simple_block4_template.F90 9.74 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#if 0
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! --------------------------------------------------------------------------------------------------
!
! This file contains the compute intensive kernels for the Householder transformations.
!
! This is the small and simple version (no hand unrolling of loops etc.) but for some
! compilers this performs better than a sophisticated version with transformed and unrolled loops.
!
! It should be compiled with the highest possible optimization level.
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".
!
! --------------------------------------------------------------------------------------------------
#endif

  subroutine quad_hh_trafo_&
  &MATH_DATATYPE&
  &_generic_simple_4hv_&
  &PRECISION&
  & (q, hh, nb, nq, ldq, ldh)

    use precision
    use elpa_abstract_impl
    implicit none

    !class(elpa_abstract_impl_t), intent(inout) :: obj
    integer(kind=ik), intent(in)    :: nb, nq, ldq, ldh
#if REALCASE==1

#ifdef USE_ASSUMED_SIZE
    real(kind=C_DATATYPE_KIND), intent(inout) :: q(ldq,*)
    real(kind=C_DATATYPE_KIND), intent(in)    :: hh(ldh,*)
#else
    real(kind=C_DATATYPE_KIND), intent(inout) :: q(1:ldq,1:nb+3)
    real(kind=C_DATATYPE_KIND), intent(in)    :: hh(1:ldh,1:6)
#endif
82

83 84 85
!    !TODO remove
!    real(kind=C_DATATYPE_KIND)                :: q_copy(1:ldq,1:nb+3)
!    real(kind=C_DATATYPE_KIND)                :: diff
86

Andreas Marek's avatar
Andreas Marek committed
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    real(kind=C_DATATYPE_KIND)                :: s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4
    real(kind=C_DATATYPE_KIND)                :: vs_1_2, vs_1_3, vs_2_3, vs_1_4, vs_2_4, vs_3_4
    real(kind=C_DATATYPE_KIND)                :: h_2_1, h_3_2, h_3_1, h_4_3, h_4_2, h_4_1
    real(kind=C_DATATYPE_KIND)                :: a_1_1(nq), a_2_1(nq), a_3_1(nq), a_4_1(nq)
    real(kind=C_DATATYPE_KIND)                :: h1, h2, h3, h4
    real(kind=C_DATATYPE_KIND)                :: w(nq), z(nq), x(nq), y(nq)
    real(kind=C_DATATYPE_KIND)                :: tau1, tau2, tau3, tau4
#endif /* REALCASE==1 */

#if COMPLEXCASE==1

#ifdef USE_ASSUMED_SIZE
    complex(kind=C_DATATYPE_KIND), intent(inout) :: q(ldq,*)
    complex(kind=C_DATATYPE_KIND), intent(in)    :: hh(ldh,*)
#else
    complex(kind=C_DATATYPE_KIND), intent(inout) :: q(1:ldq,1:nb+3)
    complex(kind=C_DATATYPE_KIND), intent(in)    :: hh(1:ldh,1:6)
#endif
    complex(kind=C_DATATYPE_KIND)                :: s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4
    complex(kind=C_DATATYPE_KIND)                :: vs_1_2, vs_1_3, vs_2_3, vs_1_4, vs_2_4, vs_3_4
    complex(kind=C_DATATYPE_KIND)                :: h_2_1, h_3_2, h_3_1, h_4_3, h_4_2, h_4_1
    complex(kind=C_DATATYPE_KIND)                :: a_1_1(nq), a_2_1(nq), a_3_1(nq), a_4_1(nq)
    complex(kind=C_DATATYPE_KIND)                :: w(nq), z(nq), x(nq), y(nq)
    complex(kind=C_DATATYPE_KIND)                :: h1, h2, h3, h4
    complex(kind=C_DATATYPE_KIND)                :: tau1, tau2, tau3, tau4
#endif /* COMPLEXCASE==1 */
    integer(kind=ik)                             :: i
114

115 116 117 118
!    !TODO remove
!    print *, "SIMPLE BLOCK4, nb, nq, ldq, ldh ", nb, nq, ldq, ldh
!    !print *, "Q:", q(1:ldq,1:nb+3)
!    !print *, "HH:", hh(1:ldh,1:6)
119

120 121 122 123 124 125 126 127 128 129 130
!
! ! call the blas kernel for future comparison
! ! TODO remove
!#if REALCASE==1
!  q_copy(:,:) = q(:,1:nb+3)
!  call quad_hh_trafo_&
!  &MATH_DATATYPE&
!  &_generic_blas_4hv_&
!  &PRECISION&
!  & (q_copy, hh, nb, nq, ldq, ldh)
!#endif
131 132


Andreas Marek's avatar
Andreas Marek committed
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    ! Calculate dot product of the two Householder vectors

#if REALCASE==1
    s_1_2 = hh(2,2)
    s_1_3 = hh(3,3)
    s_2_3 = hh(2,3) 
    s_1_4 = hh(4,4)
    s_2_4 = hh(3,4)
    s_3_4 = hh(2,4)

    s_1_2 = s_1_2 + hh(2,1) * hh(3,2)
    s_2_3 = s_2_3 + hh(2,2) * hh(3,3)
    s_3_4 = s_3_4 + hh(2,3) * hh(3,4)

    s_1_2 = s_1_2 + hh(3,1) * hh(4,2)
    s_2_3 = s_2_3 + hh(3,2) * hh(4,3)
    s_3_4 = s_3_4 + hh(3,3) * hh(4,4)

    s_1_3 = s_1_3 + hh(2,1) * hh(4,3)
    s_2_4 = s_2_4 + hh(2,2) * hh(4,4)

    !DIR$ IVDEP
    do i=5,nb
       s_1_2 = s_1_2 + hh(i-1,1) * hh(i,2)
       s_2_3 = s_2_3 + hh(i-1,2) * hh(i,3)
       s_3_4 = s_3_4 + hh(i-1,3) * hh(i,4)

       s_1_3 = s_1_3 + hh(i-2,1) * hh(i,3)
       s_2_4 = s_2_4 + hh(i-2,2) * hh(i,4)

       s_1_4 = s_1_4 + hh(i-3,1) * hh(i,4)
    enddo
#endif

#if COMPLEXCASE==1
    stop
    !s = conjg(hh(2,2))*1.0
    !do i=3,nb
    !   s = s+(conjg(hh(i,2))*hh(i-1,1))
    !enddo
#endif

    ! Do the Householder transformations
    a_1_1(1:nq) = q(1:nq,4)
    a_2_1(1:nq) = q(1:nq,3)
    a_3_1(1:nq) = q(1:nq,2)
    a_4_1(1:nq) = q(1:nq,1)

    h_2_1 = hh(2,2)
    h_3_2 = hh(2,3)
    h_3_1 = hh(3,3)
    h_4_3 = hh(2,4)
    h_4_2 = hh(3,4)
    h_4_1 = hh(4,4)

#if REALCASE == 1
    w(1:nq) = a_3_1(1:nq) * h_4_3 + a_4_1(1:nq)
    w(1:nq) = a_2_1(1:nq) * h_4_2 +     w(1:nq)
    w(1:nq) = a_1_1(1:nq) * h_4_1 +     w(1:nq)

    z(1:nq) = a_2_1(1:nq) * h_3_2 + a_3_1(1:nq)
    z(1:nq) = a_1_1(1:nq) * h_3_1 +     z(1:nq)

    y(1:nq) = a_1_1(1:nq) * h_2_1 + a_2_1(1:nq)

    x(1:nq) = a_1_1(1:nq)
#endif

#if COMPLEXCASE==1
    stop
    !y(1:nq) = q(1:nq,1) + q(1:nq,2)*conjg(hh(2,2))
#endif

    do i=5,nb
#if REALCASE == 1
      h1 = hh(i-3,1)
      h2 = hh(i-2,2)
      h3 = hh(i-1,3)
      h4 = hh(i  ,4)
#endif
#if COMPLEXCASE==1
       stop
    !   h1 = conjg(hh(i-1,1))
    !   h2 = conjg(hh(i,2))
#endif

      x(1:nq) = x(1:nq) + q(1:nq,i) * h1
      y(1:nq) = y(1:nq) + q(1:nq,i) * h2
      z(1:nq) = z(1:nq) + q(1:nq,i) * h3
      w(1:nq) = w(1:nq) + q(1:nq,i) * h4
    enddo

    h1 = hh(nb-2,1)
    h2 = hh(nb-1,2)
    h3 = hh(nb  ,3)

#if REALCASE==1
    x(1:nq) = x(1:nq) + q(1:nq,nb+1) * h1 
    y(1:nq) = y(1:nq) + q(1:nq,nb+1) * h2
    z(1:nq) = z(1:nq) + q(1:nq,nb+1) * h3
#endif

#if COMPLEXCASE==1
    stop
    !x(1:nq) = x(1:nq) + q(1:nq,nb+1)*conjg(hh(nb,1))
#endif

    h1 = hh(nb-1,1)
    h2 = hh(nb  ,2)

    x(1:nq) = x(1:nq) + q(1:nq,nb+2) * h1
    y(1:nq) = y(1:nq) + q(1:nq,nb+2) * h2

    h1 = hh(nb,1)

    x(1:nq) = x(1:nq) + q(1:nq,nb+3) * h1


    ! Rank-1 update
    tau1 = hh(1,1)
    tau2 = hh(1,2)
    tau3 = hh(1,3)
    tau4 = hh(1,4)

    vs_1_2 = s_1_2
    vs_1_3 = s_1_3
    vs_2_3 = s_2_3
    vs_1_4 = s_1_4
    vs_2_4 = s_2_4
    vs_3_4 = s_3_4

    h1 = tau1
    x(1:nq) = x(1:nq) * h1

    h1 = tau2
    h2 = tau2 * vs_1_2
    y(1:nq) = y(1:nq) * h1 - x(1:nq) * h2

    h1 = tau3
    h2 = tau3 * vs_1_3
    h3 = tau3 * vs_2_3
    z(1:nq) = z(1:nq) * h1  - (y(1:nq) * h3 + x(1:nq) * h2)

    h1 = tau4
    h2 = tau4 * vs_1_4
    h3 = tau4 * vs_2_4
    h4 = tau4 * vs_3_4

    w(1:nq) = w(1:nq) * h1 - ( z(1:nq) * h4 + y(1:nq) * h3 + x(1:nq) * h2)

    q(1:nq,1) = q(1:nq,1) - w(1:nq)

    h4 = hh(2,4)

    q(1:nq,2) = q(1:nq,2) - (w(1:nq) * h4 + z(1:nq))

    h3 = hh(2,3)
    h4 = hh(3,4)

    q(1:nq,3) = q(1:nq,3) - y(1:nq)
    q(1:nq,3) = -( z(1:nq) * h3) + q(1:nq,3)
    q(1:nq,3) = -( w(1:nq) * h4) + q(1:nq,3)

    h2 = hh(2,2)
    h3 = hh(3,3)
    h4 = hh(4,4)

    q(1:nq,4) =  q(1:nq,4) - x(1:nq)
    q(1:nq,4) = -(y(1:nq) * h2) + q(1:nq,4)
    q(1:nq,4) = -(z(1:nq) * h3) + q(1:nq,4)
    q(1:nq,4) = -(w(1:nq) * h4) + q(1:nq,4)

    do i=5,nb
       h1 = hh(i-3,1)
       h2 = hh(i-2,2)
       h3 = hh(i-1,3)
       h4 = hh(i  ,4)

       q(1:nq,i) = -(x(1:nq) * h1) + q(1:nq,i)
       q(1:nq,i) = -(y(1:nq) * h2) + q(1:nq,i)
       q(1:nq,i) = -(z(1:nq) * h3) + q(1:nq,i)
       q(1:nq,i) = -(w(1:nq) * h4) + q(1:nq,i)
   enddo

   h1 = hh(nb-2,1)
   h2 = hh(nb-1,2)
   h3 = hh(nb  ,3)

   q(1:nq,nb+1) = -(x(1:nq) * h1) + q(1:nq,nb+1)
   q(1:nq,nb+1) = -(y(1:nq) * h2) + q(1:nq,nb+1)
   q(1:nq,nb+1) = -(z(1:nq) * h3) + q(1:nq,nb+1)

   h1 = hh(nb-1,1)
   h2 = hh(nb  ,2)

   q(1:nq,nb+2) = - (x(1:nq) * h1) + q(1:nq,nb+2)
   q(1:nq,nb+2) = - (y(1:nq) * h2) + q(1:nq,nb+2)

   h1 = hh(nb,1)
   q(1:nq,nb+3) = - (x(1:nq) * h1) + q(1:nq,nb+3)

334

335 336 337
!   !TODO remove
!   diff = maxval(abs(q(:,1:nb+3) - q_copy(:, 1:nb+3)))
!   print *, "DIFFERENCE: ", diff
338

Andreas Marek's avatar
Andreas Marek committed
339
  end subroutine
340 341


342 343
!! TODO remove
!#include "blas_block4_template.F90"