.2, 2011-02-21

69
  use elpa_utilities
70
  use elpa1, only : elpa_print_times, time_evp_back, time_evp_fwd, time_evp_solve
71
  use elpa2_utilities
72

73
74
75
76
77
78
  implicit none

  PRIVATE ! By default, all routines contained are private

  ! The following routines are public:

79
80
81
  public :: solve_evp_real_2stage_double
  public :: solve_evp_complex_2stage_double

82
83
84
  public :: elpa_solve_evp_real_2stage_double
  public :: elpa_solve_evp_complex_2stage_double

85
86
87
88
  interface solve_evp_real_2stage
    module procedure solve_evp_real_2stage_double
  end interface

89
90
91
92
  interface elpa_solve_evp_real_2stage_double
    module procedure solve_evp_real_2stage_double
  end interface

93
94
95
96
  interface solve_evp_complex_2stage
    module procedure solve_evp_complex_2stage_double
  end interface

97
98
99
100
  interface elpa_solve_evp_complex_2stage_double
    module procedure solve_evp_complex_2stage_double
  end interface

101
102
#ifdef WANT_SINGLE_PRECISION_REAL
  public :: solve_evp_real_2stage_single
103
  public :: elpa_solve_evp_real_2stage_single
104
105
106
107
#endif

#ifdef WANT_SINGLE_PRECISION_COMPLEX
  public :: solve_evp_complex_2stage_single
108
  public :: elpa_solve_evp_complex_2stage_single
109
110
#endif

111
112
113
114
115
116
117
118
119
120
121
#ifdef WANT_SINGLE_PRECISION_REAL
  interface elpa_solve_evp_real_2stage_single
    module procedure solve_evp_real_2stage_single
  end interface
#endif

#ifdef WANT_SINGLE_PRECISION_COMPLEX
  interface elpa_solve_evp_complex_2stage_single
    module procedure solve_evp_complex_2stage_single
  end interface
#endif
122
123
124

!******
contains
125
!-------------------------------------------------------------------------------
126
!>  \brief solve_evp_real_2stage_double: Fortran function to solve the double-precision real eigenvalue problem with a 2 stage approach
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \param use_qr (optional)                    use QR decomposition
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
164

165
166
167
168
169
170
171
172
173
174
#define DOUBLE_PRECISION_REAL

#ifdef DOUBLE_PRECISION_REAL
  function solve_evp_real_2stage_double(na, nev, a, lda, ev, q, ldq, nblk,        &
                               matrixCols,                               &
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
#else
  function solve_evp_real_2stage_single(na, nev, a, lda, ev, q, ldq, nblk,        &
175
                               matrixCols,                               &
176
177
178
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
179
#endif
180

181

182
#ifdef HAVE_DETAILED_TIMINGS
183
    use timings
184
#endif
185

186
187
188
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
189
190
   use cuda_functions
   use mod_check_for_gpu
191
   use iso_c_binding
192
   implicit none
Andreas Marek's avatar
Andreas Marek committed
193
194
   logical, intent(in), optional          :: useQR
   logical                                :: useQRActual, useQREnvironment
195
196
   integer(kind=c_int), intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
   integer(kind=c_int)                       :: THIS_REAL_ELPA_KERNEL
Andreas Marek's avatar
Andreas Marek committed
197

198
   integer(kind=c_int), intent(in)        :: na, nev, lda, ldq, matrixCols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
199
                                             mpi_comm_cols, mpi_comm_all
200
201
   integer(kind=c_int), intent(in)        :: nblk
   real(kind=c_double), intent(inout)     :: ev(na)
202
#ifdef USE_ASSUMED_SIZE
203
   real(kind=c_double), intent(inout)     :: a(lda,*), q(ldq,*)
204
#else
205
   real(kind=c_double), intent(inout)     :: a(lda,matrixCols), q(ldq,matrixCols)
206
#endif
207
   real(kind=c_double), allocatable       :: hh_trans_real(:,:)
Andreas Marek's avatar
Andreas Marek committed
208

209
210
211
   integer(kind=c_int)                    :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer(kind=c_int)                    :: nbw, num_blocks
   real(kind=c_double), allocatable       :: tmat(:,:,:), e(:)
212
   integer(kind=c_intptr_t)               :: tmat_dev, q_dev, a_dev
213
   real(kind=c_double)                    :: ttt0, ttt1, ttts  ! MPI_WTIME always needs double
214
   integer(kind=c_int)                    :: i
Andreas Marek's avatar
Andreas Marek committed
215
216
217
   logical                                :: success
   logical, save                          :: firstCall = .true.
   logical                                :: wantDebug
218
   integer(kind=c_int)                    :: istat
219
220
   character(200)                         :: errorMessage
   logical                                :: useGPU
221
   integer(kind=c_int)                    :: numberOfGPUDevices
Andreas Marek's avatar
Andreas Marek committed
222

223
#ifdef HAVE_DETAILED_TIMINGS
224
    call timer%start("solve_evp_real_2stage_double")
225
#endif
226

227
228
    call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
    call mpi_comm_size(mpi_comm_all,n_pes,mpierr)
229

230
231
232
233
    call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
    call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
    call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
    call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
234

235

236
237
238
239
240
241
    wantDebug = .false.
    if (firstCall) then
      ! are debug messages desired?
      wantDebug = debug_messages_via_environment_variable()
      firstCall = .false.
    endif
242

243
    success = .true.
244

245
246
    useQRActual = .false.
    useGPU      = .false.
247

248
249
250
251
252
    ! set usage of qr decomposition via API call
    if (present(useQR)) then
      if (useQR) useQRActual = .true.
        if (.not.(useQR)) useQRACtual = .false.
    endif
253

254
255
256
257
    ! overwrite this with environment variable settings
    if (qr_decomposition_via_environment_variable(useQREnvironment)) then
      useQRActual = useQREnvironment
    endif
258

259
    if (useQRActual) then
260
      if (mod(na,2) .ne. 0) then
261
262
263
264
265
266
267
268
        if (wantDebug) then
          write(error_unit,*) "solve_evp_real_2stage: QR-decomposition: blocksize does not fit with matrixsize"
        endif
        print *, "Do not use QR-decomposition for this matrix and blocksize."
        success = .false.
        return
      endif
    endif
269

270

271
272
273
274
    if (present(THIS_REAL_ELPA_KERNEL_API)) then
      ! user defined kernel via the optional argument in the API call
      THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
    else
275

276
277
278
279
      ! if kernel is not choosen via api
      ! check whether set by environment variable
      THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
    endif
Andreas Marek's avatar
Andreas Marek committed
280

281
    ! check whether choosen kernel is allowed: function returns true if NOT allowed! change this
282
283
284
285
286
287
288
289
290
291
292
293
294
    if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then

      if (my_pe == 0) then
        write(error_unit,*) " "
        write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
        write(error_unit,*) "is not in the list of the allowed kernels!"
        write(error_unit,*) " "
        write(error_unit,*) "Allowed kernels are:"
        do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
          if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
            write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
          endif
        enddo
Andreas Marek's avatar
Andreas Marek committed
295

296
        write(error_unit,*) " "
297
298
299
300
301
302
303
304
305
306
307
        ! check whether generic kernel is defined
         if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
           write(error_unit,*) "The default kernel REAL_ELPA_KERNEL_GENERIC will be used !"
         else
           write(error_unit,*) "As default kernel ",REAL_ELPA_KERNEL_NAMES(DEFAULT_REAL_ELPA_KERNEL)," will be used"
         endif
      endif  ! my_pe == 0
      if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
        THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
      else
        THIS_REAL_ELPA_KERNEL = DEFAULT_REAL_ELPA_KERNEL
308
309
310
311
      endif
    endif

    if (THIS_REAL_ELPA_KERNEL .eq. REAL_ELPA_KERNEL_GPU) then
312
      if (check_for_gpu(my_pe,numberOfGPUDevices, wantDebug=wantDebug)) then
313
314
315
316
        useGPU = .true.
      endif
      if (nblk .ne. 128) then
        print *,"At the moment GPU version needs blocksize 128"
317
        error stop
318
      endif
319

320
321
322
323
324
325
326
      ! set the neccessary parameters
      cudaMemcpyHostToDevice   = cuda_memcpyHostToDevice()
      cudaMemcpyDeviceToHost   = cuda_memcpyDeviceToHost()
      cudaMemcpyDeviceToDevice = cuda_memcpyDeviceToDevice()
      cudaHostRegisterPortable = cuda_hostRegisterPortable()
      cudaHostRegisterMapped   = cuda_hostRegisterMapped()
    endif
327

328
    ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32
329
330
331
332
    ! On older systems (IBM Bluegene/P, Intel Nehalem) a value of 32 was optimal.
    ! For Intel(R) Xeon(R) E5 v2 and v3, better use 64 instead of 32!
    ! For IBM Bluegene/Q this is not clear at the moment. We have to keep an eye
    ! on this and maybe allow a run-time optimization here
333
334
335
    if (useGPU) then
      nbw = nblk
    else
336
      nbw = (63/nblk+1)*nblk
337
    endif
338

339
    num_blocks = (na-1)/nbw + 1
340

341
342
343
344
345
    allocate(tmat(nbw,nbw,num_blocks), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_real_2stage: error when allocating tmat "//errorMessage
      stop
    endif
346

347
    ! Reduction full -> band
348

349
350
    ttt0 = MPI_Wtime()
    ttts = ttt0
351
#ifdef DOUBLE_PRECISION_REAL
352
353
    call bandred_real_double(na, a, a_dev, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                             tmat, tmat_dev, wantDebug, useGPU, success, useQRActual)
354
#else
355
356
    call bandred_real_single(na, a, a_dev, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                             tmat, tmat_dev, wantDebug, useGPU, success, useQRActual)
357
#endif
358
359
360
361
    if (.not.(success)) return
    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
362

363
     ! Reduction band -> tridiagonal
364

365
366
367
368
369
     allocate(e(na), stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when allocating e "//errorMessage
       stop
     endif
370

371
     ttt0 = MPI_Wtime()
372
373
#ifdef DOUBLE_PRECISION_REAL
     call tridiag_band_real_double(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
374
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
375
376
377
378
#else
     call tridiag_band_real_single(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
#endif
379

380
381
382
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
383

384
#ifdef WITH_MPI
385

386
#ifdef DOUBLE_PRECISION_REAL
387
388
     call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
     call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)
389
390
391
392
#else
     call mpi_bcast(ev,na,MPI_REAL4,0,mpi_comm_all,mpierr)
     call mpi_bcast(e,na,MPI_REAL4,0,mpi_comm_all,mpierr)
#endif
393

394
#endif /* WITH_MPI */
395
396
     ttt1 = MPI_Wtime()
     time_evp_fwd = ttt1-ttts
397

398
     ! Solve tridiagonal system
399

400
     ttt0 = MPI_Wtime()
401
402
#ifdef DOUBLE_PRECISION_REAL
     call solve_tridi_double(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
403
                      mpi_comm_cols, wantDebug, success)
404
405
406
407
#else
     call solve_tridi_single(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
                      mpi_comm_cols, wantDebug, success)
#endif
408
409
410
411
     if (.not.(success)) return

     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
412
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
413
414
     time_evp_solve = ttt1-ttt0
     ttts = ttt1
415

416
417
418
419
420
421
422
423
     deallocate(e, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating e "//errorMessage
       stop
     endif
     ! Backtransform stage 1

     ttt0 = MPI_Wtime()
424
#ifdef DOUBLE_PRECISION_REAL
425
     call trans_ev_tridi_to_band_real_double(na, nev, nblk, nbw, q, q_dev, ldq, matrixCols, hh_trans_real, &
426
427
428
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, useGPU, success,      &
                                    THIS_REAL_ELPA_KERNEL)
#else
429
     call trans_ev_tridi_to_band_real_single(na, nev, nblk, nbw, q, q_dev, ldq, matrixCols, hh_trans_real, &
430
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, useGPU, success,      &
431
                                    THIS_REAL_ELPA_KERNEL)
432
#endif
433

434
435
436
437
     if (.not.(success)) return
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
438

439
440
441
442
443
444
     ! We can now deallocate the stored householder vectors
     deallocate(hh_trans_real, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating hh_trans_real "//errorMessage
       stop
     endif
445
446


447
448
449
     ! Backtransform stage 2
     print *,"useGPU== ",useGPU
     ttt0 = MPI_Wtime()
450
#ifdef DOUBLE_PRECISION_REAL
Andreas Marek's avatar
Typo    
Andreas Marek committed
451
452
453
     call trans_ev_band_to_full_real_double(na, nev, nblk, nbw, a, a_dev, lda, tmat, tmat_dev, q, q_dev, ldq, &
                                            matrixCols, num_blocks, mpi_comm_rows, &
                                            mpi_comm_cols, useGPU, useQRActual)
454
#else
Andreas Marek's avatar
Typo    
Andreas Marek committed
455
456
457
     call trans_ev_band_to_full_real_single(na, nev, nblk, nbw, a, a_dev, lda, tmat, tmat_dev, q, q_dev, ldq, &
                                            matrixCols, num_blocks, mpi_comm_rows, &
                                            mpi_comm_cols, useGPU, useQRActual)
458
#endif
459

460
461
462
463
464
465
466
467
468
469
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
     time_evp_back = ttt1-ttts

     deallocate(tmat, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating tmat"//errorMessage
       stop
     endif
470

471
#ifdef HAVE_DETAILED_TIMINGS
472
     call timer%stop("solve_evp_real_2stage_double")
473
#endif
474
1    format(a,f10.3)
475

476
477
478
479
480
#ifdef DOUBLE_PRECISION_REAL
   end function solve_evp_real_2stage_double
#else
   end function solve_evp_real_2stage_single
#endif
481

482
483
484
485
#ifdef WANT_SINGLE_PRECISION_REAL
#undef DOUBLE_PRECISION_REAL
!-------------------------------------------------------------------------------
!>  \brief solve_evp_real_2stage_single: Fortran function to solve the single-precision real eigenvalue problem with a 2 stage approach
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
519
520
!>  \param use_qr (optional)                    use QR decomposition
!>
521
!>  \result success                             logical, false if error occured
522
!-------------------------------------------------------------------------------
523
524
525
526
527
528
529
530
531
532
533
534
535
536

#ifdef DOUBLE_PRECISION_REAL
  function solve_evp_real_2stage_double(na, nev, a, lda, ev, q, ldq, nblk,        &
                               matrixCols,                               &
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
#else
  function solve_evp_real_2stage_single(na, nev, a, lda, ev, q, ldq, nblk,        &
                               matrixCols,                               &
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
#endif
537

538
#ifdef HAVE_DETAILED_TIMINGS
539
    use timings
540
#endif
541

542
543
   use cuda_functions
   use mod_check_for_gpu
544
   use iso_c_binding
545
546
547
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
548
   implicit none
549
550
551
552
553
554
555
556
557
   logical, intent(in), optional             :: useQR
   logical                                   :: useQRActual, useQREnvironment
   integer(kind=c_int), intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
   integer(kind=c_int)                       :: THIS_REAL_ELPA_KERNEL

   integer(kind=c_int), intent(in)           :: na, nev, lda, ldq, matrixCols, mpi_comm_rows, &
                                                mpi_comm_cols, mpi_comm_all
   integer(kind=c_int), intent(in)           :: nblk
   real(kind=c_float), intent(inout)         :: ev(na)
558
#ifdef USE_ASSUMED_SIZE
559
   real(kind=c_float), intent(inout)         :: a(lda,*),  q(ldq,*)
560
561

#else
562
   real(kind=c_float), intent(inout)         :: a(lda,matrixCols),  q(ldq,matrixCols)
563
#endif
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
   real(kind=c_float), allocatable           :: hh_trans_real(:,:)

   integer(kind=c_int)                       :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer(kind=c_int)                       :: nbw, num_blocks
   real(kind=c_float), allocatable           :: tmat(:,:,:), e(:)
   integer(kind=c_intptr_t)                  :: tmat_dev, q_dev, a_dev
   real(kind=c_double)                       :: ttt0, ttt1, ttts  ! MPI_WTIME always needs double
   integer(kind=c_int)                       :: i
   logical                                   :: success
   logical, save                             :: firstCall = .true.
   logical                                   :: wantDebug
   integer(kind=c_int)                       :: istat
   character(200)                            :: errorMessage
   logical                                   :: useGPU
   integer(kind=c_int)                       :: numberOfGPUDevices
Andreas Marek's avatar
Andreas Marek committed
579

580
#ifdef HAVE_DETAILED_TIMINGS
581
    call timer%start("solve_evp_real_2stage_single")
582
#endif
583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
    call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
    call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

    call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
    call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
    call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
    call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)

    wantDebug = .false.
    if (firstCall) then
      ! are debug messages desired?
      wantDebug = debug_messages_via_environment_variable()
      firstCall = .false.
    endif
598

599
    success = .true.
600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    useQRActual = .false.
    useGPU      = .false.

    ! set usage of qr decomposition via API call
    if (present(useQR)) then
      if (useQR) useQRActual = .true.
        if (.not.(useQR)) useQRACtual = .false.
    endif

    ! overwrite this with environment variable settings
    if (qr_decomposition_via_environment_variable(useQREnvironment)) then
      useQRActual = useQREnvironment
    endif

    if (useQRActual) then
616
      if (mod(na,2) .ne. 0) then
617
618
619
620
621
622
623
624
625
626
        if (wantDebug) then
          write(error_unit,*) "solve_evp_real_2stage: QR-decomposition: blocksize does not fit with matrixsize"
        endif
        print *, "Do not use QR-decomposition for this matrix and blocksize."
        success = .false.
        return
      endif
    endif

    if (present(THIS_REAL_ELPA_KERNEL_API)) then
627
      ! user defined kernel via the optional argument in the API call
628
      THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
629
    else
630

631
632
      ! if kernel is not choosen via api
      ! check whether set by environment variable
633
      THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
634
    endif
635

636
    ! check whether choosen kernel is allowed
637
    if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then
638
639
640

      if (my_pe == 0) then
        write(error_unit,*) " "
641
        write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
642
643
644
        write(error_unit,*) "is not in the list of the allowed kernels!"
        write(error_unit,*) " "
        write(error_unit,*) "Allowed kernels are:"
645
646
647
        do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
          if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
            write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
648
649
          endif
        enddo
650

651
        write(error_unit,*) " "
652
653
654
655
656
657
658
659
660
661
662
        ! check whether generic kernel is defined
         if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
           write(error_unit,*) "The default kernel REAL_ELPA_KERNEL_GENERIC will be used !"
         else
           write(error_unit,*) "As default kernel ",REAL_ELPA_KERNEL_NAMES(DEFAULT_REAL_ELPA_KERNEL)," will be used"
         endif
      endif  ! my_pe == 0
      if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
        THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
      else
        THIS_REAL_ELPA_KERNEL = DEFAULT_REAL_ELPA_KERNEL
663
664
      endif
    endif
665

666
667
668
    if (THIS_REAL_ELPA_KERNEL .eq. REAL_ELPA_KERNEL_GPU) then
      if (check_for_gpu(my_pe,numberOfGPUDevices, wantDebug=wantDebug)) then
        useGPU = .true.
669
670
671
      endif
      if (nblk .ne. 128) then
        print *,"At the moment GPU version needs blocksize 128"
672
        error stop
673
      endif
674
    ! some temporarilly checks until single precision works with all kernels
675

676
677
678
679
680
681
682
      ! set the neccessary parameters
      cudaMemcpyHostToDevice   = cuda_memcpyHostToDevice()
      cudaMemcpyDeviceToHost   = cuda_memcpyDeviceToHost()
      cudaMemcpyDeviceToDevice = cuda_memcpyDeviceToDevice()
      cudaHostRegisterPortable = cuda_hostRegisterPortable()
      cudaHostRegisterMapped   = cuda_hostRegisterMapped()
    endif
683

684
    ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32
685
686
687
688
689
690
691
692
693
    ! On older systems (IBM Bluegene/P, Intel Nehalem) a value of 32 was optimal.
    ! For Intel(R) Xeon(R) E5 v2 and v3, better use 64 instead of 32!
    ! For IBM Bluegene/Q this is not clear at the moment. We have to keep an eye
    ! on this and maybe allow a run-time optimization here
    if (useGPU) then
      nbw = nblk
    else
      nbw = (63/nblk+1)*nblk
    endif
694

695
696
697
698
    num_blocks = (na-1)/nbw + 1

    allocate(tmat(nbw,nbw,num_blocks), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
699
      print *,"solve_evp_real_2stage: error when allocating tmat "//errorMessage
700
701
      stop
    endif
702

703
    ! Reduction full -> band
704

705
706
    ttt0 = MPI_Wtime()
    ttts = ttt0
707
#ifdef DOUBLE_PRECISION_REAL
708
709
    call bandred_real_double(na, a, a_dev, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                      tmat, tmat_dev, wantDebug, useGPU, success, useQRActual)
710
#else
711
712
    call bandred_real_single(na, a, a_dev, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                      tmat, tmat_dev, wantDebug, useGPU, success, useQRActual)
713
#endif
714
    if (.not.(success)) return
715
716
    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
717
       write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
718

719
     ! Reduction band -> tridiagonal
720

721
722
723
724
725
     allocate(e(na), stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when allocating e "//errorMessage
       stop
     endif
726

727
728
729
730
731
732
733
734
     ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_REAL
     call tridiag_band_real_double(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
#else
     call tridiag_band_real_single(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
#endif
735

736
737
738
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
739

740
#ifdef WITH_MPI
741

742
743
744
#ifdef DOUBLE_PRECISION_REAL
     call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
     call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)
745
#else
746
747
     call mpi_bcast(ev,na,MPI_REAL4,0,mpi_comm_all,mpierr)
     call mpi_bcast(e,na,MPI_REAL4,0,mpi_comm_all,mpierr)
748
#endif
749

750
#endif /* WITH_MPI */
751
752
     ttt1 = MPI_Wtime()
     time_evp_fwd = ttt1-ttts
753

754
     ! Solve tridiagonal system
755

756
757
758
759
760
761
762
763
764
     ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_REAL
     call solve_tridi_double(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
                      mpi_comm_cols, wantDebug, success)
#else
     call solve_tridi_single(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
                      mpi_comm_cols, wantDebug, success)
#endif
     if (.not.(success)) return
765

766
767
768
769
770
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
     time_evp_solve = ttt1-ttt0
     ttts = ttt1
771

772
773
774
775
776
777
     deallocate(e, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating e "//errorMessage
       stop
     endif
     ! Backtransform stage 1
778

779
780
     ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_REAL
781
     call trans_ev_tridi_to_band_real_double(na, nev, nblk, nbw, q, q_dev, ldq, matrixCols, hh_trans_real, &
782
783
784
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, useGPU, success,      &
                                    THIS_REAL_ELPA_KERNEL)
#else
785
     call trans_ev_tridi_to_band_real_single(na, nev, nblk, nbw, q, q_dev, ldq, matrixCols, hh_trans_real, &
786
787
788
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, useGPU, success,      &
                                    THIS_REAL_ELPA_KERNEL)
#endif
789

790
791
792
793
     if (.not.(success)) return
     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
794

795
796
797
798
799
800
801
802
803
804
805
806
     ! We can now deallocate the stored householder vectors
     deallocate(hh_trans_real, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating hh_trans_real "//errorMessage
       stop
     endif


     ! Backtransform stage 2
     print *,"useGPU== ",useGPU
     ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_REAL
Andreas Marek's avatar
Typo    
Andreas Marek committed
807
808
     call trans_ev_band_to_full_real_double(na, nev, nblk, nbw, a, a_dev, lda, tmat, tmat_dev, q, q_dev, ldq, &
                                            matrixCols, num_blocks, mpi_comm_rows, &
809
                                            mpi_comm_cols, useGPU, useQRActual)
810
#else
Andreas Marek's avatar
Typo    
Andreas Marek committed
811
812
     call trans_ev_band_to_full_real_single(na, nev, nblk, nbw, a, a_dev, lda, tmat, tmat_dev, q, q_dev, ldq, &
                                            matrixCols, num_blocks, mpi_comm_rows, &
813
                                            mpi_comm_cols, useGPU, useQRActual)
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
#endif

     ttt1 = MPI_Wtime()
     if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
     time_evp_back = ttt1-ttts

     deallocate(tmat, stat=istat, errmsg=errorMessage)
     if (istat .ne. 0) then
       print *,"solve_evp_real_2stage: error when deallocating tmat"//errorMessage
       stop
     endif

#ifdef HAVE_DETAILED_TIMINGS
     call timer%stop("solve_evp_real_2stage_single")
#endif
1    format(a,f10.3)

#ifdef DOUBLE_PRECISION_REAL
   end function solve_evp_real_2stage_double
#else
   end function solve_evp_real_2stage_single
#endif

#endif /* WANT_SINGLE_PRECISION_REAL */

840
!>  \brief solve_evp_complex_2stage_double: Fortran function to solve the double-precision complex eigenvalue problem with a 2 stage approach
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
#define DOUBLE_PRECISION_COMPLEX 1

#ifdef DOUBLE_PRECISION_COMPLEX
function solve_evp_complex_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
#else
function solve_evp_complex_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
#endif


#ifdef HAVE_DETAILED_TIMINGS
   use timings
#endif
892
893
894
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
895
896
897
898
   use cuda_functions
   use mod_check_for_gpu
   use iso_c_binding
   implicit none
899
900
901
902
   integer(kind=c_int), intent(in), optional :: THIS_COMPLEX_ELPA_KERNEL_API
   integer(kind=c_int)                       :: THIS_COMPLEX_ELPA_KERNEL
   integer(kind=c_int), intent(in)           :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all
   real(kind=c_double), intent(inout)        :: ev(na)
903
#ifdef USE_ASSUMED_SIZE
904
   complex(kind=c_double), intent(inout)     :: a(lda,*), q(ldq,*)
905
#else
906
   complex(kind=c_double), intent(inout)     :: a(lda,matrixCols), q(ldq,matrixCols)
907
#endif
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
   complex(kind=c_double), allocatable       :: hh_trans_complex(:,:)

   integer(kind=c_int)                       :: my_prow, my_pcol, np_rows, np_cols, mpierr, my_pe, n_pes
   integer(kind=c_int)                       :: l_cols, l_rows, l_cols_nev, nbw, num_blocks
   complex(kind=c_double), allocatable       :: tmat(:,:,:)
   real(kind=c_double), allocatable          :: q_real(:,:), e(:)
   real(kind=c_double)                       :: ttt0, ttt1, ttts  ! MPI_WTIME always needs double
   integer(kind=c_int)                       :: i

   logical                                   :: success, wantDebug
   logical, save                             :: firstCall = .true.
   integer(kind=c_int)                       :: istat
   character(200)                            :: errorMessage
   logical                                   :: useGPU
   integer(kind=c_int)                       :: numberOfGPUDevices
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

#ifdef HAVE_DETAILED_TIMINGS
    call timer%start("solve_evp_complex_2stage_double")
#endif

    call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
    call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

    call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
    call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
    call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
    call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)

    useGPU = .false.
    wantDebug = .false.
    if (firstCall) then
      ! are debug messages desired?
      wantDebug = debug_messages_via_environment_variable()
      firstCall = .false.
    endif


    success = .true.

    if (present(THIS_COMPLEX_ELPA_KERNEL_API)) then
      ! user defined kernel via the optional argument in the API call
      THIS_COMPLEX_ELPA_KERNEL = THIS_COMPLEX_ELPA_KERNEL_API
    else
      ! if kernel is not choosen via api
      ! check whether set by environment variable
      THIS_COMPLEX_ELPA_KERNEL = get_actual_complex_kernel()
    endif

    ! check whether choosen kernel is allowed
    if (check_allowed_complex_kernels(THIS_COMPLEX_ELPA_KERNEL)) then

      if (my_pe == 0) then
        write(error_unit,*) " "
        write(error_unit,*) "The choosen kernel ",COMPLEX_ELPA_KERNEL_NAMES(THIS_COMPLEX_ELPA_KERNEL)
        write(error_unit,*) "is not in the list of the allowed kernels!"
        write(error_unit,*) " "
        write(error_unit,*) "Allowed kernels are:"
        do i=1,size(COMPLEX_ELPA_KERNEL_NAMES(:))
          if (AVAILABLE_COMPLEX_ELPA_KERNELS(i) .ne. 0) then
            write(error_unit,*) COMPLEX_ELPA_KERNEL_NAMES(i)
          endif
        enddo

        write(error_unit,*) " "
        write(error_unit,*) "The defaul kernel COMPLEX_ELPA_KERNEL_GENERIC will be used !"
      endif
      THIS_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
    endif
976

977
978
979
980
981
982
    if (THIS_COMPLEX_ELPA_KERNEL .eq. COMPLEX_ELPA_KERNEL_GPU) then
      if (check_for_gpu(my_pe, numberOfGPUDevices, wantDebug=wantDebug)) then
        useGPU=.true.
      endif
      if (nblk .ne. 128) then
        print *,"At the moment GPU version needs blocksize 128"
983
        error stop
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
      endif

      ! set the neccessary parameters
      cudaMemcpyHostToDevice   = cuda_memcpyHostToDevice()
      cudaMemcpyDeviceToHost   = cuda_memcpyDeviceToHost()
      cudaMemcpyDeviceToDevice = cuda_memcpyDeviceToDevice()
      cudaHostRegisterPortable = cuda_hostRegisterPortable()
      cudaHostRegisterMapped   = cuda_hostRegisterMapped()
    endif

    ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

    nbw = (31/nblk+1)*nblk

    num_blocks = (na-1)/nbw + 1

    allocate(tmat(nbw,nbw,num_blocks), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_complex_2stage: error when allocating tmat"//errorMessage
      stop
    endif
    ! Reduction full -> band

    ttt0 = MPI_Wtime()
    ttts = ttt0
#ifdef DOUBLE_PRECISION_COMPLEX
    call bandred_complex_double(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                         tmat, wantDebug, useGPU, success)
#else
    call bandred_complex_single(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
                         tmat, wantDebug, useGPU, success)
#endif
    if (.not.(success)) then

#ifdef HAVE_DETAILED_TIMINGS
      call timer%stop("solve_evp_complex_2stage_double")
#endif
      return
    endif
    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time bandred_complex               :',ttt1-ttt0

    ! Reduction band -> tridiagonal

    allocate(e(na), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_complex_2stage: error when allocating e"//errorMessage
      stop
    endif


    ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_COMPLEX
   call tridiag_band_complex_double(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_complex, &
                             mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
#else
   call tridiag_band_complex_single(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_complex, &
                             mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
#endif

    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time tridiag_band_complex          :',ttt1-ttt0

#ifdef WITH_MPI

#ifdef DOUBLE_PRECISION_COMPLEX
    call mpi_bcast(ev, na, mpi_real8, 0, mpi_comm_all, mpierr)
    call mpi_bcast(e, na, mpi_real8, 0, mpi_comm_all, mpierr)
#else
    call mpi_bcast(ev, na, mpi_real4, 0, mpi_comm_all, mpierr)
    call mpi_bcast(e, na, mpi_real4, 0, mpi_comm_all, mpierr)
#endif

#endif /* WITH_MPI */
    ttt1 = MPI_Wtime()
    time_evp_fwd = ttt1-ttts

    l_rows = local_index(na, my_prow, np_rows, nblk, -1) ! Local rows of a and q
    l_cols = local_index(na, my_pcol, np_cols, nblk, -1) ! Local columns of q
    l_cols_nev = local_index(nev, my_pcol, np_cols, nblk, -1) ! Local columns corresponding to nev

    allocate(q_real(l_rows,l_cols), stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_complex_2stage: error when allocating q_real"//errorMessage
      stop
    endif

    ! Solve tridiagonal system

    ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_COMPLEX
    call solve_tridi_double(na, nev, ev, e, q_real, ubound(q_real,dim=1), nblk, matrixCols, &
                     mpi_comm_rows, mpi_comm_cols, wantDebug, success)
#else
    call solve_tridi_single(na, nev, ev, e, q_real, ubound(q_real,dim=1), nblk, matrixCols, &
                     mpi_comm_rows, mpi_comm_cols, wantDebug, success)
#endif
    if (.not.(success)) return

    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times)  &
       write(error_unit,*) 'Time solve_tridi                   :',ttt1-ttt0
    time_evp_solve = ttt1-ttt0
    ttts = ttt1

    q(1:l_rows,1:l_cols_nev) = q_real(1:l_rows,1:l_cols_nev)

    deallocate(e, q_real, stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_complex_2stage: error when deallocating e, q_real"//errorMessage
      stop
    endif


    ! Backtransform stage 1

    ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_COMPLEX
    call trans_ev_tridi_to_band_complex_double(na, nev, nblk, nbw, q, ldq,  &
                                       matrixCols, hh_trans_complex, &
                                       mpi_comm_rows, mpi_comm_cols, &
                                       wantDebug, useGPU, success,THIS_COMPLEX_ELPA_KERNEL)
#else
    call trans_ev_tridi_to_band_complex_single(na, nev, nblk, nbw, q, ldq,  &
                                       matrixCols, hh_trans_complex, &
                                       mpi_comm_rows, mpi_comm_cols, &
                                       wantDebug, useGPU, success,THIS_COMPLEX_ELPA_KERNEL)
#endif
    if (.not.(success)) return
    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_tridi_to_band_complex:',ttt1-ttt0

    ! We can now deallocate the stored householder vectors
    deallocate(hh_trans_complex, stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_complex_2stage: error when deallocating hh_trans_complex"//errorMessage
      stop
    endif

    ! Backtransform stage 2

    ttt0 = MPI_Wtime()
#ifdef DOUBLE_PRECISION_COMPLEX
   call trans_ev_band_to_full_complex_double(na, nev, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, num_blocks, &
                                      mpi_comm_rows, mpi_comm_cols, useGPU)
#else
   call trans_ev_band_to_full_complex_single(na, nev, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, num_blocks, &
                                      mpi_comm_rows, mpi_comm_cols, useGPU)
#endif
    ttt1 = MPI_Wtime()
    if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
       write(error_unit,*) 'Time trans_ev_band_to_full_complex :',ttt1-ttt0
    time_evp_back = ttt1-ttts

    deallocate(tmat, stat=istat, errmsg=errorMessage)
    if (istat .ne. 0) then
      print *,"solve_evp_complex_2stage: error when deallocating tmat "//errorMessage
      stop
    endif

#ifdef HAVE_DETAILED_TIMINGS
    call timer%stop("solve_evp_complex_2stage_double")
#endif

1   format(a,f10.3)
#ifdef DOUBLE_PRECISION_COMPLEX
end function solve_evp_complex_2stage_double
#else
end function solve_evp_complex_2stage_single
#endif

#ifdef WANT_SINGLE_PRECISION_COMPLEX
#undef DOUBLE_PRECISION_COMPLEX

!>  \brief solve_evp_complex_2stage_single: Fortran function to solve the single-precision complex eigenvalue problem with a 2 stage approach
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------

#ifdef DOUBLE_PRECISION_COMPLEX
function solve_evp_complex_2stage_double(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
#else
function solve_evp_complex_2stage_single(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
#endif


#ifdef HAVE_DETAILED_TIMINGS
   use timings
#endif
   use cuda_functions
   use mod_check_for_gpu
1214
1215
1216
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
1217
1218
   use iso_c_binding
   implicit none
1219
1220
1221
   integer(kind=c_int), intent(in), optional :: THIS_COMPLEX_ELPA_KERNEL_API
   integer(kind=c_int)                       :: THIS_COMPLEX_ELPA_KERNEL
   integer(kind=c_int), intent(in)           :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all
1222
#ifdef USE_ASSUMED_SIZE
1223
   complex(kind=c_float), intent(inout)      :: a(lda,*), q(ldq,*)
1224
#else
1225
   complex(kind=c_float), intent(inout)      :: a(lda,matrixCols), q(ldq,matrixCols)
1226
#endif
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
   real(kind=c_float), intent(inout)         :: ev(na)
   complex(kind=c_float), allocatable        :: hh_trans_complex(:,:)

   integer(kind=c_int)                       :: my_prow, my_pcol, np_rows, np_cols, mpierr, my_pe, n_pes
   integer(kind=c_int)                       :: l_cols, l_rows, l_cols_nev, nbw, num_blocks
   complex(kind=c_float), allocatable        :: tmat(:,:,:)
   real(kind=c_float), allocatable           :: q_real(:,:), e(:)
   real(kind=c_double)                       :: ttt0, ttt1, ttts  ! MPI_WTIME always needs double
   integer(kind=c_int)                       :: i

   logical                                   :: success, wantDebug
   logical, save                             :: firstCall = .true.
   integer(kind=c_int)                       :: istat
   character(200)                            :: errorMessage
   logical                                   :: useGPU
   integer(kind=c_int)                       :: numberOfGPUDevices
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

#ifdef HAVE_DETAILED_TIMINGS
    call timer%start("solve_evp_complex_2stage_single")
#endif

    call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
    call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

    call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
    call