elpa_c_interface.F90 35.2 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
Andreas Marek's avatar
Andreas Marek committed
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
Andreas Marek's avatar
Andreas Marek committed
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
Andreas Marek's avatar
Andreas Marek committed
14
15
16
17
18
19
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
20
!    http://elpa.mpcdf.mpg.de/
Andreas Marek's avatar
Andreas Marek committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
42
! Author: Andreas Marek, MCPDF
Andreas Marek's avatar
Andreas Marek committed
43
#include "config-f90.h"
Andreas Marek's avatar
Andreas Marek committed
44
  !c> #include <complex.h>
Andreas Marek's avatar
Andreas Marek committed
45

46
  !c> /*! \brief C old, deprecated interface to create the MPI communicators for ELPA
47
48
49
50
51
52
53
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
Andreas Marek's avatar
Andreas Marek committed
54
  !c> int elpa_get_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
55
  function get_elpa_row_col_comms_wrapper_c_name1(mpi_comm_world, my_prow, my_pcol, &
Andreas Marek's avatar
Andreas Marek committed
56
57
58
59
60
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="elpa_get_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

Andreas Marek's avatar
Andreas Marek committed
61
    implicit none
Andreas Marek's avatar
Andreas Marek committed
62
63
64
65
66
67
68
69
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  !c> #include <complex.h>

  !c> /*! \brief C interface to create the MPI communicators for ELPA
  !c> *
  !c> * \param mpi_comm_word    MPI global communicator (in)
  !c> * \param my_prow          Row coordinate of the calling process in the process grid (in)
  !c> * \param my_pcol          Column coordinate of the calling process in the process grid (in)
  !c> * \param mpi_comm_rows    Communicator for communicating within rows of processes (out)
  !c> * \result int             integer error value of mpi_comm_split function
  !c> */
  !c> int get_elpa_communicators(int mpi_comm_world, int my_prow, int my_pcol, int *mpi_comm_rows, int *mpi_comm_cols);
  function get_elpa_row_col_comms_wrapper_c_name2(mpi_comm_world, my_prow, my_pcol, &
                                          mpi_comm_rows, mpi_comm_cols)     &
                                          result(mpierr) bind(C,name="get_elpa_communicators")
    use, intrinsic :: iso_c_binding
    use elpa1, only : get_elpa_row_col_comms

    implicit none
    integer(kind=c_int)         :: mpierr
    integer(kind=c_int), value  :: mpi_comm_world, my_prow, my_pcol
    integer(kind=c_int)         :: mpi_comm_rows, mpi_comm_cols

    mpierr = get_elpa_row_col_comms(mpi_comm_world, my_prow, my_pcol, &
                                    mpi_comm_rows, mpi_comm_cols)

  end function



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  !c>  /*! \brief C interface to solve the real eigenvalue problem with 1-stage solver
  !c>  *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c>*/
121
  !c> int elpa_solve_evp_real_1stage(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
122
123
  function solve_elpa1_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
Andreas Marek's avatar
Andreas Marek committed
124
125
126
127
128
                                  result(success) bind(C,name="elpa_solve_evp_real_1stage")

    use, intrinsic :: iso_c_binding
    use elpa1, only : solve_evp_real

Andreas Marek's avatar
Andreas Marek committed
129
    implicit none
Andreas Marek's avatar
Andreas Marek committed
130
    integer(kind=c_int)                    :: success
131
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
132
    real(kind=c_double)                    :: ev(1:na)
133
#ifdef USE_ASSUMED_SIZE
134
135
136
137
    real(kind=c_double)                    :: a(lda,*), q(ldq,*)
#else
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
Andreas Marek's avatar
Andreas Marek committed
138
139
    logical                                :: successFortran

140
    successFortran = solve_evp_real(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
141
142
143
144
145
146
147
148

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
149
150


151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  !c> /*! \brief C interface to solve the complex eigenvalue problem with 1-stage solver
  !c> *
  !c> *  \param  na                   Order of matrix a
  !c> *  \param  nev                  Number of eigenvalues needed.
  !c> *                               The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                    Distributed matrix for which eigenvalues are to be computed.
  !c> *                               Distribution is like in Scalapack.
  !c> *                               The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                   Leading dimension of a
  !c> *  \param ev(na)                On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                     On output: Eigenvectors of a
  !c> *                               Distribution is like in Scalapack.
  !c> *                               Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                               even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                   Leading dimension of q
  !c> *  \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols           distributed number of matrix columns
  !c> *  \param mpi_comm_rows        MPI-Communicator for rows
  !c> *  \param mpi_comm_cols        MPI-Communicator for columns
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
173
  !c> int elpa_solve_evp_complex_1stage(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols);
174
175
  function solve_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk, &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols)      &
Andreas Marek's avatar
Andreas Marek committed
176
177
178
179
180
                                  result(success) bind(C,name="elpa_solve_evp_complex_1stage")

    use, intrinsic :: iso_c_binding
    use elpa1, only : solve_evp_complex

Andreas Marek's avatar
Andreas Marek committed
181
    implicit none
Andreas Marek's avatar
Andreas Marek committed
182
    integer(kind=c_int)                    :: success
183
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows
184
#ifdef USE_ASSUMED_SIZE
185
186
    complex(kind=c_double_complex)         :: a(lda,*), q(ldq,*)
#else
187
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
188
#endif
Andreas Marek's avatar
Andreas Marek committed
189
190
191
192
    real(kind=c_double)                    :: ev(1:na)

    logical                                :: successFortran

193
    successFortran = solve_evp_complex(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
Andreas Marek's avatar
Andreas Marek committed
194
195
196
197
198
199
200
201

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  !c> /*! \brief C interface to solve the real eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
227
  !c> int elpa_solve_evp_real_2stage(int na, int nev, double *a, int lda, double *ev, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_REAL_ELPA_KERNEL_API, int useQR);
228
229
  function solve_elpa2_evp_real_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, &
Andreas Marek's avatar
Andreas Marek committed
230
231
232
233
234
235
                                  THIS_REAL_ELPA_KERNEL_API, useQR)           &
                                  result(success) bind(C,name="elpa_solve_evp_real_2stage")

    use, intrinsic :: iso_c_binding
    use elpa2, only : solve_evp_real_2stage

Andreas Marek's avatar
Andreas Marek committed
236
    implicit none
Andreas Marek's avatar
Andreas Marek committed
237
    integer(kind=c_int)                    :: success
238
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
239
240
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_REAL_ELPA_KERNEL_API, useQR
241
    real(kind=c_double)                    :: ev(1:na)
242
#ifdef USE_ASSUMED_SIZE
243
244
245
246
    real(kind=c_double)                    :: a(lda,*), q(ldq,*)
#else
    real(kind=c_double)                    :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
#endif
Andreas Marek's avatar
Andreas Marek committed
247
248
249
250
251
252
253
254
    logical                                :: successFortran, useQRFortran

    if (useQR .eq. 0) then
      useQRFortran =.false.
    else
      useQRFortran = .true.
    endif

Andreas Marek's avatar
Andreas Marek committed
255
256
    successFortran = solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, &
                                           mpi_comm_cols, mpi_comm_all,                                  &
Andreas Marek's avatar
Andreas Marek committed
257
258
259
260
261
262
263
264
265
266
                                           THIS_REAL_ELPA_KERNEL_API, useQRFortran)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

  !c> /*! \brief C interface to solve the complex eigenvalue problem with 2-stage solver
  !c> *
  !c> *  \param  na                        Order of matrix a
  !c> *  \param  nev                       Number of eigenvalues needed.
  !c> *                                    The smallest nev eigenvalues/eigenvectors are calculated.
  !c> *  \param  a                         Distributed matrix for which eigenvalues are to be computed.
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    The full matrix must be set (not only one half like in scalapack).
  !c> *  \param lda                        Leading dimension of a
  !c> *  \param ev(na)                     On output: eigenvalues of a, every processor gets the complete set
  !c> *  \param q                          On output: Eigenvectors of a
  !c> *                                    Distribution is like in Scalapack.
  !c> *                                    Must be always dimensioned to the full size (corresponding to (na,na))
  !c> *                                    even if only a part of the eigenvalues is needed.
  !c> *  \param ldq                        Leading dimension of q
  !c> *  \param nblk                       blocksize of cyclic distribution, must be the same in both directions!
  !c> *  \param matrixCols                 distributed number of matrix columns
  !c> *  \param mpi_comm_rows              MPI-Communicator for rows
  !c> *  \param mpi_comm_cols              MPI-Communicator for columns
  !c> *  \param mpi_coll_all               MPI communicator for the total processor set
  !c> *  \param THIS_REAL_ELPA_KERNEL_API  specify used ELPA2 kernel via API
  !c> *  \param use_qr                     use QR decomposition 1 = yes, 0 = no
  !c> *
  !c> *  \result                     int: 1 if error occured, otherwise 0
  !c> */
293
  !c> int elpa_solve_evp_complex_2stage(int na, int nev, double complex *a, int lda, double *ev, double complex *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int mpi_comm_all, int THIS_COMPLEX_ELPA_KERNEL_API);
294
295
  function solve_elpa2_evp_complex_wrapper(na, nev, a, lda, ev, q, ldq, nblk,    &
                                  matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all,    &
Andreas Marek's avatar
Andreas Marek committed
296
297
298
299
300
301
                                  THIS_COMPLEX_ELPA_KERNEL_API)                  &
                                  result(success) bind(C,name="elpa_solve_evp_complex_2stage")

    use, intrinsic :: iso_c_binding
    use elpa2, only : solve_evp_complex_2stage

Andreas Marek's avatar
Andreas Marek committed
302
    implicit none
Andreas Marek's avatar
Andreas Marek committed
303
    integer(kind=c_int)                    :: success
304
    integer(kind=c_int), value, intent(in) :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_cols, mpi_comm_rows, &
Andreas Marek's avatar
Andreas Marek committed
305
306
                                              mpi_comm_all
    integer(kind=c_int), value, intent(in) :: THIS_COMPLEX_ELPA_KERNEL_API
307
#ifdef USE_ASSUMED_SIZE
308
309
    complex(kind=c_double_complex)         :: a(lda,*), q(ldq,*)
#else
310
    complex(kind=c_double_complex)         :: a(1:lda,1:matrixCols), q(1:ldq,1:matrixCols)
311
#endif
Andreas Marek's avatar
Andreas Marek committed
312
313
314
    real(kind=c_double)                    :: ev(1:na)
    logical                                :: successFortran

315
    successFortran = solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, &
Andreas Marek's avatar
Andreas Marek committed
316
317
318
319
320
321
322
323
324
325
                                              mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
  !c> /*
  !c> \brief  C interface to solve tridiagonal eigensystem with divide and conquer method
  !c> \details
  !c>
  !c> \param na                    Matrix dimension
  !c> \param nev                   number of eigenvalues/vectors to be computed
  !c> \param d                     array d(na) on input diagonal elements of tridiagonal matrix, on
  !c>                              output the eigenvalues in ascending order
  !c> \param e                     array e(na) on input subdiagonal elements of matrix, on exit destroyed
  !c> \param q                     on exit : matrix q(ldq,matrixCols) contains the eigenvectors
  !c> \param ldq                   leading dimension of matrix q
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param matrixCols            columns of matrix q
  !c> \param mpi_comm_rows         MPI communicator for rows
  !c> \param mpi_comm_cols         MPI communicator for columns
  !c> \param wantDebug             give more debug information if 1, else 0
  !c> \result success              int 1 on success, else 0
  !c> */
  !c> int elpa_solve_tridi(int na, int nev, double *d, double *e, double *q, int ldq, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_solve_tridi_wrapper(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
           result(success) bind(C,name="elpa_solve_tridi")

    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_solve_tridi

    implicit none
    integer(kind=c_int)                    :: success
    integer(kind=c_int), value, intent(in) :: na, nev, ldq, nblk, matrixCols,  mpi_comm_cols, mpi_comm_rows
    integer(kind=c_int), value             :: wantDebug
355
    real(kind=c_double)                    :: d(1:na), e(1:na)
356
#ifdef USE_ASSUMED_SIZE
357
358
359
360
    real(kind=c_double)                    :: q(ldq,*)
#else
    real(kind=c_double)                    :: q(1:ldq, 1:matrixCols)
#endif
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    logical                                :: successFortran, wantDebugFortran

    if (wantDebug .ne. 0) then
      wantDebugFortran = .true.
    else
      wantDebugFortran = .false.
    endif

    successFortran = elpa_solve_tridi(na, nev, d, e, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

  !c> /*
  !c> \brief  C interface for elpa_mult_at_b_real: Performs C : = A**T * B
  !c>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c>                 B is a (na,ncb) matrix
  !c>                 C is a (na,ncb) matrix where optionally only the upper or lower
  !c>                   triangle may be computed
  !c> \details
  !c> \param  uplo_a               'U' if A is upper triangular
  !c>                              'L' if A is lower triangular
  !c>                              anything else if A is a full matrix
  !c>                              Please note: This pertains to the original A (as set in the calling program)
  !c>                                           whereas the transpose of A is used for calculations
  !c>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c>                              i.e. it may contain arbitrary numbers
  !c> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !c>                              'L' if only the upper diagonal part of C is needed
  !c>                              anything else if the full matrix C is needed
  !c>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> \param na                    Number of rows/columns of A, number of rows of B and C
  !c> \param ncb                   Number of columns  of B and C
  !c> \param a                     matrix a
  !c> \param lda                   leading dimension of matrix a
402
  !c> \param ldaCols               columns of matrix a
403
404
  !c> \param b                     matrix b
  !c> \param ldb                   leading dimension of matrix b
405
  !c> \param ldbCols               columns of matrix b
406
407
408
409
410
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param c                     matrix c
  !c> \param ldc                   leading dimension of matrix c
411
  !c> \param ldcCols               columns of matrix c
412
413
414
  !c> \result success              int report success (1) or failure (0)
  !c> */

415
416
417
418
  !c> int elpa_mult_at_b_real(char uplo_a, char uplo_c, int na, int ncb, double *a, int lda, int ldaCols, double *b, int ldb, int ldbCols, int nlbk, int mpi_comm_rows, int mpi_comm_cols, double *c, int ldc, int ldcCols);
  function elpa_mult_at_b_real_wrapper(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, &
                                       nblk, mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols) &
                                       bind(C,name="elpa_mult_at_b_real") result(success)
419
420
421
422
423
424
    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_mult_at_b_real

    implicit none

    character(1,C_CHAR), value  :: uplo_a, uplo_c
425
426
    integer(kind=c_int), value  :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc, &
                                   ldaCols, ldbCols, ldcCols
427
    integer(kind=c_int)         :: success
428
#ifdef USE_ASSUMED_SIZE
429
    real(kind=c_double)         :: a(lda,*), b(ldb,*), c(ldc,*)
430
431
432
#else
    real(kind=c_double)         :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
433
434
    logical                     :: successFortran

435
436
    successFortran = elpa_mult_at_b_real(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, nblk, &
                                         mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

    if (successFortran) then
      success = 1
    else
      success = 0
    endif

  end function

  !c> /*
  !c> \brief C interface for elpa_mult_ah_b_complex: Performs C : = A**H * B
  !c>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
  !c>                 B is a (na,ncb) matrix
  !c>                 C is a (na,ncb) matrix where optionally only the upper or lower
  !c>                   triangle may be computed
  !c> \details
  !c>
  !c> \param  uplo_a               'U' if A is upper triangular
  !c>                              'L' if A is lower triangular
  !c>                              anything else if A is a full matrix
  !c>                              Please note: This pertains to the original A (as set in the calling program)
  !c>                                           whereas the transpose of A is used for calculations
  !c>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !c>                              i.e. it may contain arbitrary numbers
  !c> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !c>                              'L' if only the upper diagonal part of C is needed
  !c>                              anything else if the full matrix C is needed
  !c>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !c>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !c> \param na                    Number of rows/columns of A, number of rows of B and C
  !c> \param ncb                   Number of columns  of B and C
  !c> \param a                     matrix a
  !c> \param lda                   leading dimension of matrix a
470
  !c> \param ldaCols               columns of matrix a
471
472
  !c> \param b                     matrix b
  !c> \param ldb                   leading dimension of matrix b
473
  !c> \param ldbCols               columns of matrix b
474
475
476
477
478
  !c> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param c                     matrix c
  !c> \param ldc                   leading dimension of matrix c
479
  !c> \param ldcCols               columns of matrix c
480
481
482
483
  !c> \result success              int reports success (1) or failure (0)
  !c> */

  !c> int elpa_mult_ah_b_complex(char uplo_a, char uplo_c, int na, int ncb, double complex *a, int lda, double complex *b, int ldb, int nblk, int mpi_comm_rows, int mpi_comm_cols, double complex *c, int ldc);
484
485
486
  function elpa_mult_ah_b_complex_wrapper( uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, nblk, &
                                           mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols) &
                                           result(success) bind(C,name="elpa_mult_ah_b_complex")
487
488
489
490
491
492
    use, intrinsic :: iso_c_binding
    use elpa1_auxiliary, only : elpa_mult_ah_b_complex

    implicit none

    character(1,C_CHAR), value     :: uplo_a, uplo_c
493
    integer(kind=c_int), value     :: na, ncb, lda, ldb, nblk, mpi_comm_rows, mpi_comm_cols, ldc, ldaCols, ldbCols, ldcCols
494
    integer(kind=c_int)            :: success
495
#ifdef USE_ASSUMED_SIZE
496
    complex(kind=c_double_complex) :: a(lda,*), b(ldb,*), c(ldc,*)
497
498
499
#else
    complex(kind=c_double_complex) :: a(lda,ldaCols), b(ldb,ldbCols), c(ldc,ldcCols)
#endif
500
501
    logical                        :: successFortran

502
503
    successFortran = elpa_mult_ah_b_complex(uplo_a, uplo_c, na, ncb, a, lda, ldaCols, b, ldb, ldbCols, nblk, &
                                            mpi_comm_rows, mpi_comm_cols, c, ldc, ldcCols)
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

    if (successFortran) then
      success = 1
    else
      success = 0
     endif

  end function

  !c> /*
  !c> \brief  C interface to elpa_invert_trm_real: Inverts a upper triangular matrix
  !c> \details
  !c> \param  na                   Order of matrix
  !c> \param  a(lda,matrixCols)    Distributed matrix which should be inverted
  !c>                              Distribution is like in Scalapack.
  !c>                              Only upper triangle is needs to be set.
  !c>                              The lower triangle is not referenced.
  !c> \param  lda                  Leading dimension of a
  !c> \param                       matrixCols  local columns of matrix a
  !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
  !c> \param  mpi_comm_rows        MPI communicator for rows
  !c> \param  mpi_comm_cols        MPI communicator for columns
  !c> \param wantDebug             int more debug information on failure if 1, else 0
  !c> \result succes               int reports success (1) or failure (0)
  !c> */

  !c> int elpa_invert_trm_real(int na, double *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
  function elpa_invert_trm_real_wrapper(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) &
        result(success) bind(C,name="elpa_invert_trm_real")
   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_invert_trm_real

   implicit none

   integer(kind=c_int), value  :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols
   integer(kind=c_int), value  :: wantDebug
   integer(kind=c_int)         :: success
541
#ifdef USE_ASSUMED_SIZE
542
543
   real(kind=c_double)         :: a(lda,*)
#else
544
   real(kind=c_double)         :: a(lda,matrixCols)
545
#endif
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
   logical                     :: wantDebugFortran, successFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_invert_trm_real(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function

 !c> /*
 !c> \brief  C interface to elpa_invert_trm_complex: Inverts a complex upper triangular matrix
 !c> \details
 !c> \param  na                   Order of matrix
 !c> \param  a(lda,matrixCols)    Distributed matrix which should be inverted
 !c>                              Distribution is like in Scalapack.
 !c>                              Only upper triangle is needs to be set.
 !c>                              The lower triangle is not referenced.
 !c> \param  lda                  Leading dimension of a
 !c> \param                       matrixCols  local columns of matrix a
 !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> \param  mpi_comm_rows        MPI communicator for rows
 !c> \param  mpi_comm_cols        MPI communicator for columns
 !c> \param wantDebug             int more debug information on failure if 1, else 0
 !c> \result succes               int reports success (1) or failure (0)
 !c> */

 !c> int elpa_invert_trm_complex(int na, double complex *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
 function elpa_invert_trm_complex_wrapper(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) result(success) &
   bind(C,name="elpa_invert_trm_complex")

   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_invert_trm_complex

   implicit none

   integer(kind=c_int), value     :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols
   integer(kind=c_int), value     :: wantDebug
   integer(kind=c_int)            :: success
593
#ifdef USE_ASSUMED_SIZE
594
595
   complex(kind=c_double_complex) :: a(lda, *)
#else
596
   complex(kind=c_double_complex) :: a(lda, matrixCols)
597
#endif
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
   logical                        :: successFortran, wantDebugFortran


   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_invert_trm_complex(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif
 end function

 !c> /*
 !c> \brief  elpa_cholesky_real: Cholesky factorization of a real symmetric matrix
 !c> \details
 !c>
 !c> \param  na                   Order of matrix
 !c> \param  a(lda,matrixCols)    Distributed matrix which should be factorized.
 !c>                              Distribution is like in Scalapack.
 !c>                              Only upper triangle is needs to be set.
 !c>                              On return, the upper triangle contains the Cholesky factor
 !c>                              and the lower triangle is set to 0.
 !c> \param  lda                  Leading dimension of a
627
 !c> \param  matrixCols           local columns of matrix a
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
 !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> \param  mpi_comm_rows        MPI communicator for rows
 !c> \param  mpi_comm_cols        MPI communicator for columns
 !c> \param wantDebug             int more debug information on failure if 1, else 0
 !c> \result succes               int reports success (1) or failure (0)
 !c> */

 !c> int elpa_cholesky_real(int na, double *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
 function elpa_cholesky_real_wrapper(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) result(success) &
       bind(C,name="elpa_cholesky_real")

   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_cholesky_real

   implicit none

   integer(kind=c_int), value :: na, lda, nblk, matrixCols,  mpi_comm_rows, mpi_comm_cols, wantDebug
   integer(kind=c_int)        :: success
646
#ifdef USE_ASSUMED_SIZE
647
648
   real(kind=c_double)        :: a(lda,*)
#else
649
   real(kind=c_double)        :: a(lda,matrixCols)
650
#endif
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
   logical                    :: successFortran, wantDebugFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_cholesky_real(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function

 !c> /*
 !c> \brief  C interface elpa_cholesky_complex: Cholesky factorization of a complex hermitian matrix
 !c> \details
 !c> \param  na                   Order of matrix
 !c> \param  a(lda,matrixCols)    Distributed matrix which should be factorized.
 !c>                              Distribution is like in Scalapack.
 !c>                              Only upper triangle is needs to be set.
 !c>                              On return, the upper triangle contains the Cholesky factor
 !c>                              and the lower triangle is set to 0.
 !c> \param  lda                  Leading dimension of a
 !c> \param                       matrixCols  local columns of matrix a
 !c> \param  nblk                 blocksize of cyclic distribution, must be the same in both directions!
 !c> \param  mpi_comm_rows        MPI communicator for rows
 !c> \param  mpi_comm_cols        MPI communicator for columns
 !c> \param wantDebug             int more debug information on failure, if 1, else 0
 !c> \result succes               int reports success (1) or failure (0)
 !c> */

 !c> int elpa_cholesky_complex(int na, double complex *a, int lda, int nblk, int matrixCols, int mpi_comm_rows, int mpi_comm_cols, int wantDebug);
Andreas Marek's avatar
Andreas Marek committed
688
689
 function elpa_cholesky_complex_wrapper(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug) result(success) &
       bind(C,name="elpa_cholesky_complex")
690
691
692
693
694
695
696
   use, intrinsic :: iso_c_binding
   use elpa1_auxiliary, only : elpa_cholesky_complex

   implicit none

   integer(kind=c_int), value     :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebug
   integer(kind=c_int)            :: success
697
#ifdef USE_ASSUMED_SIZE
698
699
   complex(kind=c_double_complex) :: a(lda,*)
#else
700
   complex(kind=c_double_complex) :: a(lda,matrixCols)
701
#endif
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
   logical                        :: wantDebugFortran, successFortran

   if (wantDebug .ne. 0) then
     wantDebugFortran = .true.
   else
     wantDebugFortran = .false.
   endif

   successFortran = elpa_cholesky_complex(na, a, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, wantDebugFortran)

   if (successFortran) then
     success = 1
   else
     success = 0
   endif

 end function