elpa2_kernels_complex_avx-avx2_1hv_double_precision.c 19.9 KB
Newer Older
1
2
//    This file is part of ELPA.
//
Andreas Marek's avatar
Andreas Marek committed
3
//    The ELPA library was originally created by the ELPA consortium,
4
5
//    consisting of the following organizations:
//
6
7
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
Andreas Marek's avatar
Andreas Marek committed
11
12
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
13
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
Andreas Marek's avatar
Andreas Marek committed
14
15
//      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//      and
16
17
//    - IBM Deutschland GmbH
//
18
//    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
//    enhancements authored by Intel Corporation which is not part of
20
//    the ELPA consortium.
21
22
//
//    More information can be found here:
23
//    http://elpa.mpcdf.mpg.de/
24
25
//
//    ELPA is free software: you can redistribute it and/or modify
Andreas Marek's avatar
Andreas Marek committed
26
27
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
//    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
//
// --------------------------------------------------------------------------------------------------
//
// This file contains the compute intensive kernels for the Householder transformations.
// It should be compiled with the highest possible optimization level.
//
// On Intel Nehalem or Intel Westmere or AMD Magny Cours use -O3 -msse3
// On Intel Sandy Bridge use -O3 -mavx
//
// Copyright of the original code rests with the authors inside the ELPA
// consortium. The copyright of any additional modifications shall rest
// with their original authors, but shall adhere to the licensing terms
// distributed along with the original code in the file "COPYING".
//
// Author: Alexander Heinecke (alexander.heinecke@mytum.de)
60
// Adapted for building a shared-library by Andreas Marek, MPCDF (andreas.marek@mpcdf.mpg.de)
61
// --------------------------------------------------------------------------------------------------
62
#include "config-f90.h"
63

Andreas Marek's avatar
Andreas Marek committed
64
#include <complex.h>
65
66
67
68
#include <x86intrin.h>

#define __forceinline __attribute__((always_inline))

69
70
#ifdef HAVE_AVX2

71
72
73
74
75
76
77
78
79
80
81
#ifdef __FMA4__
#define __ELPA_USE_FMA__
#define _mm256_FMADDSUB_pd(a,b,c) _mm256_maddsub_pd(a,b,c)
#define _mm256_FMSUBADD_pd(a,b,c) _mm256_msubadd_pd(a,b,c)
#endif

#ifdef __AVX2__
#define __ELPA_USE_FMA__
#define _mm256_FMADDSUB_pd(a,b,c) _mm256_fmaddsub_pd(a,b,c)
#define _mm256_FMSUBADD_pd(a,b,c) _mm256_fmsubadd_pd(a,b,c)
#endif
82

83
84
#endif

85
//Forward declaration
86
87
88
static  __forceinline void hh_trafo_complex_kernel_12_AVX_1hv_double(double complex* q, double complex* hh, int nb, int ldq);
static  __forceinline void hh_trafo_complex_kernel_8_AVX_1hv_double(double complex* q, double complex* hh, int nb, int ldq);
static  __forceinline void hh_trafo_complex_kernel_4_AVX_1hv_double(double complex* q, double complex* hh, int nb, int ldq);
89

90
/*
91
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
92
!f> interface
93
94
!f>   subroutine single_hh_trafo_complex_avx_avx2_1hv_double(q, hh, pnb, pnq, pldq) &
!f>                             bind(C, name="single_hh_trafo_complex_avx_avx2_1hv_double")
95
96
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
97
98
!f>     complex(kind=c_double_complex)     :: q(*)
!f>     complex(kind=c_double_complex)     :: hh(pnb,2)
99
100
101
102
103
!f>   end subroutine
!f> end interface
!f>#endif
*/

104
void single_hh_trafo_complex_avx_avx2_1hv_double(double complex* q, double complex* hh, int* pnb, int* pnq, int* pldq)
105
106
107
108
109
110
111
112
113
{
	int i;
	int nb = *pnb;
	int nq = *pldq;
	int ldq = *pldq;
	//int ldh = *pldh;

	for (i = 0; i < nq-8; i+=12)
	{
114
		hh_trafo_complex_kernel_12_AVX_1hv_double(&q[i], hh, nb, ldq);
115
	}
116
117

	if (nq == i)
118
	{
119
		return;
120
	}
121

122
123
124
125
	if (nq-i == 8)
	{
		hh_trafo_complex_kernel_8_AVX_1hv_double(&q[i], hh, nb, ldq);
	} else
126
	{
127
		hh_trafo_complex_kernel_4_AVX_1hv_double(&q[i], hh, nb, ldq);
128
129
130
	}
}

131
static __forceinline void hh_trafo_complex_kernel_12_AVX_1hv_double(double complex* q, double complex* hh, int nb, int ldq)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m256d x1, x2, x3, x4, x5, x6;
	__m256d q1, q2, q3, q4, q5, q6;
	__m256d h1_real, h1_imag;
	__m256d tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
	int i=0;

	__m256d sign = (__m256d)_mm256_set_epi64x(0x8000000000000000, 0x8000000000000000, 0x8000000000000000, 0x8000000000000000);

	x1 = _mm256_load_pd(&q_dbl[0]);
	x2 = _mm256_load_pd(&q_dbl[4]);
	x3 = _mm256_load_pd(&q_dbl[8]);
	x4 = _mm256_load_pd(&q_dbl[12]);
	x5 = _mm256_load_pd(&q_dbl[16]);
	x6 = _mm256_load_pd(&q_dbl[20]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);
155
#ifndef __ELPA_USE_FMA__
156
157
158
159
160
161
162
163
164
165
166
167
		// conjugate
		h1_imag = _mm256_xor_pd(h1_imag, sign);
#endif

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);
		q3 = _mm256_load_pd(&q_dbl[(2*i*ldq)+8]);
		q4 = _mm256_load_pd(&q_dbl[(2*i*ldq)+12]);
		q5 = _mm256_load_pd(&q_dbl[(2*i*ldq)+16]);
		q6 = _mm256_load_pd(&q_dbl[(2*i*ldq)+20]);

		tmp1 = _mm256_mul_pd(h1_imag, q1);
168
169
#ifdef __ELPA_USE_FMA__
		x1 = _mm256_add_pd(x1, _mm256_FMSUBADD_pd(h1_real, q1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
170
171
172
173
#else
		x1 = _mm256_add_pd(x1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, q2);
174
175
#ifdef __ELPA_USE_FMA__
		x2 = _mm256_add_pd(x2, _mm256_FMSUBADD_pd(h1_real, q2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
176
177
178
179
#else
		x2 = _mm256_add_pd(x2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
		tmp3 = _mm256_mul_pd(h1_imag, q3);
180
181
#ifdef __ELPA_USE_FMA__
		x3 = _mm256_add_pd(x3, _mm256_FMSUBADD_pd(h1_real, q3, _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
182
183
184
185
#else
		x3 = _mm256_add_pd(x3, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q3), _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
#endif
		tmp4 = _mm256_mul_pd(h1_imag, q4);
186
187
#ifdef __ELPA_USE_FMA__
		x4 = _mm256_add_pd(x4, _mm256_FMSUBADD_pd(h1_real, q4, _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
188
189
190
191
#else
		x4 = _mm256_add_pd(x4, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q4), _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
#endif
		tmp5 = _mm256_mul_pd(h1_imag, q5);
192
193
#ifdef __ELPA_USE_FMA__
		x5 = _mm256_add_pd(x5, _mm256_FMSUBADD_pd(h1_real, q5, _mm256_shuffle_pd(tmp5, tmp5, 0x5)));
194
195
196
197
#else
		x5 = _mm256_add_pd(x5, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q5), _mm256_shuffle_pd(tmp5, tmp5, 0x5)));
#endif
		tmp6 = _mm256_mul_pd(h1_imag, q6);
198
199
#ifdef __ELPA_USE_FMA__
		x6 = _mm256_add_pd(x6, _mm256_FMSUBADD_pd(h1_real, q6, _mm256_shuffle_pd(tmp6, tmp6, 0x5)));
200
201
202
203
204
205
206
207
208
209
210
#else
		x6 = _mm256_add_pd(x6, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q6), _mm256_shuffle_pd(tmp6, tmp6, 0x5)));
#endif
	}

	h1_real = _mm256_broadcast_sd(&hh_dbl[0]);
	h1_imag = _mm256_broadcast_sd(&hh_dbl[1]);
	h1_real = _mm256_xor_pd(h1_real, sign);
	h1_imag = _mm256_xor_pd(h1_imag, sign);

	tmp1 = _mm256_mul_pd(h1_imag, x1);
211
212
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5));
213
214
215
216
#else
	x1 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5));
#endif
	tmp2 = _mm256_mul_pd(h1_imag, x2);
217
218
#ifdef __ELPA_USE_FMA__
	x2 = _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5));
219
220
221
222
#else
	x2 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5));
#endif
	tmp3 = _mm256_mul_pd(h1_imag, x3);
223
224
#ifdef __ELPA_USE_FMA__
	x3 = _mm256_FMADDSUB_pd(h1_real, x3, _mm256_shuffle_pd(tmp3, tmp3, 0x5));
225
226
227
228
#else
	x3 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x3), _mm256_shuffle_pd(tmp3, tmp3, 0x5));
#endif
	tmp4 = _mm256_mul_pd(h1_imag, x4);
229
230
#ifdef __ELPA_USE_FMA__
	x4 = _mm256_FMADDSUB_pd(h1_real, x4, _mm256_shuffle_pd(tmp4, tmp4, 0x5));
231
232
233
234
#else
	x4 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x4), _mm256_shuffle_pd(tmp4, tmp4, 0x5));
#endif
	tmp5 = _mm256_mul_pd(h1_imag, x5);
235
236
#ifdef __ELPA_USE_FMA__
	x5 = _mm256_FMADDSUB_pd(h1_real, x5, _mm256_shuffle_pd(tmp5, tmp5, 0x5));
237
238
239
240
#else
	x5 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x5), _mm256_shuffle_pd(tmp5, tmp5, 0x5));
#endif
	tmp6 = _mm256_mul_pd(h1_imag, x6);
241
242
#ifdef __ELPA_USE_FMA__
	x6 = _mm256_FMADDSUB_pd(h1_real, x6, _mm256_shuffle_pd(tmp6, tmp6, 0x5));
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#else
	x6 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x6), _mm256_shuffle_pd(tmp6, tmp6, 0x5));
#endif

	q1 = _mm256_load_pd(&q_dbl[0]);
	q2 = _mm256_load_pd(&q_dbl[4]);
	q3 = _mm256_load_pd(&q_dbl[8]);
	q4 = _mm256_load_pd(&q_dbl[12]);
	q5 = _mm256_load_pd(&q_dbl[16]);
	q6 = _mm256_load_pd(&q_dbl[20]);

	q1 = _mm256_add_pd(q1, x1);
	q2 = _mm256_add_pd(q2, x2);
	q3 = _mm256_add_pd(q3, x3);
	q4 = _mm256_add_pd(q4, x4);
	q5 = _mm256_add_pd(q5, x5);
	q6 = _mm256_add_pd(q6, x6);

	_mm256_store_pd(&q_dbl[0], q1);
	_mm256_store_pd(&q_dbl[4], q2);
	_mm256_store_pd(&q_dbl[8], q3);
	_mm256_store_pd(&q_dbl[12], q4);
	_mm256_store_pd(&q_dbl[16], q5);
	_mm256_store_pd(&q_dbl[20], q6);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);
		q3 = _mm256_load_pd(&q_dbl[(2*i*ldq)+8]);
		q4 = _mm256_load_pd(&q_dbl[(2*i*ldq)+12]);
		q5 = _mm256_load_pd(&q_dbl[(2*i*ldq)+16]);
		q6 = _mm256_load_pd(&q_dbl[(2*i*ldq)+20]);

		tmp1 = _mm256_mul_pd(h1_imag, x1);
281
282
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_add_pd(q1, _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
283
284
285
286
#else
		q1 = _mm256_add_pd(q1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, x2);
287
288
#ifdef __ELPA_USE_FMA__
		q2 = _mm256_add_pd(q2, _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
289
290
291
292
#else
		q2 = _mm256_add_pd(q2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
		tmp3 = _mm256_mul_pd(h1_imag, x3);
293
#ifdef __ELPA_USE_FMA__
294
		q3 = _mm256_add_pd(q3, _mm256_FMADDSUB_pd(h1_real, x3, _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
295
296
297
298
#else
		q3 = _mm256_add_pd(q3, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x3), _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
#endif
		tmp4 = _mm256_mul_pd(h1_imag, x4);
299
300
#ifdef __ELPA_USE_FMA__
		q4 = _mm256_add_pd(q4, _mm256_FMADDSUB_pd(h1_real, x4, _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
301
302
303
304
#else
		q4 = _mm256_add_pd(q4, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x4), _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
#endif
		tmp5 = _mm256_mul_pd(h1_imag, x5);
305
306
#ifdef __ELPA_USE_FMA__
		q5 = _mm256_add_pd(q5, _mm256_FMADDSUB_pd(h1_real, x5, _mm256_shuffle_pd(tmp5, tmp5, 0x5)));
307
308
309
310
#else
		q5 = _mm256_add_pd(q5, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x5), _mm256_shuffle_pd(tmp5, tmp5, 0x5)));
#endif
		tmp6 = _mm256_mul_pd(h1_imag, x6);
311
312
#ifdef __ELPA_USE_FMA__
		q6 = _mm256_add_pd(q6, _mm256_FMADDSUB_pd(h1_real, x6, _mm256_shuffle_pd(tmp6, tmp6, 0x5)));
313
314
315
316
317
318
319
320
321
322
323
324
325
#else
		q6 = _mm256_add_pd(q6, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x6), _mm256_shuffle_pd(tmp6, tmp6, 0x5)));
#endif

		_mm256_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+4], q2);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+8], q3);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+12], q4);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+16], q5);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+20], q6);
	}
}

326
static __forceinline void hh_trafo_complex_kernel_8_AVX_1hv_double(double complex* q, double complex* hh, int nb, int ldq)
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m256d x1, x2, x3, x4;
	__m256d q1, q2, q3, q4;
	__m256d h1_real, h1_imag;
	__m256d tmp1, tmp2, tmp3, tmp4;
	int i=0;

	__m256d sign = (__m256d)_mm256_set_epi64x(0x8000000000000000, 0x8000000000000000, 0x8000000000000000, 0x8000000000000000);

	x1 = _mm256_load_pd(&q_dbl[0]);
	x2 = _mm256_load_pd(&q_dbl[4]);
	x3 = _mm256_load_pd(&q_dbl[8]);
	x4 = _mm256_load_pd(&q_dbl[12]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);
348
#ifndef __ELPA_USE_FMA__
349
350
351
352
353
354
355
356
357
358
		// conjugate
		h1_imag = _mm256_xor_pd(h1_imag, sign);
#endif

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);
		q3 = _mm256_load_pd(&q_dbl[(2*i*ldq)+8]);
		q4 = _mm256_load_pd(&q_dbl[(2*i*ldq)+12]);

		tmp1 = _mm256_mul_pd(h1_imag, q1);
359
360
#ifdef __ELPA_USE_FMA__
		x1 = _mm256_add_pd(x1, _mm256_FMSUBADD_pd(h1_real, q1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
361
362
363
364
#else
		x1 = _mm256_add_pd(x1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, q2);
365
366
#ifdef __ELPA_USE_FMA__
		x2 = _mm256_add_pd(x2, _mm256_FMSUBADD_pd(h1_real, q2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
367
368
369
370
#else
		x2 = _mm256_add_pd(x2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
		tmp3 = _mm256_mul_pd(h1_imag, q3);
371
372
#ifdef __ELPA_USE_FMA__
		x3 = _mm256_add_pd(x3, _mm256_FMSUBADD_pd(h1_real, q3, _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
373
374
375
376
#else
		x3 = _mm256_add_pd(x3, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q3), _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
#endif
		tmp4 = _mm256_mul_pd(h1_imag, q4);
377
378
#ifdef __ELPA_USE_FMA__
		x4 = _mm256_add_pd(x4, _mm256_FMSUBADD_pd(h1_real, q4, _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
379
380
381
382
383
384
385
386
387
388
389
#else
		x4 = _mm256_add_pd(x4, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q4), _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
#endif
	}

	h1_real = _mm256_broadcast_sd(&hh_dbl[0]);
	h1_imag = _mm256_broadcast_sd(&hh_dbl[1]);
	h1_real = _mm256_xor_pd(h1_real, sign);
	h1_imag = _mm256_xor_pd(h1_imag, sign);

	tmp1 = _mm256_mul_pd(h1_imag, x1);
390
391
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5));
392
393
394
395
#else
	x1 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5));
#endif
	tmp2 = _mm256_mul_pd(h1_imag, x2);
396
397
#ifdef __ELPA_USE_FMA__
	x2 = _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5));
398
399
400
401
#else
	x2 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5));
#endif
	tmp3 = _mm256_mul_pd(h1_imag, x3);
402
403
#ifdef __ELPA_USE_FMA__
	x3 = _mm256_FMADDSUB_pd(h1_real, x3, _mm256_shuffle_pd(tmp3, tmp3, 0x5));
404
405
406
407
#else
	x3 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x3), _mm256_shuffle_pd(tmp3, tmp3, 0x5));
#endif
	tmp4 = _mm256_mul_pd(h1_imag, x4);
408
409
#ifdef __ELPA_USE_FMA__
	x4 = _mm256_FMADDSUB_pd(h1_real, x4, _mm256_shuffle_pd(tmp4, tmp4, 0x5));
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#else
	x4 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x4), _mm256_shuffle_pd(tmp4, tmp4, 0x5));
#endif

	q1 = _mm256_load_pd(&q_dbl[0]);
	q2 = _mm256_load_pd(&q_dbl[4]);
	q3 = _mm256_load_pd(&q_dbl[8]);
	q4 = _mm256_load_pd(&q_dbl[12]);

	q1 = _mm256_add_pd(q1, x1);
	q2 = _mm256_add_pd(q2, x2);
	q3 = _mm256_add_pd(q3, x3);
	q4 = _mm256_add_pd(q4, x4);

	_mm256_store_pd(&q_dbl[0], q1);
	_mm256_store_pd(&q_dbl[4], q2);
	_mm256_store_pd(&q_dbl[8], q3);
	_mm256_store_pd(&q_dbl[12], q4);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);
		q3 = _mm256_load_pd(&q_dbl[(2*i*ldq)+8]);
		q4 = _mm256_load_pd(&q_dbl[(2*i*ldq)+12]);

		tmp1 = _mm256_mul_pd(h1_imag, x1);
440
441
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_add_pd(q1, _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
442
443
444
445
#else
		q1 = _mm256_add_pd(q1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, x2);
446
447
#ifdef __ELPA_USE_FMA__
		q2 = _mm256_add_pd(q2, _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
448
#else
449
450
451
		q2 = _mm256_add_pd(q2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
		tmp3 = _mm256_mul_pd(h1_imag, x3);
452
453
#ifdef __ELPA_USE_FMA__
		q3 = _mm256_add_pd(q3, _mm256_FMADDSUB_pd(h1_real, x3, _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
454
#else
455
456
457
		q3 = _mm256_add_pd(q3, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x3), _mm256_shuffle_pd(tmp3, tmp3, 0x5)));
#endif
		tmp4 = _mm256_mul_pd(h1_imag, x4);
458
459
#ifdef __ELPA_USE_FMA__
		q4 = _mm256_add_pd(q4, _mm256_FMADDSUB_pd(h1_real, x4, _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
460
461
462
463
464
465
466
467
468
469
470
#else
		q4 = _mm256_add_pd(q4, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x4), _mm256_shuffle_pd(tmp4, tmp4, 0x5)));
#endif

		_mm256_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+4], q2);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+8], q3);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+12], q4);
	}
}

471
static __forceinline void hh_trafo_complex_kernel_4_AVX_1hv_double(double complex* q, double complex* hh, int nb, int ldq)
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m256d x1, x2;
	__m256d q1, q2;
	__m256d h1_real, h1_imag;
	__m256d tmp1, tmp2;
	int i=0;

	__m256d sign = (__m256d)_mm256_set_epi64x(0x8000000000000000, 0x8000000000000000, 0x8000000000000000, 0x8000000000000000);

	x1 = _mm256_load_pd(&q_dbl[0]);
	x2 = _mm256_load_pd(&q_dbl[4]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);
491
#ifndef __ELPA_USE_FMA__
492
493
494
495
496
497
498
499
		// conjugate
		h1_imag = _mm256_xor_pd(h1_imag, sign);
#endif

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);

		tmp1 = _mm256_mul_pd(h1_imag, q1);
500
501
#ifdef __ELPA_USE_FMA__
		x1 = _mm256_add_pd(x1, _mm256_FMSUBADD_pd(h1_real, q1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
502
503
504
505
#else
		x1 = _mm256_add_pd(x1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, q2);
506
507
#ifdef __ELPA_USE_FMA__
		x2 = _mm256_add_pd(x2, _mm256_FMSUBADD_pd(h1_real, q2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
508
509
510
511
512
513
514
515
516
517
518
#else
		x2 = _mm256_add_pd(x2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, q2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif
	}

	h1_real = _mm256_broadcast_sd(&hh_dbl[0]);
	h1_imag = _mm256_broadcast_sd(&hh_dbl[1]);
	h1_real = _mm256_xor_pd(h1_real, sign);
	h1_imag = _mm256_xor_pd(h1_imag, sign);

	tmp1 = _mm256_mul_pd(h1_imag, x1);
519
520
#ifdef __ELPA_USE_FMA__
	x1 = _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5));
521
522
523
524
#else
	x1 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5));
#endif
	tmp2 = _mm256_mul_pd(h1_imag, x2);
525
526
#ifdef __ELPA_USE_FMA__
	x2 = _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5));
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
#else
	x2 = _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5));
#endif

	q1 = _mm256_load_pd(&q_dbl[0]);
	q2 = _mm256_load_pd(&q_dbl[4]);

	q1 = _mm256_add_pd(q1, x1);
	q2 = _mm256_add_pd(q2, x2);

	_mm256_store_pd(&q_dbl[0], q1);
	_mm256_store_pd(&q_dbl[4], q2);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm256_broadcast_sd(&hh_dbl[i*2]);
		h1_imag = _mm256_broadcast_sd(&hh_dbl[(i*2)+1]);

		q1 = _mm256_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm256_load_pd(&q_dbl[(2*i*ldq)+4]);

		tmp1 = _mm256_mul_pd(h1_imag, x1);
549
550
#ifdef __ELPA_USE_FMA__
		q1 = _mm256_add_pd(q1, _mm256_FMADDSUB_pd(h1_real, x1, _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
551
552
553
554
#else
		q1 = _mm256_add_pd(q1, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x1), _mm256_shuffle_pd(tmp1, tmp1, 0x5)));
#endif
		tmp2 = _mm256_mul_pd(h1_imag, x2);
555
556
#ifdef __ELPA_USE_FMA__
		q2 = _mm256_add_pd(q2, _mm256_FMADDSUB_pd(h1_real, x2, _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
557
558
559
560
561
562
563
564
#else
		q2 = _mm256_add_pd(q2, _mm256_addsub_pd( _mm256_mul_pd(h1_real, x2), _mm256_shuffle_pd(tmp2, tmp2, 0x5)));
#endif

		_mm256_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm256_store_pd(&q_dbl[(2*i*ldq)+4], q2);
	}
}