elpa2.F90 21.7 KB
Newer Older
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), fomerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
11
12
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
Andreas Marek's avatar
Andreas Marek committed
13
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
14
15
16
17
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
18
!    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
!    enhancements authored by Intel Corporation which is not part of
20
!    the ELPA consortium.
21
22
!
!    More information can be found here:
23
!    http://elpa.mpcdf.mpg.de/
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"
64
!> \brief Fortran module which provides the routines to use the two-stage ELPA solver
65
66
67
68
module ELPA2

! Version 1.1.2, 2011-02-21

69
  use elpa_utilities
70
  use elpa1, only : elpa_print_times, time_evp_back, time_evp_fwd, time_evp_solve
71
  use elpa2_utilities
72

73
74
75
76
77
78
79
80
81
82
83
84
  implicit none

  PRIVATE ! By default, all routines contained are private

  ! The following routines are public:

  public :: solve_evp_real_2stage
  public :: solve_evp_complex_2stage


!******
contains
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
!-------------------------------------------------------------------------------
!>  \brief solve_evp_real_2stage: Fortran function to solve the real eigenvalue problem with a 2 stage approach
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \param use_qr (optional)                    use QR decomposition
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
124

125
function solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk,        &
126
                               matrixCols,                               &
127
128
129
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
130

131
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
132
   use timings
133
#endif
134
135
136
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
Andreas Marek's avatar
Andreas Marek committed
137
   use precision
138
   implicit none
Andreas Marek's avatar
Andreas Marek committed
139
140
141
142
143
144
145
146
   logical, intent(in), optional          :: useQR
   logical                                :: useQRActual, useQREnvironment
   integer(kind=ik), intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
   integer(kind=ik)                       :: THIS_REAL_ELPA_KERNEL

   integer(kind=ik), intent(in)           :: na, nev, lda, ldq, matrixCols, mpi_comm_rows, &
                                             mpi_comm_cols, mpi_comm_all
   integer(kind=ik), intent(in)           :: nblk
147
   real(kind=rk), intent(inout)           :: ev(na)
148
#ifdef USE_ASSUMED_SIZE
149
150
151
152
   real(kind=rk), intent(inout)           :: a(lda,*), q(ldq,*)
#else
   real(kind=rk), intent(inout)           :: a(lda,matrixCols), q(ldq,matrixCols)
#endif
Andreas Marek's avatar
Andreas Marek committed
153
154
155
156
157
158
159
160
161
162
   real(kind=rk), allocatable             :: hh_trans_real(:,:)

   integer(kind=ik)                       :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer(kind=ik)                       :: nbw, num_blocks
   real(kind=rk), allocatable             :: tmat(:,:,:), e(:)
   real(kind=rk)                          :: ttt0, ttt1, ttts
   integer(kind=ik)                       :: i
   logical                                :: success
   logical, save                          :: firstCall = .true.
   logical                                :: wantDebug
163

164
165
166
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_real_2stage")
#endif
167
168
169
170
171
172
173
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
174

175
176
177
178
179
180
181
   wantDebug = .false.
   if (firstCall) then
     ! are debug messages desired?
     wantDebug = debug_messages_via_environment_variable()
     firstCall = .false.
   endif

182
183
   success = .true.

184
185
186
187
188
189
190
191
192
193
194
195
196
   useQRActual = .false.

   ! set usage of qr decomposition via API call
   if (present(useQR)) then
     if (useQR) useQRActual = .true.
     if (.not.(useQR)) useQRACtual = .false.
   endif

   ! overwrite this with environment variable settings
   if (qr_decomposition_via_environment_variable(useQREnvironment)) then
     useQRActual = useQREnvironment
   endif

197
   if (useQRActual) then
198
     if (mod(na,2) .ne. 0) then
199
200
201
       if (wantDebug) then
         write(error_unit,*) "solve_evp_real_2stage: QR-decomposition: blocksize does not fit with matrixsize"
       endif
Andreas Marek's avatar
Andreas Marek committed
202
     print *, "Do not use QR-decomposition for this matrix and blocksize."
Andreas Marek's avatar
Andreas Marek committed
203
204
     success = .false.
     return
205
     endif
206
207
   endif

208

209
210
211
   if (present(THIS_REAL_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
212
   else
213

214
215
216
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
Andreas Marek's avatar
Andreas Marek committed
217
218
   endif

219
   ! check whether choosen kernel is allowed: function returns true if NOT allowed! change this
Andreas Marek's avatar
Andreas Marek committed
220
   if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then
221

222
223
224
225
226
227
228
229
230
231
232
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
233

234
       write(error_unit,*) " "
235
236
237
238
239
240
241
242
243
244
245
       ! check whether generic kernel is defined
       if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
         write(error_unit,*) "The default kernel REAL_ELPA_KERNEL_GENERIC will be used !"
       else
         write(error_unit,*) "As default kernel ",REAL_ELPA_KERNEL_NAMES(DEFAULT_REAL_ELPA_KERNEL)," will be used"
       endif
     endif  ! my_pe == 0
     if (AVAILABLE_REAL_ELPA_KERNELS(REAL_ELPA_KERNEL_GENERIC) .eq. 1) then
       THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
     else
       THIS_REAL_ELPA_KERNEL = DEFAULT_REAL_ELPA_KERNEL
246
     endif
Andreas Marek's avatar
Andreas Marek committed
247
   endif
248
249

   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32
Andreas Marek's avatar
Andreas Marek committed
250
   ! On older systems (IBM Bluegene/P, Intel Nehalem) a value of 32 was optimal.
251
   ! For Intel(R) Xeon(R) E5 v2 and v3, better use 64 instead of 32!
Andreas Marek's avatar
Andreas Marek committed
252
253
   ! For IBM Bluegene/Q this is not clear at the moment. We have to keep an eye
   ! on this and maybe allow a run-time optimization here
254
   nbw = (63/nblk+1)*nblk
255
256
257
258
259
260
261
262
263

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
264
   call bandred_real(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
265
                     tmat, wantDebug, success, useQRActual)
266
   if (.not.(success)) return
267
   ttt1 = MPI_Wtime()
268
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
269
      write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
270
271
272
273
274
275

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
276
277
   call tridiag_band_real(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
278
   ttt1 = MPI_Wtime()
279
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
280
      write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
281
#ifdef WITH_MPI
282
283
   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)
284
#endif
285
286
287
288
289
290
   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
291
   call solve_tridi(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
292
                    mpi_comm_cols, wantDebug, success)
293
294
   if (.not.(success)) return

295
   ttt1 = MPI_Wtime()
296
297
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
298
299
300
301
302
303
304
305
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   deallocate(e)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
306
307
308
   call trans_ev_tridi_to_band_real(na, nev, nblk, nbw, q, ldq, matrixCols, hh_trans_real, &
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, success,      &
                                    THIS_REAL_ELPA_KERNEL)
309
   if (.not.(success)) return
310
   ttt1 = MPI_Wtime()
311
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
312
      write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
313
314
315
316
317
318
319

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_real)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
320
   call trans_ev_band_to_full_real(na, nev, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, num_blocks, mpi_comm_rows, &
321
                                   mpi_comm_cols, useQRActual)
322
   ttt1 = MPI_Wtime()
323
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
324
      write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
325
326
327
   time_evp_back = ttt1-ttts

   deallocate(tmat)
328
329
330
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_real_2stage")
#endif
331
332
1  format(a,f10.3)

333
end function solve_evp_real_2stage
334
335
336


!-------------------------------------------------------------------------------
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
!>  \brief solve_evp_complex_2stage: Fortran function to solve the complex eigenvalue problem with a 2 stage approach
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
373
function solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, &
374
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
375
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
376

377
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
378
   use timings
379
#endif
380
381
382
   use elpa1_compute
   use elpa2_compute
   use elpa_mpi
Andreas Marek's avatar
Andreas Marek committed
383
   use precision
384
   implicit none
Andreas Marek's avatar
Andreas Marek committed
385
386
387
   integer(kind=ik), intent(in), optional :: THIS_COMPLEX_ELPA_KERNEL_API
   integer(kind=ik)                       :: THIS_COMPLEX_ELPA_KERNEL
   integer(kind=ik), intent(in)           :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all
388
#ifdef USE_ASSUMED_SIZE
389
390
   complex(kind=ck), intent(inout)        :: a(lda,*), q(ldq,*)
#else
Andreas Marek's avatar
Andreas Marek committed
391
   complex(kind=ck), intent(inout)        :: a(lda,matrixCols), q(ldq,matrixCols)
392
#endif
Andreas Marek's avatar
Andreas Marek committed
393
394
395
396
397
398
399
400
401
402
403
404
   real(kind=rk), intent(inout)           :: ev(na)
   complex(kind=ck), allocatable          :: hh_trans_complex(:,:)

   integer(kind=ik)                       :: my_prow, my_pcol, np_rows, np_cols, mpierr, my_pe, n_pes
   integer(kind=ik)                       :: l_cols, l_rows, l_cols_nev, nbw, num_blocks
   complex(kind=ck), allocatable          :: tmat(:,:,:)
   real(kind=rk), allocatable             :: q_real(:,:), e(:)
   real(kind=rk)                          :: ttt0, ttt1, ttts
   integer(kind=ik)                       :: i

   logical                                :: success, wantDebug
   logical, save                          :: firstCall = .true.
405

406
407
408
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_complex_2stage")
#endif
Andreas Marek's avatar
Andreas Marek committed
409
410
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)
411
412
413
414
415

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
416
417
418
419
420
421
422
423
   wantDebug = .false.
   if (firstCall) then
     ! are debug messages desired?
     wantDebug = debug_messages_via_environment_variable()
     firstCall = .false.
   endif


424
425
   success = .true.

426
427
428
   if (present(THIS_COMPLEX_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_COMPLEX_ELPA_KERNEL = THIS_COMPLEX_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
429
   else
430
431
432
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_COMPLEX_ELPA_KERNEL = get_actual_complex_kernel()
Andreas Marek's avatar
Andreas Marek committed
433
   endif
434

Andreas Marek's avatar
Andreas Marek committed
435
436
   ! check whether choosen kernel is allowed
   if (check_allowed_complex_kernels(THIS_COMPLEX_ELPA_KERNEL)) then
437

438
439
440
441
442
443
444
445
446
447
448
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",COMPLEX_ELPA_KERNEL_NAMES(THIS_COMPLEX_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(COMPLEX_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_COMPLEX_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) COMPLEX_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
449

450
       write(error_unit,*) " "
451
452
453
454
455
456
457
458
459
460
461
       ! check whether generic kernel is defined
       if (AVAILABLE_COMPLEX_ELPA_KERNELS(COMPLEX_ELPA_KERNEL_GENERIC) .eq. 1) then
         write(error_unit,*) "The default kernel COMPLEX_ELPA_KERNEL_GENERIC will be used !"
       else
         write(error_unit,*) "As default kernel ",COMPLEX_ELPA_KERNEL_NAMES(DEFAULT_COMPLEX_ELPA_KERNEL)," will be used"
       endif
     endif  ! my_pe == 0
     if (AVAILABLE_COMPLEX_ELPA_KERNELS(COMPLEX_ELPA_KERNEL_GENERIC) .eq. 1) then
       THIS_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
     else
       THIS_COMPLEX_ELPA_KERNEL = DEFAULT_COMPLEX_ELPA_KERNEL
462
     endif
Andreas Marek's avatar
Andreas Marek committed
463
   endif
464
465
466
467
468
469
470
471
472
473
474
475
   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

   nbw = (31/nblk+1)*nblk

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
476
   call bandred_complex(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
477
                        tmat, wantDebug, success)
478
479
480
481
482
483
   if (.not.(success)) then
#ifdef HAVE_DETAILED_TIMINGS
     call timer%stop()
#endif
     return
   endif
484
   ttt1 = MPI_Wtime()
485
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
486
      write(error_unit,*) 'Time bandred_complex               :',ttt1-ttt0
487
488
489
490
491
492

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
493
494
   call tridiag_band_complex(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_complex, &
                             mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
495
   ttt1 = MPI_Wtime()
496
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
497
      write(error_unit,*) 'Time tridiag_band_complex          :',ttt1-ttt0
498
#ifdef WITH_MPI
499
500
   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)
501
#endif
502
503
504
505
506
507
508
509
510
511
512
513
   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   l_rows = local_index(na, my_prow, np_rows, nblk, -1) ! Local rows of a and q
   l_cols = local_index(na, my_pcol, np_cols, nblk, -1) ! Local columns of q
   l_cols_nev = local_index(nev, my_pcol, np_cols, nblk, -1) ! Local columns corresponding to nev

   allocate(q_real(l_rows,l_cols))

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
514
   call solve_tridi(na, nev, ev, e, q_real, ubound(q_real,dim=1), nblk, matrixCols, &
515
                    mpi_comm_rows, mpi_comm_cols, wantDebug, success)
516
517
   if (.not.(success)) return

518
   ttt1 = MPI_Wtime()
519
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times)  &
520
      write(error_unit,*) 'Time solve_tridi                   :',ttt1-ttt0
521
522
523
524
525
526
527
528
529
530
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   q(1:l_rows,1:l_cols_nev) = q_real(1:l_rows,1:l_cols_nev)

   deallocate(e, q_real)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
531
532
533
   call trans_ev_tridi_to_band_complex(na, nev, nblk, nbw, q, ldq,   &
                                       matrixCols, hh_trans_complex, &
                                       mpi_comm_rows, mpi_comm_cols, &
534
                                       wantDebug, success,THIS_COMPLEX_ELPA_KERNEL)
535
   if (.not.(success)) return
536
   ttt1 = MPI_Wtime()
537
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
538
      write(error_unit,*) 'Time trans_ev_tridi_to_band_complex:',ttt1-ttt0
539
540
541
542
543
544
545

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_complex)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
Andreas Marek's avatar
Andreas Marek committed
546
547
   call trans_ev_band_to_full_complex(na, nev, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, num_blocks, &
                                      mpi_comm_rows, mpi_comm_cols)
548
   ttt1 = MPI_Wtime()
549
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
550
      write(error_unit,*) 'Time trans_ev_band_to_full_complex :',ttt1-ttt0
551
552
553
   time_evp_back = ttt1-ttts

   deallocate(tmat)
554
555
556
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_complex_2stage")
#endif
557
558
559

1  format(a,f10.3)

560
end function solve_evp_complex_2stage
561
562

end module ELPA2