elpa2_compute.F90 216 KB
Newer Older
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), fomerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
Andreas Marek's avatar
Andreas Marek committed
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
14
15
16
17
18
19
20
21
22
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
23
!    http://elpa.mpcdf.mpg.de/
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"

module ELPA2_compute

! Version 1.1.2, 2011-02-21

  use elpa_utilities
  USE ELPA1_compute
  use elpa1, only : elpa_print_times, time_evp_back, time_evp_fwd, time_evp_solve
  use elpa2_utilities
  use elpa_pdgeqrf
74
  use elpa_mpi
75
  use aligned_mem
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

  implicit none

  PRIVATE ! By default, all routines contained are private

  public :: bandred_real
  public :: tridiag_band_real
  public :: trans_ev_tridi_to_band_real
  public :: trans_ev_band_to_full_real

  public :: bandred_complex
  public :: tridiag_band_complex
  public :: trans_ev_tridi_to_band_complex
  public :: trans_ev_band_to_full_complex

  public :: band_band_real
  public :: divide_band

  integer, public :: which_qr_decomposition = 1     ! defines, which QR-decomposition algorithm will be used
                                                    ! 0 for unblocked
                                                    ! 1 for blocked (maxrank: nblk)
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  contains

    subroutine bandred_real(na, a, lda, nblk, nbw, matrixCols, numBlocks, mpi_comm_rows, mpi_comm_cols, &
                            tmat, wantDebug, success, useQR)

    !-------------------------------------------------------------------------------
    !  bandred_real: Reduces a distributed symmetric matrix to band form
    !
    !  Parameters
    !
    !  na          Order of matrix
    !
    !  a(lda,matrixCols)    Distributed matrix which should be reduced.
    !              Distribution is like in Scalapack.
    !              Opposed to Scalapack, a(:,:) must be set completely (upper and lower half)
    !              a(:,:) is overwritten on exit with the band and the Householder vectors
    !              in the upper half.
    !
    !  lda         Leading dimension of a
    !  matrixCols  local columns of matrix a
    !
    !  nblk        blocksize of cyclic distribution, must be the same in both directions!
    !
    !  nbw         semi bandwith of output matrix
    !
    !  mpi_comm_rows
    !  mpi_comm_cols
    !              MPI-Communicators for rows/columns
    !
    !  tmat(nbw,nbw,numBlocks)    where numBlocks = (na-1)/nbw + 1
    !              Factors for the Householder vectors (returned), needed for back transformation
    !
    !-------------------------------------------------------------------------------
#ifdef HAVE_DETAILED_TIMINGS
      use timings
#endif
#ifdef WITH_OPENMP
      use omp_lib
#endif
Andreas Marek's avatar
Andreas Marek committed
137
      use precision
138
139
      implicit none

Andreas Marek's avatar
Andreas Marek committed
140
      integer(kind=ik)           :: na, lda, nblk, nbw, matrixCols, numBlocks, mpi_comm_rows, mpi_comm_cols
141
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
142
143
      real(kind=rk)              :: a(lda,*), tmat(nbw,nbw,*)
#else
Andreas Marek's avatar
Andreas Marek committed
144
      real(kind=rk)              :: a(lda,matrixCols), tmat(nbw,nbw,numBlocks)
Andreas Marek's avatar
Andreas Marek committed
145
#endif
Andreas Marek's avatar
Andreas Marek committed
146
      integer(kind=ik)           :: my_prow, my_pcol, np_rows, np_cols, mpierr
147
      integer(kind=ik)           :: l_cols, l_rows, vmrCols
Andreas Marek's avatar
Andreas Marek committed
148
149
150
      integer(kind=ik)           :: i, j, lcs, lce, lrs, lre, lc, lr, cur_pcol, n_cols, nrow
      integer(kind=ik)           :: istep, ncol, lch, lcx, nlc, mynlc
      integer(kind=ik)           :: tile_size, l_rows_tile, l_cols_tile
151

Andreas Marek's avatar
Andreas Marek committed
152
      real(kind=rk)              :: vnorm2, xf, aux1(nbw), aux2(nbw), vrl, tau, vav(nbw,nbw)
153

Andreas Marek's avatar
Andreas Marek committed
154
      real(kind=rk), allocatable :: tmp(:,:), vr(:), vmr(:,:), umc(:,:)
155
156

      ! needed for blocked QR decomposition
Andreas Marek's avatar
Andreas Marek committed
157
158
159
      integer(kind=ik)           :: PQRPARAM(11), work_size
      real(kind=rk)              :: dwork_size(1)
      real(kind=rk), allocatable :: work_blocked(:), tauvector(:), blockheuristic(:)
160

Andreas Marek's avatar
Andreas Marek committed
161
162
      logical, intent(in)        :: wantDebug
      logical, intent(out)       :: success
163

Andreas Marek's avatar
Andreas Marek committed
164
      logical, intent(in)        :: useQR
165

Andreas Marek's avatar
Andreas Marek committed
166
      integer(kind=ik)           :: mystart, myend, m_way, n_way, work_per_thread, m_id, n_id, n_threads, ii, pp, transformChunkSize
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

#ifdef HAVE_DETAILED_TIMINGS
      call timer%start("bandred_real")
#endif
      call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
      call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
      call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
      call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
      success = .true.


      ! Semibandwith nbw must be a multiple of blocksize nblk
      if (mod(nbw,nblk)/=0) then
        if (my_prow==0 .and. my_pcol==0) then
          if (wantDebug) then
            write(error_unit,*) 'ELPA2_bandred_real: ERROR: nbw=',nbw,', nblk=',nblk
            write(error_unit,*) 'ELPA2_bandred_real: ELPA2 works only for nbw==n*nblk'
          endif
          success = .false.
          return
        endif
      endif

      ! Matrix is split into tiles; work is done only for tiles on the diagonal or above

      tile_size = nblk*least_common_multiple(np_rows,np_cols) ! minimum global tile size
      tile_size = ((128*max(np_rows,np_cols)-1)/tile_size+1)*tile_size ! make local tiles at least 128 wide

      l_rows_tile = tile_size/np_rows ! local rows of a tile
      l_cols_tile = tile_size/np_cols ! local cols of a tile

      if (useQR) then
        if (which_qr_decomposition == 1) then
200
          call qr_pqrparam_init(pqrparam(1:11),    nblk,'M',0,   nblk,'M',0,   nblk,'M',1,'s')
201
202
203
204
205
          allocate(tauvector(na))
          allocate(blockheuristic(nblk))
          l_rows = local_index(na, my_prow, np_rows, nblk, -1)
          allocate(vmr(max(l_rows,1),na))

206
          vmrCols = na
207
#ifdef USE_ASSUMED_SIZE_QR
208
209
210
211
212
213
214
215
216
217
          call qr_pdgeqrf_2dcomm(a, lda, matrixCols, vmr, max(l_rows,1), vmrCols, tauvector(1), na, tmat(1,1,1), &
                                 nbw, nbw, dwork_size, 1, -1, na, nbw, nblk, nblk, na, na, 1, 0, PQRPARAM(1:11), &
                                 mpi_comm_rows, mpi_comm_cols, blockheuristic)

#else
          call qr_pdgeqrf_2dcomm(a(1:lda,1:matrixCols), matrixCols, lda, vmr(1:max(l_rows,1),1:vmrCols), max(l_rows,1), &
                                 vmrCols, tauvector(1:na), na, tmat(1:nbw,1:nbw,1), nbw, &
                                 nbw, dwork_size(1:1), 1, -1, na, nbw, nblk, nblk, na, na, 1, 0, PQRPARAM(1:11), &
                                 mpi_comm_rows, mpi_comm_cols, blockheuristic)
#endif
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
          work_size = dwork_size(1)
          allocate(work_blocked(work_size))

          work_blocked = 0.0d0
          deallocate(vmr)
        endif
      endif

      do istep = (na-1)/nbw, 1, -1

        n_cols = MIN(na,(istep+1)*nbw) - istep*nbw ! Number of columns in current step

        ! Number of local columns/rows of remaining matrix
        l_cols = local_index(istep*nbw, my_pcol, np_cols, nblk, -1)
        l_rows = local_index(istep*nbw, my_prow, np_rows, nblk, -1)

        ! Allocate vmr and umc to their exact sizes so that they can be used in bcasts and reduces

        allocate(vmr(max(l_rows,1),2*n_cols))
        allocate(umc(max(l_cols,1),2*n_cols))

        allocate(vr(l_rows+1))

        vmr(1:l_rows,1:n_cols) = 0.
        vr(:) = 0
        tmat(:,:,istep) = 0

        ! Reduce current block to lower triangular form

        if (useQR) then
          if (which_qr_decomposition == 1) then
249
250

            vmrCols = 2*n_cols
251
#ifdef USE_ASSUMED_SIZE_QR
252
253
            call qr_pdgeqrf_2dcomm(a, lda, matrixCols, vmr, max(l_rows,1), vmrCols, tauvector(1), &
                                   na, tmat(1,1,istep), nbw, nbw, work_blocked, work_size,        &
254
255
                                     work_size, na, n_cols, nblk, nblk,        &
                                     istep*nbw+n_cols-nbw, istep*nbw+n_cols, 1,&
256
                                     0, PQRPARAM(1:11), mpi_comm_rows, mpi_comm_cols,&
257
                                     blockheuristic)
258
259
260
261
262
263
264
265
266
267

#else
            call qr_pdgeqrf_2dcomm(a(1:lda,1:matrixCols), lda, matrixCols, vmr(1:max(l_rows,1),1:vmrCols) ,   &
                                    max(l_rows,1), vmrCols, tauvector(1:na), na, &
                                     tmat(1:nbw,1:nbw,istep), nbw, nbw, work_blocked(1:work_size), work_size, &
                                     work_size, na, n_cols, nblk, nblk,        &
                                     istep*nbw+n_cols-nbw, istep*nbw+n_cols, 1,&
                                     0, PQRPARAM(1:11), mpi_comm_rows, mpi_comm_cols,&
                                     blockheuristic)
#endif
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
          endif
        else

          do lc = n_cols, 1, -1

            ncol = istep*nbw + lc ! absolute column number of householder vector
            nrow = ncol - nbw ! Absolute number of pivot row

            lr  = local_index(nrow, my_prow, np_rows, nblk, -1) ! current row length
            lch = local_index(ncol, my_pcol, np_cols, nblk, -1) ! HV local column number

            tau = 0

            if (nrow == 1) exit ! Nothing to do

            cur_pcol = pcol(ncol, nblk, np_cols) ! Processor column owning current block

            if (my_pcol==cur_pcol) then

              ! Get vector to be transformed; distribute last element and norm of
              ! remaining elements to all procs in current column

              vr(1:lr) = a(1:lr,lch) ! vector to be transformed

              if (my_prow==prow(nrow, nblk, np_rows)) then
                aux1(1) = dot_product(vr(1:lr-1),vr(1:lr-1))
                aux1(2) = vr(lr)
              else
                aux1(1) = dot_product(vr(1:lr),vr(1:lr))
                aux1(2) = 0.
              endif
299
#ifdef WITH_MPI
300
              call mpi_allreduce(aux1,aux2,2,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
301
302
303
#else
              aux2 = aux1
#endif
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
              vnorm2 = aux2(1)
              vrl    = aux2(2)

              ! Householder transformation

              call hh_transform_real(vrl, vnorm2, xf, tau)

              ! Scale vr and store Householder vector for back transformation

              vr(1:lr) = vr(1:lr) * xf
              if (my_prow==prow(nrow, nblk, np_rows)) then
                a(1:lr-1,lch) = vr(1:lr-1)
                a(lr,lch) = vrl
                vr(lr) = 1.
              else
                a(1:lr,lch) = vr(1:lr)
              endif

            endif

            ! Broadcast Householder vector and tau along columns

            vr(lr+1) = tau
327
#ifdef WITH_MPI
328
            call MPI_Bcast(vr,lr+1,MPI_REAL8,cur_pcol,mpi_comm_cols,mpierr)
329
#endif
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
            vmr(1:lr,lc) = vr(1:lr)
            tau = vr(lr+1)
            tmat(lc,lc,istep) = tau ! Store tau in diagonal of tmat

            ! Transform remaining columns in current block with Householder vector
            ! Local dot product

            aux1 = 0
#ifdef WITH_OPENMP
            !Open up one omp region to avoid paying openmp overhead.
            !This does not help performance due to the addition of two openmp barriers around the MPI call,
            !But in the future this may be beneficial if these barriers are replaced with a faster implementation

            !$omp parallel private(mynlc, j, lcx, ii, pp ) shared(aux1)
            mynlc = 0 ! number of local columns

            !This loop does not have independent iterations,
            !'mynlc' is incremented each iteration, and it is difficult to remove this dependency
            !Thus each thread executes every iteration of the loop, except it only does the work if it 'owns' that iteration
            !That is, a thread only executes the work associated with an iteration if its thread id is congruent to
            !the iteration number modulo the number of threads
            do j=1,lc-1
              lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
              if (lcx>0 ) then
                mynlc = mynlc+1
                if ( mod((j-1), omp_get_num_threads()) .eq. omp_get_thread_num() ) then
                    if (lr>0) aux1(mynlc) = dot_product(vr(1:lr),a(1:lr,lcx))
                endif
              endif
            enddo

            ! Get global dot products
            !$omp barrier
            !$omp single
364
#ifdef WITH_MPI
365
            if (mynlc>0) call mpi_allreduce(aux1,aux2,mynlc,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
366
367
368
#else
            if (mynlc>0) aux2 = aux1
#endif
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
            !$omp end single
            !$omp barrier

            ! Transform
            transformChunkSize=32
            mynlc = 0
            do j=1,lc-1
              lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
              if (lcx>0) then
                mynlc = mynlc+1
                !This loop could be parallelized with an openmp pragma with static scheduling and chunk size 32
                !However, for some reason this is slower than doing it manually, so it is parallelized as below.
                do ii=omp_get_thread_num()*transformChunkSize,lr,omp_get_num_threads()*transformChunkSize
                   do pp = 1,transformChunkSize
                       if (pp + ii > lr) exit
                           a(ii+pp,lcx) = a(ii+pp,lcx) - tau*aux2(mynlc)*vr(ii+pp)
                   enddo
                enddo
              endif
            enddo
            !$omp end parallel
390
#else /* WITH_OPENMP */
391
392
393
394
395
396
397
398
399
400
            nlc = 0 ! number of local columns
            do j=1,lc-1
              lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
              if (lcx>0) then
                nlc = nlc+1
                if (lr>0) aux1(nlc) = dot_product(vr(1:lr),a(1:lr,lcx))
              endif
            enddo

            ! Get global dot products
401
#ifdef WITH_MPI
402
            if (nlc>0) call mpi_allreduce(aux1,aux2,nlc,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
403
404
405
#else
            if (nlc>0) aux2=aux1
#endif
406
407
408
409
410
411
412
413
414
415
            ! Transform

            nlc = 0
            do j=1,lc-1
              lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
              if (lcx>0) then
                nlc = nlc+1
                a(1:lr,lcx) = a(1:lr,lcx) - tau*aux2(nlc)*vr(1:lr)
              endif
            enddo
416
417
#endif /* WITH_OPENMP */

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
          enddo

          ! Calculate scalar products of stored Householder vectors.
          ! This can be done in different ways, we use dsyrk

          vav = 0
          if (l_rows>0) &
              call dsyrk('U','T',n_cols,l_rows,1.d0,vmr,ubound(vmr,dim=1),0.d0,vav,ubound(vav,dim=1))
          call symm_matrix_allreduce(n_cols,vav, nbw, nbw,mpi_comm_rows)

          ! Calculate triangular matrix T for block Householder Transformation

          do lc=n_cols,1,-1
            tau = tmat(lc,lc,istep)
            if (lc<n_cols) then
              call dtrmv('U','T','N',n_cols-lc,tmat(lc+1,lc+1,istep),ubound(tmat,dim=1),vav(lc+1,lc),1)
              tmat(lc,lc+1:n_cols,istep) = -tau * vav(lc+1:n_cols,lc)
            endif
          enddo
        endif

        ! Transpose vmr -> vmc (stored in umc, second half)

        call elpa_transpose_vectors_real  (vmr, ubound(vmr,dim=1), mpi_comm_rows, &
                                        umc(1,n_cols+1), ubound(umc,dim=1), mpi_comm_cols, &
                                        1, istep*nbw, n_cols, nblk)

        ! Calculate umc = A**T * vmr
        ! Note that the distributed A has to be transposed
        ! Opposed to direct tridiagonalization there is no need to use the cache locality
        ! of the tiles, so we can use strips of the matrix
        !Code for Algorithm 4

        n_way = 1
#ifdef WITH_OPENMP
        n_way = omp_get_max_threads()
#endif
        !umc(1:l_cols,1:n_cols) = 0.d0
        !vmr(1:l_rows,n_cols+1:2*n_cols) = 0
#ifdef WITH_OPENMP
        !$omp parallel private( i,lcs,lce,lrs,lre)
#endif
        if (n_way > 1) then
          !$omp do
          do i=1,min(l_cols_tile, l_cols)
            umc(i,1:n_cols) = 0.d0
          enddo
          !$omp do
          do i=1,l_rows
            vmr(i,n_cols+1:2*n_cols) = 0.d0
          enddo
          if (l_cols>0 .and. l_rows>0) then

            !SYMM variant 4
            !Partitioned Matrix Expression:
            ! Ct = Atl Bt + Atr Bb
            ! Cb = Atr' Bt + Abl Bb
            !
            !Loop invariant:
            ! Ct = Atl Bt + Atr Bb
            !
            !Update:
            ! C1 = A10'B0 + A11B1 + A21 B2
            !
            !This algorithm chosen because in this algoirhtm, the loop around the dgemm calls
            !is easily parallelized, and regardless of choise of algorithm,
            !the startup cost for parallelizing the dgemms inside the loop is too great

            !$omp do schedule(static,1)
            do i=0,(istep*nbw-1)/tile_size
              lcs = i*l_cols_tile+1                   ! local column start
              lce = min(l_cols, (i+1)*l_cols_tile)    ! local column end

              lrs = i*l_rows_tile+1                   ! local row start
              lre = min(l_rows, (i+1)*l_rows_tile)    ! local row end

              !C1 += [A11 A12] [B1
              !                 B2]
              if( lre > lrs .and. l_cols > lcs ) then
              call DGEMM('N','N', lre-lrs+1, n_cols, l_cols-lcs+1,    &
                         1.d0, a(lrs,lcs), ubound(a,dim=1),           &
                               umc(lcs,n_cols+1), ubound(umc,dim=1),  &
                         0.d0, vmr(lrs,n_cols+1), ubound(vmr,dim=1))
              endif

              ! C1 += A10' B0
              if( lce > lcs .and. i > 0 ) then
              call DGEMM('T','N', lce-lcs+1, n_cols, lrs-1,           &
                         1.d0, a(1,lcs),   ubound(a,dim=1),           &
                               vmr(1,1),   ubound(vmr,dim=1),         &
                         0.d0, umc(lcs,1), ubound(umc,dim=1))
              endif
            enddo
          endif
        else
          umc(1:l_cols,1:n_cols) = 0.d0
          vmr(1:l_rows,n_cols+1:2*n_cols) = 0
          if (l_cols>0 .and. l_rows>0) then
            do i=0,(istep*nbw-1)/tile_size

              lcs = i*l_cols_tile+1
              lce = min(l_cols,(i+1)*l_cols_tile)
              if (lce<lcs) cycle

              lre = min(l_rows,(i+1)*l_rows_tile)
              call DGEMM('T','N',lce-lcs+1,n_cols,lre,1.d0,a(1,lcs),ubound(a,dim=1), &
                           vmr,ubound(vmr,dim=1),1.d0,umc(lcs,1),ubound(umc,dim=1))

              if (i==0) cycle
              lre = min(l_rows,i*l_rows_tile)
              call DGEMM('N','N',lre,n_cols,lce-lcs+1,1.d0,a(1,lcs),lda, &
                           umc(lcs,n_cols+1),ubound(umc,dim=1),1.d0,vmr(1,n_cols+1),ubound(vmr,dim=1))
            enddo
          endif
        endif
#ifdef WITH_OPENMP
        !$omp end parallel
#endif
        ! Sum up all ur(:) parts along rows and add them to the uc(:) parts
        ! on the processors containing the diagonal
        ! This is only necessary if ur has been calculated, i.e. if the
        ! global tile size is smaller than the global remaining matrix
        ! Or if we used the Algorithm 4
        if (tile_size < istep*nbw .or. n_way > 1) then
        call elpa_reduce_add_vectors_real  (vmr(1,n_cols+1),ubound(vmr,dim=1),mpi_comm_rows, &
                                            umc, ubound(umc,dim=1), mpi_comm_cols, &
                                            istep*nbw, n_cols, nblk)
        endif
546
#ifdef WITH_MPI
547
548
549
550
551
552
        if (l_cols>0) then
          allocate(tmp(l_cols,n_cols))
          call mpi_allreduce(umc,tmp,l_cols*n_cols,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
          umc(1:l_cols,1:n_cols) = tmp(1:l_cols,1:n_cols)
          deallocate(tmp)
        endif
553
#endif
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        ! U = U * Tmat**T

        call dtrmm('Right','Upper','Trans','Nonunit',l_cols,n_cols,1.d0,tmat(1,1,istep),ubound(tmat,dim=1),umc,ubound(umc,dim=1))

        ! VAV = Tmat * V**T * A * V * Tmat**T = (U*Tmat**T)**T * V * Tmat**T

        call dgemm('T','N',n_cols,n_cols,l_cols,1.d0,umc,ubound(umc,dim=1),umc(1,n_cols+1), &
                   ubound(umc,dim=1),0.d0,vav,ubound(vav,dim=1))
        call dtrmm('Right','Upper','Trans','Nonunit',n_cols,n_cols,1.d0,tmat(1,1,istep),    &
                   ubound(tmat,dim=1),vav,ubound(vav,dim=1))

        call symm_matrix_allreduce(n_cols,vav, nbw, nbw ,mpi_comm_cols)

        ! U = U - 0.5 * V * VAV
        call dgemm('N','N',l_cols,n_cols,n_cols,-0.5d0,umc(1,n_cols+1),ubound(umc,dim=1),vav, &
                    ubound(vav,dim=1),1.d0,umc,ubound(umc,dim=1))

        ! Transpose umc -> umr (stored in vmr, second half)

        call elpa_transpose_vectors_real  (umc, ubound(umc,dim=1), mpi_comm_cols, &
                                       vmr(1,n_cols+1), ubound(vmr,dim=1), mpi_comm_rows, &
                                       1, istep*nbw, n_cols, nblk)

        ! A = A - V*U**T - U*V**T
#ifdef WITH_OPENMP
        !$omp parallel private( ii, i, lcs, lce, lre, n_way, m_way, m_id, n_id, work_per_thread, mystart, myend  )
        n_threads = omp_get_num_threads()
        if (mod(n_threads, 2) == 0) then
            n_way = 2
        else
            n_way = 1
        endif

        m_way = n_threads / n_way

        m_id = mod(omp_get_thread_num(),  m_way)
        n_id = omp_get_thread_num() / m_way

        do ii=n_id*tile_size,(istep*nbw-1),tile_size*n_way
          i = ii / tile_size
          lcs = i*l_cols_tile+1
          lce = min(l_cols,(i+1)*l_cols_tile)
          lre = min(l_rows,(i+1)*l_rows_tile)
          if (lce<lcs .or. lre<1) cycle

          !Figure out this thread's range
          work_per_thread = lre / m_way
          if (work_per_thread * m_way < lre) work_per_thread = work_per_thread + 1
          mystart = m_id * work_per_thread + 1
          myend   = mystart + work_per_thread - 1
          if ( myend > lre ) myend = lre
          if ( myend-mystart+1 < 1) cycle

          call dgemm('N','T',myend-mystart+1, lce-lcs+1, 2*n_cols, -1.d0, &
                      vmr(mystart, 1), ubound(vmr,1), umc(lcs,1), ubound(umc,1), &
                      1.d0,a(mystart,lcs),ubound(a,1))
        enddo
        !$omp end parallel

#else /* WITH_OPENMP */
        do i=0,(istep*nbw-1)/tile_size
          lcs = i*l_cols_tile+1
          lce = min(l_cols,(i+1)*l_cols_tile)
          lre = min(l_rows,(i+1)*l_rows_tile)
          if (lce<lcs .or. lre<1) cycle
          call dgemm('N','T',lre,lce-lcs+1,2*n_cols,-1.d0, &
                      vmr,ubound(vmr,dim=1),umc(lcs,1),ubound(umc,dim=1), &
                      1.d0,a(1,lcs),lda)
        enddo
#endif /* WITH_OPENMP */
        deallocate(vmr, umc, vr)

      enddo

      if (useQR) then
        if (which_qr_decomposition == 1) then
          deallocate(work_blocked)
          deallocate(tauvector)
        endif
      endif

#ifdef HAVE_DETAILED_TIMINGS
      call timer%stop("bandred_real")
#endif
    end subroutine bandred_real

    subroutine symm_matrix_allreduce(n,a,lda,ldb,comm)

    !-------------------------------------------------------------------------------
    !  symm_matrix_allreduce: Does an mpi_allreduce for a symmetric matrix A.
    !  On entry, only the upper half of A needs to be set
    !  On exit, the complete matrix is set
    !-------------------------------------------------------------------------------
#ifdef HAVE_DETAILED_TIMINGS
      use timings
#endif
Andreas Marek's avatar
Andreas Marek committed
650
      use precision
651
      implicit none
Andreas Marek's avatar
Andreas Marek committed
652
      integer(kind=ik)  :: n, lda, ldb, comm
653
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
654
655
      real(kind=rk)     :: a(lda,*)
#else
Andreas Marek's avatar
Andreas Marek committed
656
      real(kind=rk)     :: a(lda,ldb)
Andreas Marek's avatar
Andreas Marek committed
657
#endif
Andreas Marek's avatar
Andreas Marek committed
658
659
      integer(kind=ik)  :: i, nc, mpierr
      real(kind=rk)     :: h1(n*n), h2(n*n)
660
661
662
663
664
665
666
667
668
669

#ifdef HAVE_DETAILED_TIMINGS
      call timer%start("symm_matrix_allreduce")
#endif

      nc = 0
      do i=1,n
        h1(nc+1:nc+i) = a(1:i,i)
        nc = nc+i
      enddo
670
#ifdef WITH_MPI
671
      call mpi_allreduce(h1,h2,nc,MPI_REAL8,MPI_SUM,comm,mpierr)
672
673
674
#else
      h2=h1
#endif
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
      nc = 0
      do i=1,n
        a(1:i,i) = h2(nc+1:nc+i)
        a(i,1:i-1) = a(1:i-1,i)
        nc = nc+i
      enddo

#ifdef HAVE_DETAILED_TIMINGS
      call timer%stop("symm_matrix_allreduce")
#endif

    end subroutine symm_matrix_allreduce

    subroutine trans_ev_band_to_full_real(na, nqc, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, numBlocks, mpi_comm_rows, &
                                      mpi_comm_cols, useQR)
    !-------------------------------------------------------------------------------
    !  trans_ev_band_to_full_real:
    !  Transforms the eigenvectors of a band matrix back to the eigenvectors of the original matrix
    !
    !  Parameters
    !
    !  na          Order of matrix a, number of rows of matrix q
    !
    !  nqc         Number of columns of matrix q
    !
    !  nblk        blocksize of cyclic distribution, must be the same in both directions!
    !
    !  nbw         semi bandwith
    !
    !  a(lda,matrixCols)    Matrix containing the Householder vectors (i.e. matrix a after bandred_real)
    !              Distribution is like in Scalapack.
    !
    !  lda         Leading dimension of a
    !  matrixCols  local columns of matrix a and q
    !
    !  tmat(nbw,nbw,numBlocks) Factors returned by bandred_real
    !
    !  q           On input: Eigenvectors of band matrix
    !              On output: Transformed eigenvectors
    !              Distribution is like in Scalapack.
    !
    !  ldq         Leading dimension of q
    !
    !  mpi_comm_rows
    !  mpi_comm_cols
    !              MPI-Communicators for rows/columns
    !
    !-------------------------------------------------------------------------------
#ifdef HAVE_DETAILED_TIMINGS
      use timings
#endif
Andreas Marek's avatar
Andreas Marek committed
726
      use precision
727
728
      implicit none

Andreas Marek's avatar
Andreas Marek committed
729
      integer(kind=ik)            :: na, nqc, lda, ldq, nblk, nbw, matrixCols, numBlocks, mpi_comm_rows, mpi_comm_cols
730
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
731
732
      real(kind=rk)               :: a(lda,*), q(ldq,*), tmat(nbw,nbw,*)
#else
Andreas Marek's avatar
Andreas Marek committed
733
      real(kind=rk)               :: a(lda,matrixCols), q(ldq,matrixCols), tmat(nbw, nbw, numBlocks)
Andreas Marek's avatar
Andreas Marek committed
734
#endif
Andreas Marek's avatar
Andreas Marek committed
735
736
737
738
739
      integer(kind=ik)            :: my_prow, my_pcol, np_rows, np_cols, mpierr
      integer(kind=ik)            :: max_blocks_row, max_blocks_col, max_local_rows, &
                                     max_local_cols
      integer(kind=ik)            :: l_cols, l_rows, l_colh, n_cols
      integer(kind=ik)            :: istep, lc, ncol, nrow, nb, ns
740

Andreas Marek's avatar
Andreas Marek committed
741
      real(kind=rk), allocatable  :: tmp1(:), tmp2(:), hvb(:), hvm(:,:)
742

Andreas Marek's avatar
Andreas Marek committed
743
      integer(kind=ik)            :: i
744

Andreas Marek's avatar
Andreas Marek committed
745
746
747
      real(kind=rk), allocatable  :: tmat_complete(:,:), t_tmp(:,:), t_tmp2(:,:)
      integer(kind=ik)            :: cwy_blocking, t_blocking, t_cols, t_rows
      logical, intent(in)         :: useQR
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

#ifdef HAVE_DETAILED_TIMINGS
      call timer%start("trans_ev_band_to_full_real")
#endif
      call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
      call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
      call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
      call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
      max_blocks_row = ((na -1)/nblk)/np_rows + 1  ! Rows of A
      max_blocks_col = ((nqc-1)/nblk)/np_cols + 1  ! Columns of q!

      max_local_rows = max_blocks_row*nblk
      max_local_cols = max_blocks_col*nblk

      ! t_blocking was formerly 2; 3 is a better choice
      t_blocking = 3 ! number of matrices T (tmat) which are aggregated into a new (larger) T matrix (tmat_complete) and applied at once

      ! we only use the t_blocking if we could call it fully, this is might be better but needs to benchmarked.
!     if ( na >= ((t_blocking+1)*nbw) ) then
      cwy_blocking = t_blocking * nbw

      allocate(tmp1(max_local_cols*cwy_blocking))
      allocate(tmp2(max_local_cols*cwy_blocking))
      allocate(hvb(max_local_rows*cwy_blocking))
      allocate(hvm(max_local_rows,cwy_blocking))
      allocate(tmat_complete(cwy_blocking,cwy_blocking))
      allocate(t_tmp(cwy_blocking,nbw))
      allocate(t_tmp2(cwy_blocking,nbw))
!      else
!        allocate(tmp1(max_local_cols*nbw))
!        allocate(tmp2(max_local_cols*nbw))
!        allocate(hvb(max_local_rows*nbw))
!        allocate(hvm(max_local_rows,nbw))
!      endif

      hvm = 0   ! Must be set to 0 !!!
      hvb = 0   ! Safety only

      l_cols = local_index(nqc, my_pcol, np_cols, nblk, -1) ! Local columns of q

!     if ( na >= ((t_blocking+1)*nbw) ) then

      do istep=1,((na-1)/nbw-1)/t_blocking + 1
        ! This the call when using  na >= ((t_blocking+1)*nbw)
        !      n_cols = MIN(na,istep*cwy_blocking+nbw) - (istep-1)*cwy_blocking - nbw ! Number of columns in current step
        ! As an alternative we add some special case handling if na < cwy_blocking
        IF (na < cwy_blocking) THEN
          n_cols = MAX(0, na-nbw)
          IF ( n_cols .eq. 0 ) THEN
            EXIT
          END IF
        ELSE
          n_cols = MIN(na,istep*cwy_blocking+nbw) - (istep-1)*cwy_blocking - nbw ! Number of columns in current step
        END IF

        ! Broadcast all Householder vectors for current step compressed in hvb

        nb = 0
        ns = 0

        do lc = 1, n_cols
          ncol = (istep-1)*cwy_blocking + nbw + lc ! absolute column number of householder vector
          nrow = ncol - nbw ! absolute number of pivot row

          l_rows = local_index(nrow-1, my_prow, np_rows, nblk, -1) ! row length for bcast
          l_colh = local_index(ncol  , my_pcol, np_cols, nblk, -1) ! HV local column number

          if (my_pcol==pcol(ncol, nblk, np_cols)) hvb(nb+1:nb+l_rows) = a(1:l_rows,l_colh)

          nb = nb+l_rows

          if (lc==n_cols .or. mod(ncol,nblk)==0) then
820
#ifdef WITH_MPI
821
            call MPI_Bcast(hvb(ns+1),nb-ns,MPI_REAL8,pcol(ncol, nblk, np_cols),mpi_comm_cols,mpierr)
822
#endif
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
            ns = nb
          endif
        enddo

        ! Expand compressed Householder vectors into matrix hvm

        nb = 0
        do lc = 1, n_cols
          nrow = (istep-1)*cwy_blocking + lc ! absolute number of pivot row
          l_rows = local_index(nrow-1, my_prow, np_rows, nblk, -1) ! row length for bcast

          hvm(1:l_rows,lc) = hvb(nb+1:nb+l_rows)
          if (my_prow==prow(nrow, nblk, np_rows)) hvm(l_rows+1,lc) = 1.

          nb = nb+l_rows
        enddo

        l_rows = local_index(MIN(na,(istep+1)*cwy_blocking), my_prow, np_rows, nblk, -1)

        ! compute tmat2 out of tmat(:,:,)
        tmat_complete = 0
        do i = 1, t_blocking
          t_cols = MIN(nbw, n_cols - (i-1)*nbw)
          if (t_cols <= 0) exit
          t_rows = (i - 1) * nbw
          tmat_complete(t_rows+1:t_rows+t_cols,t_rows+1:t_rows+t_cols) = tmat(1:t_cols,1:t_cols,(istep-1)*t_blocking + i)
          if (i > 1) then
            call dgemm('T', 'N', t_rows, t_cols, l_rows, 1.d0, hvm(1,1), max_local_rows, hvm(1,(i-1)*nbw+1), &
                      max_local_rows, 0.d0, t_tmp, cwy_blocking)
852
#ifdef WITH_MPI
853
            call mpi_allreduce(t_tmp,t_tmp2,cwy_blocking*nbw,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
854
855
856
#else
            t_tmp2 = t_tmp
#endif
857
858
859
860
861
862
863
864
865
866
867
868
869
870
            call dtrmm('L','U','N','N',t_rows,t_cols,1.0d0,tmat_complete,cwy_blocking,t_tmp2,cwy_blocking)
            call dtrmm('R','U','N','N',t_rows,t_cols,-1.0d0,tmat_complete(t_rows+1,t_rows+1),cwy_blocking,t_tmp2,cwy_blocking)
            tmat_complete(1:t_rows,t_rows+1:t_rows+t_cols) = t_tmp2(1:t_rows,1:t_cols)
          endif
        enddo

        ! Q = Q - V * T**T * V**T * Q

        if (l_rows>0) then
          call dgemm('T','N',n_cols,l_cols,l_rows,1.d0,hvm,ubound(hvm,dim=1), &
                     q,ldq,0.d0,tmp1,n_cols)
        else
          tmp1(1:l_cols*n_cols) = 0
        endif
871
#ifdef WITH_MPI
872
        call mpi_allreduce(tmp1,tmp2,n_cols*l_cols,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
873
874
875
#else
        tmp2=tmp1
#endif
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

        if (l_rows>0) then
          call dtrmm('L','U','T','N',n_cols,l_cols,1.0d0,tmat_complete,cwy_blocking,tmp2,n_cols)
          call dgemm('N','N',l_rows,l_cols,n_cols,-1.d0,hvm,ubound(hvm,dim=1), tmp2,n_cols,1.d0,q,ldq)
        endif
      enddo

!   else 
!
!     do istep=1,(na-1)/nbw
!
!       n_cols = MIN(na,(istep+1)*nbw) - istep*nbw ! Number of columns in current step
!
!       ! Broadcast all Householder vectors for current step compressed in hvb
!
!       nb = 0
!       ns = 0
!
!       do lc = 1, n_cols
!         ncol = istep*nbw + lc ! absolute column number of householder vector
!         nrow = ncol - nbw ! absolute number of pivot row
!
!         l_rows = local_index(nrow-1, my_prow, np_rows, nblk, -1) ! row length for bcast
!         l_colh = local_index(ncol  , my_pcol, np_cols, nblk, -1) ! HV local column number
!
!         if (my_pcol==pcol(ncol, nblk, np_cols)) hvb(nb+1:nb+l_rows) = a(1:l_rows,l_colh)
!
!         nb = nb+l_rows
!
!         if (lc==n_cols .or. mod(ncol,nblk)==0) then
!           call MPI_Bcast(hvb(ns+1),nb-ns,MPI_REAL8,pcol(ncol, nblk, np_cols),mpi_comm_cols,mpierr)
!           ns = nb
!         endif
!       enddo
!
!       ! Expand compressed Householder vectors into matrix hvm
!
!       nb = 0
!       do lc = 1, n_cols
!         nrow = (istep-1)*nbw+lc ! absolute number of pivot row
!         l_rows = local_index(nrow-1, my_prow, np_rows, nblk, -1) ! row length for bcast
!
!         hvm(1:l_rows,lc) = hvb(nb+1:nb+l_rows)
!         if (my_prow==prow(nrow, nblk, np_rows)) hvm(l_rows+1,lc) = 1.
!
!         nb = nb+l_rows
!       enddo
!
!       l_rows = local_index(MIN(na,(istep+1)*nbw), my_prow, np_rows, nblk, -1)
!
!       ! Q = Q - V * T**T * V**T * Q
!
!       if (l_rows>0) then
!         call dgemm('T','N',n_cols,l_cols,l_rows,1.d0,hvm,ubound(hvm,dim=1), &
!                    q,ldq,0.d0,tmp1,n_cols)
!       else
!         tmp1(1:l_cols*n_cols) = 0
!       endif
!
!       call mpi_allreduce(tmp1,tmp2,n_cols*l_cols,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
!
!       if (l_rows>0) then
!         call dtrmm('L','U','T','N',n_cols,l_cols,1.0d0,tmat(1,1,istep),ubound(tmat,dim=1),tmp2,n_cols)
!         call dgemm('N','N',l_rows,l_cols,n_cols,-1.d0,hvm,ubound(hvm,dim=1), &
!                    tmp2,n_cols,1.d0,q,ldq)
!       endif
!     enddo
!   endif

      deallocate(tmp1, tmp2, hvb, hvm)
!   if ( na >= ((t_blocking+1)*nbw) ) then
      deallocate(tmat_complete, t_tmp, t_tmp2)
!   endif

#ifdef HAVE_DETAILED_TIMINGS
      call timer%stop("trans_ev_band_to_full_real")
#endif
    end subroutine trans_ev_band_to_full_real

    subroutine tridiag_band_real(na, nb, nblk, a, lda, d, e, matrixCols, hh_trans_real, &
                                 mpi_comm_rows, mpi_comm_cols, mpi_comm)

    !-------------------------------------------------------------------------------
    ! tridiag_band_real:
    ! Reduces a real symmetric band matrix to tridiagonal form
    !
    !  na          Order of matrix a
    !
    !  nb          Semi bandwith
    !
    !  nblk        blocksize of cyclic distribution, must be the same in both directions!
    !
    !  a(lda,matrixCols)    Distributed system matrix reduced to banded form in the upper diagonal
    !
    !  lda         Leading dimension of a
    !  matrixCols  local columns of matrix a
    !
    !  d(na)       Diagonal of tridiagonal matrix, set only on PE 0 (output)
    !
    !  e(na)       Subdiagonal of tridiagonal matrix, set only on PE 0 (output)
    !
    !  mpi_comm_rows
    !  mpi_comm_cols
    !              MPI-Communicators for rows/columns
    !  mpi_comm
    !              MPI-Communicator for the total processor set
    !-------------------------------------------------------------------------------
#ifdef HAVE_DETAILED_TIMINGS
      use timings
#endif
Andreas Marek's avatar
Andreas Marek committed
986
      use precision
987
988
      implicit none

Andreas Marek's avatar
Andreas Marek committed
989
      integer(kind=ik), intent(in)  ::  na, nb, nblk, lda, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm
990
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
991
992
      real(kind=rk), intent(in)     :: a(lda,*)
#else
Andreas Marek's avatar
Andreas Marek committed
993
      real(kind=rk), intent(in)     :: a(lda,matrixCols)
Andreas Marek's avatar
Andreas Marek committed
994
#endif
Andreas Marek's avatar
Andreas Marek committed
995
996
997
      real(kind=rk), intent(out)    :: d(na), e(na) ! set only on PE 0
      real(kind=rk), intent(out), &
          allocatable               :: hh_trans_real(:,:)
998

Andreas Marek's avatar
Andreas Marek committed
999
1000
      real(kind=rk)                 :: vnorm2, hv(nb), tau, x, h(nb), ab_s(1+nb), hv_s(nb), hv_new(nb), tau_new, hf
      real(kind=rk)                 :: hd(nb), hs(nb)
1001

Andreas Marek's avatar
Andreas Marek committed
1002
1003
1004
1005
1006
      integer(kind=ik)              :: i, j, n, nc, nr, ns, ne, istep, iblk, nblocks_total, nblocks, nt
      integer(kind=ik)              :: my_pe, n_pes, mpierr
      integer(kind=ik)              :: my_prow, np_rows, my_pcol, np_cols
      integer(kind=ik)              :: ireq_ab, ireq_hv
      integer(kind=ik)              :: na_s, nx, num_hh_vecs, num_chunks, local_size, max_blk_size, n_off
1007
#ifdef WITH_OPENMP
Andreas Marek's avatar
Andreas Marek committed
1008
      integer(kind=ik)              :: max_threads, my_thread, my_block_s, my_block_e, iter
1009
#ifdef WITH_MPI
1010
      integer(kind=ik)              :: my_mpi_status(MPI_STATUS_SIZE)
1011
#endif
Andreas Marek's avatar
Andreas Marek committed
1012
1013
1014
      integer(kind=ik), allocatable :: mpi_statuses(:,:), global_id_tmp(:,:)
      integer(kind=ik), allocatable :: omp_block_limits(:)
      real(kind=rk), allocatable    :: hv_t(:,:), tau_t(:)
1015
#endif
Andreas Marek's avatar
Andreas Marek committed
1016
1017
1018
1019
      integer(kind=ik), allocatable :: ireq_hhr(:), ireq_hhs(:), global_id(:,:), hh_cnt(:), hh_dst(:)
      integer(kind=ik), allocatable :: limits(:), snd_limits(:,:)
      integer(kind=ik), allocatable :: block_limits(:)
      real(kind=rk), allocatable    :: ab(:,:), hh_gath(:,:,:), hh_send(:,:,:)
1020
1021

#ifdef WITH_OPENMP
Andreas Marek's avatar
Andreas Marek committed
1022
      integer(kind=ik)              :: omp_get_max_threads
1023
1024
#endif

1025
1026
1027
1028
#ifndef WITH_MPI
      integer(kind=ik)             :: startAddr
#endif

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
#ifdef HAVE_DETAILED_TIMINGS
      call timer%start("tridiag_band_real")
#endif
      call mpi_comm_rank(mpi_comm,my_pe,mpierr)
      call mpi_comm_size(mpi_comm,n_pes,mpierr)

      call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
      call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
      call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
      call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
      ! Get global_id mapping 2D procssor coordinates to global id

      allocate(global_id(0:np_rows-1,0:np_cols-1))
      global_id(:,:) = 0
      global_id(my_prow, my_pcol) = my_pe
#ifdef WITH_OPENMP
      allocate(global_id_tmp(0:np_rows-1,0:np_cols-1))
#endif

1048
1049
#ifdef WITH_MPI

1050
1051
1052
1053
1054
1055
1056
1057
#ifndef WITH_OPENMP
      call mpi_allreduce(mpi_in_place, global_id, np_rows*np_cols, mpi_integer, mpi_sum, mpi_comm, mpierr)
#else
      global_id_tmp(:,:) = global_id(:,:)
      call mpi_allreduce(global_id_tmp, global_id, np_rows*np_cols, mpi_integer, mpi_sum, mpi_comm, mpierr)
      deallocate(global_id_tmp)
#endif

1058
#endif /* WITH_MPI */
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
      ! Total number of blocks in the band:

      nblocks_total = (na-1)/nb + 1

      ! Set work distribution

      allocate(block_limits(0:n_pes))
      call divide_band(nblocks_total, n_pes, block_limits)

      ! nblocks: the number of blocks for my task
      nblocks = block_limits(my_pe+1) - block_limits(my_pe)

      ! allocate the part of the band matrix which is needed by this PE
      ! The size is 1 block larger than needed to avoid extensive shifts
      allocate(ab(2*nb,(nblocks+1)*nb))
      ab = 0 ! needed for lower half, the extra block should also be set to 0 for safety

      ! n_off: Offset of ab within band
      n_off = block_limits(my_pe)*nb

      ! Redistribute band in a to ab
      call redist_band_real(a, lda, na, nblk, nb, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm, ab)

      ! Calculate the workload for each sweep in the back transformation
      ! and the space requirements to hold the HH vectors

      allocate(limits(0:np_rows))
      call determine_workload(na, nb, np_rows, limits)
      max_blk_size = maxval(limits(1:np_rows) - limits(0:np_rows-1))

      num_hh_vecs = 0
      num_chunks  = 0
      nx = na
      do n = 1, nblocks_total
        call determine_workload(nx, nb, np_rows, limits)
        local_size = limits(my_prow+1) - limits(my_prow)
        ! add to number of householder vectors
        ! please note: for nx==1 the one and only HH vector is 0 and is neither calculated nor send below!
        if (mod(n-1,np_cols) == my_pcol .and. local_size>0 .and. nx>1) then
          num_hh_vecs = num_hh_vecs + local_size
          num_chunks  = num_chunks+1
        endif
        nx = nx - nb
      enddo

      ! Allocate space for HH vectors

      allocate(hh_trans_real(nb,num_hh_vecs))

      ! Allocate and init MPI requests

      allocate(ireq_hhr(num_chunks)) ! Recv requests
      allocate(ireq_hhs(nblocks))    ! Send requests

      num_hh_vecs = 0
      num_chunks  = 0
      nx = na
      nt = 0
      do n = 1, nblocks_total
        call determine_workload(nx, nb, np_rows, limits)
        local_size = limits(my_prow+1) - limits(my_prow)
        if (mod(n-1,np_cols) == my_pcol .and. local_size>0 .and. nx>1) then
          num_chunks  = num_chunks+1
1122
1123
#ifdef WITH_MPI

1124
1125
          call mpi_irecv(hh_trans_real(1,num_hh_vecs+1), nb*local_size, mpi_real8, nt, &
                           10+n-block_limits(nt), mpi_comm, ireq_hhr(num_chunks), mpierr)
1126
1127
1128
1129
#else
          ! carefull non-block recv data copy must be done at wait or send
          ! hh_trans_real(1:nb*local_size,num_hh_vecs+1) = hh_send(1:nb*hh_cnt(iblk),1,iblk)
#endif
1130
1131
1132
1133
1134
1135
1136
          num_hh_vecs = num_hh_vecs + local_size
        endif
        nx = nx - nb
        if (n == block_limits(nt+1)) then
          nt = nt + 1
        endif
      enddo
1137
#ifdef WITH_MPI
1138
      ireq_hhs(:) = MPI_REQUEST_NULL
1139
#endif
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
      ! Buffers for gathering/sending the HH vectors

      allocate(hh_gath(nb,max_blk_size,nblocks)) ! gathers HH vectors
      allocate(hh_send(nb,max_blk_size,nblocks)) ! send buffer for HH vectors
      hh_gath(:,:,:) = 0
      hh_send(:,:,:) = 0

      ! Some counters

      allocate(hh_cnt(nblocks))
      allocate(hh_dst(nblocks))

      hh_cnt(:) = 1 ! The first transfomation vector is always 0 and not calculated at all
      hh_dst(:) = 0 ! PE number for receive
1154
#ifdef WITH_MPI
1155
1156
      ireq_ab = MPI_REQUEST_NULL
      ireq_hv = MPI_REQUEST_NULL
1157
#endif
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
      ! Limits for sending

      allocate(snd_limits(0:np_rows,nblocks))

      do iblk=1,nblocks
        call determine_workload(na-(iblk+block_limits(my_pe)-1)*nb, nb, np_rows, snd_limits(:,iblk))
      enddo

#ifdef WITH_OPENMP
      ! OpenMP work distribution:

      max_threads = 1
      max_threads = omp_get_max_threads()

      ! For OpenMP we need at least 2 blocks for every thread
      max_threads = MIN(max_threads, nblocks/2)
      if (max_threads==0) max_threads = 1

      allocate(omp_block_limits(0:max_threads))

      ! Get the OpenMP block limits
      call divide_band(nblocks, max_threads, omp_block_limits)

      allocate(hv_t(nb,max_threads), tau_t(max_threads))
      hv_t = 0
      tau_t = 0
#endif

      ! ---------------------------------------------------------------------------
      ! Start of calculations

      na_s = block_limits(my_pe)*nb + 1

      if (my_pe>0 .and. na_s<=na) then
        ! send first column to previous PE
        ! Only the PE owning the diagonal does that (sending 1 element of the subdiagonal block also)
        ab_s(1:nb+1) = ab(1:nb+1,na_s-n_off)
1195
#ifdef WITH_MPI
1196
        call mpi_isend(ab_s,nb+1,mpi_real8,my_pe-1,1,mpi_comm,ireq_ab,mpierr)
1197
#endif
1198
1199
      endif

1200
1201
1202
1203
1204

#ifndef WITH_MPI
          startAddr   = ubound(hh_trans_real,dim=2)
#endif

1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
#ifdef WITH_OPENMP
      do istep=1,na-1-block_limits(my_pe)*nb
#else
      do istep=1,na-1
#endif

        if (my_pe==0) then
          n = MIN(na-na_s,nb) ! number of rows to be reduced
          hv(:) = 0
          tau = 0
          ! The last step (istep=na-1) is only needed for sending the last HH vectors.
          ! We don't want the sign of the last element flipped (analogous to the other sweeps)
          if (istep < na-1) then
            ! Transform first column of remaining matrix
            vnorm2 = sum(ab(3:n+1,na_s-n_off)**2)
            call hh_transform_real(ab(2,na_s-n_off),vnorm2,hf,tau)
            hv(1) = 1
            hv(2:n) = ab(3:n+1,na_s-n_off)*hf
          endif
          d(istep) = ab(1,na_s-n_off)
          e(istep) = ab(2,na_s-n_off)
          if (istep == na-1) then
            d(na) = ab(1,na_s+1-n_off)
            e(na) = 0
          endif
        else
          if (na>na_s) then
            ! Receive Householder vector from previous task, from PE owning subdiagonal
1233
1234
#ifdef WITH_MPI

1235
#ifdef WITH_OPENMP
1236
            call mpi_recv(hv,nb,mpi_real8,my_pe-1,2,mpi_comm,my_mpi_status,mpierr)
1237
1238
1239
#else
            call mpi_recv(hv,nb,mpi_real8,my_pe-1,2,mpi_comm,MPI_STATUS_IGNORE,mpierr)
#endif
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

#else /* WITH_MPI */

#ifdef WITH_OPENMP
            hv(1:nb) = hv_s(1:nb)
#else
            hv(1:nb) = hv_s(1:nb)
#endif

#endif /* WITH_MPI */
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
            tau = hv(1)
            hv(1) = 1.
          endif
        endif

        na_s = na_s+1
        if (na_s-n_off > nb) then
          ab(:,1:nblocks*nb) = ab(:,nb+1:(nblocks+1)*nb)
          ab(:,nblocks*nb+1:(nblocks+1)*nb) = 0
          n_off = n_off + nb
        endif


#ifdef WITH_OPENMP
        if (max_threads > 1) then

          ! Codepath for OpenMP

          ! Please note that in this case it is absolutely necessary to have at least 2 blocks per thread!
          ! Every thread is one reduction cycle behind its predecessor and thus starts one step later.
          ! This simulates the behaviour of the MPI tasks which also work after each other.
          ! The code would be considerably easier, if the MPI communication would be made within
          ! the parallel region - this is avoided here since this would require
          ! MPI_Init_thread(MPI_THREAD_MULTIPLE) at the start of the program.

          hv_t(:,1) = hv
          tau_t(1) = tau

          do iter = 1, 2

            ! iter=1 : work on first block
            ! iter=2 : work on remaining blocks
            ! This is done in 2 iterations so that we have a barrier in between:
            ! After the first iteration, it is guaranteed that the last row of the last block
            ! is completed by the next thread.
            ! After the first iteration it is also the place to exchange the last row
            ! with MPI calls
#ifdef HAVE_DETAILED_TIMINGS
            call timer%start("OpenMP parallel")
#endif

!$omp parallel do private(my_thread, my_block_s, my_block_e, iblk, ns, ne, hv, tau, &
!$omp&                    nc, nr, hs, hd, vnorm2, hf, x, h, i), schedule(static,1), num_threads(max_threads)
            do my_thread = 1, max_threads

              if (iter == 1) then
                my_block_s = omp_block_limits(my_thread-1) + 1
                my_block_e = my_block_s
              else
                my_block_s = omp_block_limits(my_thread-1) + 2
                my_block_e = omp_block_limits(my_thread)
              endif

              do iblk = my_block_s, my_block_e

                ns = na_s + (iblk-1)*nb - n_off - my_thread + 1 ! first column in block
                ne = ns+nb-1                    ! last column in block

                if (istep<my_thread .or. ns+n_off>na) exit

                hv = hv_t(:,my_thread)
                tau = tau_t(my_thread)

                ! Store Householder vector for back transformation

                hh_cnt(iblk) = hh_cnt(iblk) + 1

                hh_gath(1   ,hh_cnt(iblk),iblk) = tau
                hh_gath(2:nb,hh_cnt(iblk),iblk) = hv(2:nb)

                nc = MIN(na-ns-n_off+1,nb) ! number of columns in diagonal block
                nr = MIN(na-nb-ns-n_off+1,nb) ! rows in subdiagonal block (may be < 0!!!)
                                          ! Note that nr>=0 implies that diagonal block is full (nc==nb)!

                ! Transform diagonal block

                call DSYMV('L',nc,tau,ab(1,ns),2*nb-1,hv,1,0.d0,hd,1)

                x = dot_product(hv(1:nc),hd(1:nc))*tau
                hd(1:nc) = hd(1:nc) - 0.5*x*hv(1:nc)

                call DSYR2('L',nc,-1.d0,hd,1,hv,1,ab(1,ns),2*nb-1)

                hv_t(:,my_thread) = 0
                tau_t(my_thread)  = 0

                if (nr<=0) cycle ! No subdiagonal block present any more

                ! Transform subdiagonal block

                call DGEMV('N',nr,nb,tau,ab(nb+1,ns),2*nb-1,hv,1,0.d0,hs,1)

                if (nr>1) then

                  ! complete (old) Householder transformation for first column

                  ab(nb+1:nb+nr,ns) = ab(nb+1:nb+nr,ns) - hs(1:nr) ! Note: hv(1) == 1

                  ! calculate new Householder transformation for first column
                  ! (stored in hv_t(:,my_thread) and tau_t(my_thread))

                  vnorm2 = sum(ab(nb+2:nb+nr,ns)**2)
                  call hh_transform_real(ab(nb+1,ns),vnorm2,hf,tau_t(my_thread))
                  hv_t(1   ,my_thread) = 1.
                  hv_t(2:nr,my_thread) = ab(nb+2:nb+nr,ns)*hf
                  ab(nb+2:,ns) = 0

                  ! update subdiagonal block for old and new Householder transformation
                  ! This way we can use a nonsymmetric rank 2 update which is (hopefully) faster

                  call DGEMV('T',nr,nb-1,tau_t(my_thread),ab(nb,ns+1),2*nb-1,hv_t(1,my_thread),1,0.d0,h(2),1)
                  x = dot_product(hs(1:nr),hv_t(1:nr,my_thread))*tau_t(my_thread)
                  h(2:nb) = h(2:nb) - x*hv(2:nb)
                  ! Unfortunately there is no BLAS routine like DSYR2 for a nonsymmetric rank 2 update ("DGER2")
                  do i=2,nb
                    ab(2+nb-i:1+nb+nr-i,i+ns-1) = ab(2+nb-i:1+nb+nr-i,i+ns-1) - hv_t(1:nr,my_thread)*h(i) - hs(1:nr)*hv(i)
                  enddo

                else

                  ! No new Householder transformation for nr=1, just complete the old one
                  ab(nb+1,ns) = ab(nb+1,ns) - hs(1) ! Note: hv(1) == 1
                  do i=2,nb
                    ab(2+nb-i,i+ns-1) = ab(2+nb-i,i+ns-1) - hs(1)*hv(i)
                  enddo
                  ! For safety: there is one remaining dummy transformation (but tau is 0 anyways)
                  hv_t(1,my_thread) = 1.

                endif

              enddo

            enddo ! my_thread
!$omp end parallel do
#ifdef HAVE_DETAILED_TIMINGS
            call timer%stop("OpenMP parallel")
#endif

            if (iter==1) then
              ! We are at the end of the first block

              ! Send our first column to previous PE
              if (my_pe>0 .and. na_s <= na) then
1393
#ifdef WITH_MPI
1394
                call mpi_wait(ireq_ab,my_mpi_status,mpierr)
1395
#endif
1396
                ab_s(1:nb+1) = ab(1:nb+1,na_s-n_off)
1397
#ifdef WITH_MPI
1398
                call mpi_isend(ab_s,nb+1,mpi_real8,my_pe-1,1,mpi_comm,ireq_ab,mpierr)
1399
#endif
1400
1401
1402
1403
              endif

              ! Request last column from next PE
              ne = na_s + nblocks*nb - (max_threads-1) - 1
1404
#ifdef WITH_MPI
1405
              if (istep>=max_threads .and. ne <= na) then
1406
                call mpi_recv(ab(1,ne-n_off),nb+1,mpi_real8,my_pe+1,1,mpi_comm,my_mpi_status,mpierr)
1407
              endif
1408
1409
1410
1411
1412
#else
              if (istep>=max_threads .and. ne <= na) then
                ab(1:nb+1,ne-n_off) = ab_s(1:nb+1)
              endif
#endif
1413
1414
1415
1416
1417
1418
            else
              ! We are at the end of all blocks

              ! Send last HH vector and TAU to next PE if it has been calculated above
              ne = na_s + nblocks*nb - (max_threads-1) - 1
              if (istep>=max_threads .and. ne < na) then
1419
#ifdef WITH_MPI
1420
                call mpi_wait(ireq_hv,my_mpi_status,mpierr)
1421
#endif
1422
1423
                hv_s(1) = tau_t(max_threads)
                hv_s(2:) = hv_t(2:,max_threads)
1424
#ifdef WITH_MPI
1425
                call mpi_isend(hv_s,nb,mpi_real8,my_pe+1,2,mpi_comm,ireq_hv,mpierr)
1426
#endif
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
              endif

              ! "Send" HH vector and TAU to next OpenMP thread
              do my_thread = max_threads, 2, -1
                hv_t(:,my_thread) = hv_t(:,my_thread-1)
                tau_t(my_thread)  = tau_t(my_thread-1)
              enddo

            endif
          enddo ! iter

        else

          ! Codepath for 1 thread without OpenMP

          ! The following code is structured in a way to keep waiting times for
          ! other PEs at a minimum, especially if there is only one block.
          ! For this reason, it requests the last column as late as possible
          ! and sends the Householder vector and the first column as early
          ! as possible.

#endif /* WITH_OPENMP */

          do iblk=1,nblocks
            ns = na_s + (iblk-1)*nb - n_off ! first column in block
            ne = ns+nb-1                    ! last column in block

            if (ns+n_off>na) exit

            ! Store Householder vector for back transformation

            hh_cnt(iblk) = hh_cnt(iblk) + 1

            hh_gath(1   ,hh_cnt(iblk),iblk) = tau
            hh_gath(2:nb,hh_cnt(iblk),iblk) = hv(2:nb)

#ifndef WITH_OPENMP
            if (hh_cnt(iblk) == snd_limits(hh_dst(iblk)+1,iblk)-snd_limits(hh_dst(iblk),iblk)) then
              ! Wait for last transfer to finish
1466
#ifdef WITH_MPI
1467
              call mpi_wait(ireq_hhs(iblk), MPI_STATUS_IGNORE, mpierr)
1468
#endif
1469
1470
1471
              ! Copy vectors into send buffer
              hh_send(:,1:hh_cnt(iblk),iblk) = hh_gath(:,1:hh_cnt(iblk),iblk)
              ! Send to destination
1472
#ifdef WITH_MPI
1473
1474
1475
              call mpi_isend(hh_send(1,1,iblk), nb*hh_cnt(iblk), mpi_real8, &
                           global_id(hh_dst(iblk),mod(iblk+block_limits(my_pe)-1,np_cols)), &
                           10+iblk, mpi_comm, ireq_hhs(iblk), mpierr)
1476
1477
1478
1479
1480
#else
             startAddr = startAddr - hh_cnt(iblk)
             hh_trans_real(1:nb,startAddr+1:startAddr+hh_cnt(iblk)) = hh_send(1:nb,1:hh_cnt(iblk),iblk)
#endif /* WITH_MPI */

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
            ! Reset counter and increase destination row
              hh_cnt(iblk) = 0
              hh_dst(iblk) = hh_dst(iblk)+1
            endif

            ! The following code is structured in a way to keep waiting times for
            ! other PEs at a minimum, especially if there is only one block.
            ! For this reason, it requests the last column as late as possible
            ! and sends the Householder vector and the first column as early
            ! as possible.
1491
#endif /* WITH_OPENMP */
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
            nc = MIN(na-ns-n_off+1,nb) ! number of columns in diagonal block
            nr = MIN(na-nb-ns-n_off+1,nb) ! rows in subdiagonal block (may be < 0!!!)
                                          ! Note that nr>=0 implies that diagonal block is full (nc==nb)!

            ! Multiply diagonal block and subdiagonal block with Householder vector

            if (iblk==nblocks .and. nc==nb) then

              ! We need the last column from the next PE.
              ! First do the matrix multiplications without last column ...

              ! Diagonal block, the contribution of the last element is added below!
              ab(1,ne) = 0
              call DSYMV('L',nc,tau,ab(1,ns),2*nb-1,hv,1,0.d0,hd,1)

              ! Subdiagonal block
              if (nr>0) call DGEMV('N',nr,nb-1,tau,ab(nb+1,ns),2*nb-1,hv,1,0.d0,hs,1)

              ! ... then request last column ...
1511
1512
#ifdef WITH_MPI

1513
#ifdef WITH_OPENMP
1514
              call mpi_recv(ab(1,ne),nb+1,mpi_real8,my_pe+1,1,mpi_comm,my_mpi_status,mpierr)
1515
1516
1517
1518
#else
              call mpi_recv(ab(1,ne),nb+1,mpi_real8,my_pe+1,1,mpi_comm,MPI_STATUS_IGNORE,mpierr)
#endif

1519
1520
1521
1522
1523
1524
1525
1526
1527
#else /* WITH_MPI */

#ifdef WITH_OPENMP
              ab(1:nb+1,ne) = ab_s(1:nb+1)
#else
              ab(1:nb+1,ne) = ab_s(1:nb+1)
#endif

#endif /* WITH_MPI */
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
              ! ... and complete the result
              hs(1:nr) = hs(1:nr) + ab(2:nr+1,ne)*tau*hv(nb)
              hd(nb) = hd(nb) + ab(1,ne)*hv(nb)*tau

            else

              ! Normal matrix multiply
              call DSYMV('L',nc,tau,ab(1,ns),2*nb-1,hv,1,0.d0,hd,1)
              if (nr>0) call DGEMV('N',nr,nb,tau,ab(nb+1,ns),2*nb-1,hv,1,0.d0,hs,1)

            endif

            ! Calculate first column of subdiagonal block and calculate new
            ! Householder transformation for this column

            hv_new(:) = 0 ! Needed, last rows must be 0 for nr < nb
            tau_new = 0

            if (nr>0) then

              ! complete (old) Householder transformation for first column

              ab(nb+1:nb+nr,ns) = ab(nb+1:nb+nr,ns) - hs(1:nr) ! Note: hv(1) == 1

              ! calculate new Householder transformation ...
              if (nr>1) then
                vnorm2 = sum(ab(nb+2:nb+nr,ns)**2)
                call hh_transform_real(ab(nb+1,ns),vnorm2,hf,tau_new)
                hv_new(1) = 1.
                hv_new(2:nr) = ab(nb+2:nb+nr,ns)*hf
                ab(nb+2:,ns) = 0
              endif

              ! ... and send it away immediatly if this is the last block

              if (iblk==nblocks) then
1564
1565
#ifdef WITH_MPI

1566
#ifdef WITH_OPENMP
1567
                call mpi_wait(ireq_hv,my_mpi_status,mpierr)
1568
1569
1570
#else
                call mpi_wait(ireq_hv,MPI_STATUS_IGNORE,mpierr)
#endif
Andreas Marek's avatar