elpa2.F90 20.5 KB
Newer Older
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), fomerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
11
12
13
14
15
16
17
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
18
!    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
!    enhancements authored by Intel Corporation which is not part of
20
!    the ELPA consortium.
21
22
!
!    More information can be found here:
23
!    http://elpa.mpcdf.mpg.de/
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"
64
!> \brief Fortran module which provides the routines to use the two-stage ELPA solver
65
66
67
68
module ELPA2

! Version 1.1.2, 2011-02-21

69
  use elpa_utilities
70
  use elpa1_compute
71
  use elpa1, only : elpa_print_times, time_evp_back, time_evp_fwd, time_evp_solve
72
  use elpa2_utilities
73
  use elpa2_compute
74
75
  use elpa_pdgeqrf

76
77
78
79
80
81
82
83
84
85
86
87
88
  implicit none

  PRIVATE ! By default, all routines contained are private

  ! The following routines are public:

  public :: solve_evp_real_2stage
  public :: solve_evp_complex_2stage

  include 'mpif.h'

!******
contains
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
!-------------------------------------------------------------------------------
!>  \brief solve_evp_real_2stage: Fortran function to solve the real eigenvalue problem with a 2 stage approach
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \param use_qr (optional)                    use QR decomposition
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
128

129
function solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk,        &
130
                               matrixCols,                               &
131
132
133
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
134

135
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
136
   use timings
137
#endif
Andreas Marek's avatar
Andreas Marek committed
138
   use precision
139
   implicit none
Andreas Marek's avatar
Andreas Marek committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
   logical, intent(in), optional          :: useQR
   logical                                :: useQRActual, useQREnvironment
   integer(kind=ik), intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
   integer(kind=ik)                       :: THIS_REAL_ELPA_KERNEL

   integer(kind=ik), intent(in)           :: na, nev, lda, ldq, matrixCols, mpi_comm_rows, &
                                             mpi_comm_cols, mpi_comm_all
   integer(kind=ik), intent(in)           :: nblk
   real(kind=rk), intent(inout)           :: a(lda,matrixCols), ev(na), q(ldq,matrixCols)
   real(kind=rk), allocatable             :: hh_trans_real(:,:)

   integer(kind=ik)                       :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer(kind=ik)                       :: nbw, num_blocks
   real(kind=rk), allocatable             :: tmat(:,:,:), e(:)
   real(kind=rk)                          :: ttt0, ttt1, ttts
   integer(kind=ik)                       :: i
   logical                                :: success
   logical, save                          :: firstCall = .true.
   logical                                :: wantDebug
159

160
161
162
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_real_2stage")
#endif
163
164
165
166
167
168
169
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
170

171
172
173
174
175
176
177
178

   wantDebug = .false.
   if (firstCall) then
     ! are debug messages desired?
     wantDebug = debug_messages_via_environment_variable()
     firstCall = .false.
   endif

179
180
   success = .true.

181
182
183
184
185
186
187
188
189
190
191
192
193
   useQRActual = .false.

   ! set usage of qr decomposition via API call
   if (present(useQR)) then
     if (useQR) useQRActual = .true.
     if (.not.(useQR)) useQRACtual = .false.
   endif

   ! overwrite this with environment variable settings
   if (qr_decomposition_via_environment_variable(useQREnvironment)) then
     useQRActual = useQREnvironment
   endif

194
   if (useQRActual) then
195
196
197
198
     if (mod(na,nblk) .ne. 0) then
       if (wantDebug) then
         write(error_unit,*) "solve_evp_real_2stage: QR-decomposition: blocksize does not fit with matrixsize"
       endif
Andreas Marek's avatar
Andreas Marek committed
199
     print *, "Do not use QR-decomposition for this matrix and blocksize."
Andreas Marek's avatar
Andreas Marek committed
200
201
     success = .false.
     return
202
     endif
203
204
   endif

205

206
207
208
   if (present(THIS_REAL_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
209
   else
210

211
212
213
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
Andreas Marek's avatar
Andreas Marek committed
214
215
216
217
   endif

   ! check whether choosen kernel is allowed
   if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then
218

219
220
221
222
223
224
225
226
227
228
229
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
230

231
232
233
234
       write(error_unit,*) " "
       write(error_unit,*) "The defaul kernel REAL_ELPA_KERNEL_GENERIC will be used !"
     endif
     THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
235
236

   endif
237
238

   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32
Andreas Marek's avatar
Andreas Marek committed
239
   ! On older systems (IBM Bluegene/P, Intel Nehalem) a value of 32 was optimal.
240
   ! For Intel(R) Xeon(R) E5 v2 and v3, better use 64 instead of 32!
Andreas Marek's avatar
Andreas Marek committed
241
242
   ! For IBM Bluegene/Q this is not clear at the moment. We have to keep an eye
   ! on this and maybe allow a run-time optimization here
243
   nbw = (63/nblk+1)*nblk
244
245
246
247
248
249
250
251
252

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
253
   call bandred_real(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
254
                     tmat, wantDebug, success, useQRActual)
255
   if (.not.(success)) return
256
   ttt1 = MPI_Wtime()
257
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
258
      write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
259
260
261
262
263
264

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
265
266
   call tridiag_band_real(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
267
   ttt1 = MPI_Wtime()
268
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
269
      write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
270
271
272
273
274
275
276
277
278
279

   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)

   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
280
   call solve_tridi(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
281
                    mpi_comm_cols, wantDebug, success)
282
283
   if (.not.(success)) return

284
   ttt1 = MPI_Wtime()
285
286
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
287
288
289
290
291
292
293
294
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   deallocate(e)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
295
296
297
   call trans_ev_tridi_to_band_real(na, nev, nblk, nbw, q, ldq, matrixCols, hh_trans_real, &
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, success,      &
                                    THIS_REAL_ELPA_KERNEL)
298
   if (.not.(success)) return
299
   ttt1 = MPI_Wtime()
300
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
301
      write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
302
303
304
305
306
307
308

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_real)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
309
   call trans_ev_band_to_full_real(na, nev, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, num_blocks, mpi_comm_rows, &
310
                                   mpi_comm_cols, useQRActual)
311
   ttt1 = MPI_Wtime()
312
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
313
      write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
314
315
316
   time_evp_back = ttt1-ttts

   deallocate(tmat)
317
318
319
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_real_2stage")
#endif
320
321
1  format(a,f10.3)

322
end function solve_evp_real_2stage
323
324
325


!-------------------------------------------------------------------------------
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
!>  \brief solve_evp_complex_2stage: Fortran function to solve the complex eigenvalue problem with a 2 stage approach
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
362
function solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, &
363
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
364
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
365

366
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
367
   use timings
368
#endif
Andreas Marek's avatar
Andreas Marek committed
369
   use precision
370
   implicit none
Andreas Marek's avatar
Andreas Marek committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
   integer(kind=ik), intent(in), optional :: THIS_COMPLEX_ELPA_KERNEL_API
   integer(kind=ik)                       :: THIS_COMPLEX_ELPA_KERNEL
   integer(kind=ik), intent(in)           :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all
   complex(kind=ck), intent(inout)        :: a(lda,matrixCols), q(ldq,matrixCols)
   real(kind=rk), intent(inout)           :: ev(na)
   complex(kind=ck), allocatable          :: hh_trans_complex(:,:)

   integer(kind=ik)                       :: my_prow, my_pcol, np_rows, np_cols, mpierr, my_pe, n_pes
   integer(kind=ik)                       :: l_cols, l_rows, l_cols_nev, nbw, num_blocks
   complex(kind=ck), allocatable          :: tmat(:,:,:)
   real(kind=rk), allocatable             :: q_real(:,:), e(:)
   real(kind=rk)                          :: ttt0, ttt1, ttts
   integer(kind=ik)                       :: i

   logical                                :: success, wantDebug
   logical, save                          :: firstCall = .true.
387

388
389
390
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_complex_2stage")
#endif
Andreas Marek's avatar
Andreas Marek committed
391
392
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)
393
394
395
396
397

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
398

399
400
401
402
403
404
405
406
   wantDebug = .false.
   if (firstCall) then
     ! are debug messages desired?
     wantDebug = debug_messages_via_environment_variable()
     firstCall = .false.
   endif


407
408
   success = .true.

409
410
411
   if (present(THIS_COMPLEX_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_COMPLEX_ELPA_KERNEL = THIS_COMPLEX_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
412
   else
413
414
415
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_COMPLEX_ELPA_KERNEL = get_actual_complex_kernel()
Andreas Marek's avatar
Andreas Marek committed
416
   endif
417

Andreas Marek's avatar
Andreas Marek committed
418
419
   ! check whether choosen kernel is allowed
   if (check_allowed_complex_kernels(THIS_COMPLEX_ELPA_KERNEL)) then
420

421
422
423
424
425
426
427
428
429
430
431
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",COMPLEX_ELPA_KERNEL_NAMES(THIS_COMPLEX_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(COMPLEX_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_COMPLEX_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) COMPLEX_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
432

433
434
435
436
       write(error_unit,*) " "
       write(error_unit,*) "The defaul kernel COMPLEX_ELPA_KERNEL_GENERIC will be used !"
     endif
     THIS_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
437
   endif
438
439
440
441
442
443
444
445
446
447
448
449
   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

   nbw = (31/nblk+1)*nblk

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
450
   call bandred_complex(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
451
                        tmat, wantDebug, success)
452
453
454
455
456
457
   if (.not.(success)) then
#ifdef HAVE_DETAILED_TIMINGS
     call timer%stop()
#endif
     return
   endif
458
   ttt1 = MPI_Wtime()
459
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
460
      write(error_unit,*) 'Time bandred_complex               :',ttt1-ttt0
461
462
463
464
465
466

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
467
468
   call tridiag_band_complex(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_complex, &
                             mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
469
   ttt1 = MPI_Wtime()
470
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
471
      write(error_unit,*) 'Time tridiag_band_complex          :',ttt1-ttt0
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)

   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   l_rows = local_index(na, my_prow, np_rows, nblk, -1) ! Local rows of a and q
   l_cols = local_index(na, my_pcol, np_cols, nblk, -1) ! Local columns of q
   l_cols_nev = local_index(nev, my_pcol, np_cols, nblk, -1) ! Local columns corresponding to nev

   allocate(q_real(l_rows,l_cols))

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
488
   call solve_tridi(na, nev, ev, e, q_real, ubound(q_real,dim=1), nblk, matrixCols, &
489
                    mpi_comm_rows, mpi_comm_cols, wantDebug, success)
490
491
   if (.not.(success)) return

492
   ttt1 = MPI_Wtime()
493
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times)  &
494
      write(error_unit,*) 'Time solve_tridi                   :',ttt1-ttt0
495
496
497
498
499
500
501
502
503
504
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   q(1:l_rows,1:l_cols_nev) = q_real(1:l_rows,1:l_cols_nev)

   deallocate(e, q_real)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
505
506
507
   call trans_ev_tridi_to_band_complex(na, nev, nblk, nbw, q, ldq,   &
                                       matrixCols, hh_trans_complex, &
                                       mpi_comm_rows, mpi_comm_cols, &
508
                                       wantDebug, success,THIS_COMPLEX_ELPA_KERNEL)
509
   if (.not.(success)) return
510
   ttt1 = MPI_Wtime()
511
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
512
      write(error_unit,*) 'Time trans_ev_tridi_to_band_complex:',ttt1-ttt0
513
514
515
516
517
518
519

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_complex)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
Andreas Marek's avatar
Andreas Marek committed
520
521
   call trans_ev_band_to_full_complex(na, nev, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, num_blocks, &
                                      mpi_comm_rows, mpi_comm_cols)
522
   ttt1 = MPI_Wtime()
523
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
524
      write(error_unit,*) 'Time trans_ev_band_to_full_complex :',ttt1-ttt0
525
526
527
   time_evp_back = ttt1-ttts

   deallocate(tmat)
528
529
530
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_complex_2stage")
#endif
531
532
533

1  format(a,f10.3)

534
end function solve_evp_complex_2stage
535
536

end module ELPA2