real_sse_4hv_template.c 65.9 KB
Newer Older
1
2
3
4
5
6
//    This file is part of ELPA.
//
//    The ELPA library was originally created by the ELPA consortium,
//    consisting of the following organizations:
//
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
7
//	Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
9
//	Informatik,
10
//    - Technische Universität München, Lehrstuhl für Informatik mit
11
//	Schwerpunkt Wissenschaftliches Rechnen ,
12
13
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
14
15
//	Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//	and
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
//    - IBM Deutschland GmbH
//
//    This particular source code file contains additions, changes and
//    enhancements authored by Intel Corporation which is not part of
//    the ELPA consortium.
//
//    More information can be found here:
//    http://elpa.mpcdf.mpg.de/
//
//    ELPA is free software: you can redistribute it and/or modify
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
36
//    along with ELPA.	If not, see <http://www.gnu.org/licenses/>
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
//
// --------------------------------------------------------------------------------------------------
//
// This file contains the compute intensive kernels for the Householder transformations.
// It should be compiled with the highest possible optimization level.
//
// On Intel Nehalem or Intel Westmere or AMD Magny Cours use -O3 -msse3
// On Intel Sandy Bridge use -O3 -mavx
//
// Copyright of the original code rests with the authors inside the ELPA
// consortium. The copyright of any additional modifications shall rest
// with their original authors, but shall adhere to the licensing terms
// distributed along with the original code in the file "COPYING".
//
// Author: Alexander Heinecke (alexander.heinecke@mytum.de)
// Adapted for building a shared-library by Andreas Marek, MPCDF (andreas.marek@mpcdf.mpg.de)
// --------------------------------------------------------------------------------------------------

#include "config-f90.h"

65
66
67
68
69
70
71
72
73
#ifdef HAVE_SSE_INTRINSICS
#include <x86intrin.h>
#endif
#ifdef HAVE_SPARC64_SSE
#include <fjmfunc.h>
#include <emmintrin.h>
#endif
#include <stdio.h>
#include <stdlib.h>
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#ifdef DOUBLE_PRECISION_REAL
#define offset 2
#define __SSE_DATATYPE __m128d
#define _SSE_LOAD _mm_load_pd
#define _SSE_ADD _mm_add_pd
#define _SSE_SUB _mm_sub_pd
#define _SSE_MUL _mm_mul_pd
#define _SSE_STORE _mm_store_pd
#endif
#ifdef SINGLE_PRECISION_REAL
#define offset 4
#define __SSE_DATATYPE __m128
#define _SSE_LOAD _mm_load_ps
#define _SSE_ADD _mm_add_ps
#define _SSE_SUB _mm_sub_ps
#define _SSE_MUL _mm_mul_ps
#define _SSE_STORE _mm_store_ps
#endif

#define __forceinline __attribute__((always_inline)) static

#ifdef HAVE_SSE_INTRINSICS
#undef __AVX__
#endif

//Forward declaration
101
#ifdef HAVE_SSE_INTRINSICS
102
103
104
105
106
107
108
109
110
111
#ifdef DOUBLE_PRECISION_REAL
__forceinline void hh_trafo_kernel_2_SSE_4hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s_1_2, double s_1_3, double s_2_3, double s_1_4, double s_2_4, double s_3_4);
__forceinline void hh_trafo_kernel_4_SSE_4hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s_1_2, double s_1_3, double s_2_3, double s_1_4, double s_2_4, double s_3_4);
__forceinline void hh_trafo_kernel_6_SSE_4hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s_1_2, double s_1_3, double s_2_3, double s_1_4, double s_2_4, double s_3_4);
#endif
#ifdef SINGLE_PRECISION_REAL
__forceinline void hh_trafo_kernel_4_SSE_4hv_single(float* q, float* hh, int nb, int ldq, int ldh, float s_1_2, float s_1_3, float s_2_3, float s_1_4, float s_2_4, float s_3_4);
__forceinline void hh_trafo_kernel_8_SSE_4hv_single(float* q, float* hh, int nb, int ldq, int ldh, float s_1_2, float s_1_3, float s_2_3, float s_1_4, float s_2_4, float s_3_4);
__forceinline void hh_trafo_kernel_12_SSE_4hv_single(float* q, float* hh, int nb, int ldq, int ldh, float s_1_2, float s_1_3, float s_2_3, float s_1_4, float s_2_4, float s_3_4);
#endif
112
113
114
115
116
117
118
119
120
121
122
123
124
#endif
#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
__forceinline void hh_trafo_kernel_2_SPARC64_4hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s_1_2, double s_1_3, double s_2_3, double s_1_4, double s_2_4, double s_3_4);
__forceinline void hh_trafo_kernel_4_SPARC64_4hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s_1_2, double s_1_3, double s_2_3, double s_1_4, double s_2_4, double s_3_4);
__forceinline void hh_trafo_kernel_6_SPARC64_4hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s_1_2, double s_1_3, double s_2_3, double s_1_4, double s_2_4, double s_3_4);
#endif
#ifdef SINGLE_PRECISION_REAL
__forceinline void hh_trafo_kernel_4_SPARC64_4hv_single(float* q, float* hh, int nb, int ldq, int ldh, float s_1_2, float s_1_3, float s_2_3, float s_1_4, float s_2_4, float s_3_4);
__forceinline void hh_trafo_kernel_8_SPARC64_4hv_single(float* q, float* hh, int nb, int ldq, int ldh, float s_1_2, float s_1_3, float s_2_3, float s_1_4, float s_2_4, float s_3_4);
__forceinline void hh_trafo_kernel_12_SPARC64_4hv_single(float* q, float* hh, int nb, int ldq, int ldh, float s_1_2, float s_1_3, float s_2_3, float s_1_4, float s_2_4, float s_3_4);
#endif
#endif
125

126
#ifdef HAVE_SSE_INTRINSICS
127
128
129
130
131
132
#ifdef DOUBLE_PRECISION_REAL
void quad_hh_trafo_real_sse_4hv_double(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh);
#endif
#ifdef SINGLE_PRECISION_REAL
void quad_hh_trafo_real_sse_4hv_single(float* q, float* hh, int* pnb, int* pnq, int* pldq, int* pldh);
#endif
133
134
135
136
137
138
139
140
141
#endif
#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
void quad_hh_trafo_real_sparc64_4hv_double(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh);
#endif
#ifdef SINGLE_PRECISION_REAL
void quad_hh_trafo_real_sparc64_4hv_single(float* q, float* hh, int* pnb, int* pnq, int* pldq, int* pldh);
#endif
#endif
142
143
144
145
146

/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine quad_hh_trafo_real_sse_4hv_double(q, hh, pnb, pnq, pldq, pldh) &
147
148
149
150
151
!f>				bind(C, name="quad_hh_trafo_real_sse_4hv_double")
!f>	use, intrinsic :: iso_c_binding
!f>	integer(kind=c_int)	:: pnb, pnq, pldq, pldh
!f>	type(c_ptr), value	:: q
!f>	real(kind=c_double)	:: hh(pnb,6)
152
153
154
155
156
!f>   end subroutine
!f> end interface
!f>#endif
*/

157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
!f>#ifdef HAVE_SPARC64_SSE
!f> interface
!f>   subroutine quad_hh_trafo_real_sparc64_4hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>				bind(C, name="quad_hh_trafo_real_sparc64_4hv_double")
!f>	use, intrinsic :: iso_c_binding
!f>	integer(kind=c_int)	:: pnb, pnq, pldq, pldh
!f>	type(c_ptr), value	:: q
!f>	real(kind=c_double)	:: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

171
172
173
174
/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine quad_hh_trafo_real_sse_4hv_single(q, hh, pnb, pnq, pldq, pldh) &
175
176
177
178
179
!f>				bind(C, name="quad_hh_trafo_real_sse_4hv_single")
!f>	use, intrinsic :: iso_c_binding
!f>	integer(kind=c_int)	:: pnb, pnq, pldq, pldh
!f>	type(c_ptr), value	:: q
!f>	real(kind=c_float)	:: hh(pnb,6)
180
181
182
183
184
!f>   end subroutine
!f> end interface
!f>#endif
*/

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
!f>#ifdef HAVE_SPARC64_SSE
!f> interface
!f>   subroutine quad_hh_trafo_real_sparc64_4hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>				bind(C, name="quad_hh_trafo_real_sparc64_4hv_single")
!f>	use, intrinsic :: iso_c_binding
!f>	integer(kind=c_int)	:: pnb, pnq, pldq, pldh
!f>	type(c_ptr), value	:: q
!f>	real(kind=c_float)	:: hh(pnb,6)
!f>   end subroutine
!f> end interface
!f>#endif
*/

#ifdef HAVE_SSE_INTRINSICS
200
201
202
203
204
#ifdef DOUBLE_PRECISION_REAL
void quad_hh_trafo_real_sse_4hv_double(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh)
#endif
#ifdef SINGLE_PRECISION_REAL
void quad_hh_trafo_real_sse_4hv_single(float* q, float* hh, int* pnb, int* pnq, int* pldq, int* pldh)
205
206
207
208
209
210
211
212
213
214
#endif
#endif
#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
void quad_hh_trafo_real_sparc64_4hv_double(double* q, double* hh, int* pnb, int* pnq, int* pldq, int* pldh)
#endif
#ifdef SINGLE_PRECISION_REAL
void quad_hh_trafo_real_sparc64_4hv_single(float* q, float* hh, int* pnb, int* pnq, int* pldq, int* pldh)
#endif

215
216
217
218
219
220
221
222
#endif

{
	int i;
	int nb = *pnb;
	int nq = *pldq;
	int ldq = *pldq;
	int ldh = *pldh;
223
224
225
226
	int worked_on;


	worked_on = 0;
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

	// calculating scalar products to compute
	// 4 householder vectors simultaneously
#ifdef DOUBLE_PRECISION_REAL
	double s_1_2 = hh[(ldh)+1];
	double s_1_3 = hh[(ldh*2)+2];
	double s_2_3 = hh[(ldh*2)+1];
	double s_1_4 = hh[(ldh*3)+3];
	double s_2_4 = hh[(ldh*3)+2];
	double s_3_4 = hh[(ldh*3)+1];
#endif
#ifdef SINGLE_PRECISION_REAL
	float s_1_2 = hh[(ldh)+1];
	float s_1_3 = hh[(ldh*2)+2];
	float s_2_3 = hh[(ldh*2)+1];
	float s_1_4 = hh[(ldh*3)+3];
	float s_2_4 = hh[(ldh*3)+2];
	float s_3_4 = hh[(ldh*3)+1];
#endif
	// calculate scalar product of first and fourth householder Vector
	// loop counter = 2
	s_1_2 += hh[2-1] * hh[(2+ldh)];
	s_2_3 += hh[(ldh)+2-1] * hh[2+(ldh*2)];
	s_3_4 += hh[(ldh*2)+2-1] * hh[2+(ldh*3)];

	// loop counter = 3
	s_1_2 += hh[3-1] * hh[(3+ldh)];
	s_2_3 += hh[(ldh)+3-1] * hh[3+(ldh*2)];
	s_3_4 += hh[(ldh*2)+3-1] * hh[3+(ldh*3)];

	s_1_3 += hh[3-2] * hh[3+(ldh*2)];
	s_2_4 += hh[(ldh*1)+3-2] * hh[3+(ldh*3)];

	#pragma ivdep
	for (i = 4; i < nb; i++)
	{
		s_1_2 += hh[i-1] * hh[(i+ldh)];
		s_2_3 += hh[(ldh)+i-1] * hh[i+(ldh*2)];
		s_3_4 += hh[(ldh*2)+i-1] * hh[i+(ldh*3)];

		s_1_3 += hh[i-2] * hh[i+(ldh*2)];
		s_2_4 += hh[(ldh*1)+i-2] * hh[i+(ldh*3)];

		s_1_4 += hh[i-3] * hh[i+(ldh*3)];
	}

	// Production level kernel calls with padding
#ifdef DOUBLE_PRECISION_REAL
	for (i = 0; i < nq-4; i+=6)
	{
277
#ifdef HAVE_SSE_INTRINSICS
278
		hh_trafo_kernel_6_SSE_4hv_double(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
279
280
281
282
#endif
#ifdef HAVE_SPARC64_SSE
		hh_trafo_kernel_6_SPARC64_4hv_double(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
#endif
283
		worked_on += 6;
284
285
286
287
288
	}
#endif
#ifdef SINGLE_PRECISION_REAL
	for (i = 0; i < nq-8; i+=12)
	{
289
#ifdef HAVE_SSE_INTRINSICS
290
		hh_trafo_kernel_12_SSE_4hv_single(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
291
292
293
294
295
#endif
#ifdef HAVE_SPARC64_SSE
		hh_trafo_kernel_12_SPARC64_4hv_single(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
#endif

296
		worked_on += 12;
297
298
299
300
301
302
303

	}
#endif
	if (nq == i)
	{
		return;
	}
304
305
306
307

#ifdef DOUBLE_PRECISION_REAL
	if (nq-i ==4)
	{
308
#ifdef HAVE_SSE_INTRINSICS
309
		hh_trafo_kernel_4_SSE_4hv_double(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
310
311
312
313
#endif
#ifdef HAVE_SPARC64_SSE
		hh_trafo_kernel_4_SPARC64_4hv_double(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
#endif
314
315
316
317
		worked_on += 4;
	}
#endif

318
319
320
#ifdef SINGLE_PRECISION_REAL
	if (nq-i ==8)
	{
321
#ifdef HAVE_SSE_INTRINSICS
322
		hh_trafo_kernel_8_SSE_4hv_single(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
323
324
325
326
#endif
#ifdef HAVE_SPARC64_SSE
		hh_trafo_kernel_8_SPARC64_4hv_single(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
#endif
327
		worked_on += 8;
328
329
	}
#endif
330

331
#ifdef DOUBLE_PRECISION_REAL
332
333
	if (nq-i == 2)
	{
334
#ifdef HAVE_SSE_INTRINSICS
335
		hh_trafo_kernel_2_SSE_4hv_double(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
336
337
338
339
340
#endif
#ifdef HAVE_SPARC64_SSE
		hh_trafo_kernel_2_SPARC64_4hv_double(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
#endif

341
342
		worked_on += 2;
	}
343
#endif
344

345
#ifdef SINGLE_PRECISION_REAL
346
347
	if (nq-i ==4)
	{
348
#ifdef HAVE_SSE_INTRINSICS
349
		hh_trafo_kernel_4_SSE_4hv_single(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
350
351
352
353
#endif
#ifdef HAVE_SPARC64_SSE
		hh_trafo_kernel_4_SPARC64_4hv_single(&q[i], hh, nb, ldq, ldh, s_1_2, s_1_3, s_2_3, s_1_4, s_2_4, s_3_4);
#endif
354
355
		worked_on += 4;
	}
356
#endif
357
#ifdef WITH_DEBUG
358
	if (worked_on != nq)
359
	{
360
#ifdef HAVE_SSE_INTRINSICS
361
		printf("Error in real SSE BLOCK4 kernel \n");
362
363
364
365
366
#endif
#ifdef HAVE_SPARC64_SSE
		printf("Error in real SPARC64 BLOCK4 kernel \n");
#endif

367
		abort();
368
	}
369
#endif
370

371
372
373
374
375
376
377
378
379
380
381
382
383
}

/**
 * Unrolled kernel that computes
#ifdef DOUBLE_PRECISION_REAL
 * 6 rows of Q simultaneously, a
#endif
#ifdef SINGLE_PRECISION_REAL
 * 12 rows of Q simultaneously, a
#endif
 * matrix Vector product with two householder
 * vectors + a rank 1 update is performed
 */
384
#ifdef HAVE_SSE_INTRINSICS
385
386
387
388
389
390
#ifdef DOUBLE_PRECISION_REAL
__forceinline void hh_trafo_kernel_6_SSE_4hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s_1_2, double s_1_3, double s_2_3, double s_1_4, double s_2_4, double s_3_4)
#endif
#ifdef SINGLE_PRECISION_REAL
__forceinline void hh_trafo_kernel_12_SSE_4hv_single(float* q, float* hh, int nb, int ldq, int ldh, float s_1_2, float s_1_3, float s_2_3, float s_1_4, float s_2_4, float s_3_4)
#endif
391
392
393
394
395
396
397
398
399
#endif
#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
__forceinline void hh_trafo_kernel_6_SPARC64_4hv_double(double* q, double* hh, int nb, int ldq, int ldh, double s_1_2, double s_1_3, double s_2_3, double s_1_4, double s_2_4, double s_3_4)
#endif
#ifdef SINGLE_PRECISION_REAL
__forceinline void hh_trafo_kernel_12_SPARC64_4hv_single(float* q, float* hh, int nb, int ldq, int ldh, float s_1_2, float s_1_3, float s_2_3, float s_1_4, float s_2_4, float s_3_4)
#endif
#endif
400
401
402
403
404
405
406
407
408
409
410
411
{
	/////////////////////////////////////////////////////
	// Matrix Vector Multiplication, Q [6 x nb+3] * hh
	// hh contains four householder vectors
	/////////////////////////////////////////////////////
	int i;

	__SSE_DATATYPE a1_1 = _SSE_LOAD(&q[ldq*3]);
	__SSE_DATATYPE a2_1 = _SSE_LOAD(&q[ldq*2]);
	__SSE_DATATYPE a3_1 = _SSE_LOAD(&q[ldq]);
	__SSE_DATATYPE a4_1 = _SSE_LOAD(&q[0]);

412
#ifdef HAVE_SSE_INTRINSICS
413
#ifdef DOUBLE_PRECISION_REAL
414
415
416
417
418
419
	__SSE_DATATYPE h_2_1 = _mm_set1_pd(hh[ldh+1]);
	__SSE_DATATYPE h_3_2 = _mm_set1_pd(hh[(ldh*2)+1]);
	__SSE_DATATYPE h_3_1 = _mm_set1_pd(hh[(ldh*2)+2]);
	__SSE_DATATYPE h_4_3 = _mm_set1_pd(hh[(ldh*3)+1]);
	__SSE_DATATYPE h_4_2 = _mm_set1_pd(hh[(ldh*3)+2]);
	__SSE_DATATYPE h_4_1 = _mm_set1_pd(hh[(ldh*3)+3]);
420
421
422
#endif

#ifdef SINGLE_PRECISION_REAL
423
424
425
426
427
428
	__m128 h_2_1 = _mm_set1_ps(hh[ldh+1] ); // h_2_1 contains four times hh[ldh+1]
	__m128 h_3_2 = _mm_set1_ps(hh[(ldh*2)+1]);
	__m128 h_3_1 = _mm_set1_ps(hh[(ldh*2)+2]);
	__m128 h_4_3 = _mm_set1_ps(hh[(ldh*3)+1]);
	__m128 h_4_2 = _mm_set1_ps(hh[(ldh*3)+2]);
	__m128 h_4_1 = _mm_set1_ps(hh[(ldh*3)+3]);
429
#endif
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	__SSE_DATATYPE h_2_1 = _mm_set_pd(hh[ldh+1], hh[ldh+1]);
	__SSE_DATATYPE h_3_2 = _mm_set_pd(hh[(ldh*2)+1], hh[(ldh*2)+1]);
	__SSE_DATATYPE h_3_1 = _mm_set_pd(hh[(ldh*2)+2], hh[(ldh*2)+2]);
	__SSE_DATATYPE h_4_3 = _mm_set_pd(hh[(ldh*3)+1], hh[(ldh*3)+1]);
	__SSE_DATATYPE h_4_2 = _mm_set_pd(hh[(ldh*3)+2], hh[(ldh*3)+2]);
	__SSE_DATATYPE h_4_1 = _mm_set_pd(hh[(ldh*3)+3], hh[(ldh*3)+3]);
#endif

#ifdef SINGLE_PRECISION_REAL
	__m128 h_2_1 = _mm_set_ps(hh[ldh+1],  hh[ldh+1]); // h_2_1 contains four times hh[ldh+1]
	__m128 h_3_2 = _mm_set_ps(hh[(ldh*2)+1], hh[(ldh*2)+1]);
	__m128 h_3_1 = _mm_set_ps(hh[(ldh*2)+2], hh[(ldh*2)+2]);
	__m128 h_4_3 = _mm_set_ps(hh[(ldh*3)+1], hh[(ldh*3)+1]);
	__m128 h_4_2 = _mm_set_ps(hh[(ldh*3)+2], hh[(ldh*3)+2]);
	__m128 h_4_1 = _mm_set_ps(hh[(ldh*3)+3], hh[(ldh*3)+3]);
#endif
#endif
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498



	register __SSE_DATATYPE w1 = _SSE_ADD(a4_1, _SSE_MUL(a3_1, h_4_3));
	w1 = _SSE_ADD(w1, _SSE_MUL(a2_1, h_4_2));
	w1 = _SSE_ADD(w1, _SSE_MUL(a1_1, h_4_1));
	register __SSE_DATATYPE z1 = _SSE_ADD(a3_1, _SSE_MUL(a2_1, h_3_2));
	z1 = _SSE_ADD(z1, _SSE_MUL(a1_1, h_3_1));
	register __SSE_DATATYPE y1 = _SSE_ADD(a2_1, _SSE_MUL(a1_1, h_2_1));
	register __SSE_DATATYPE x1 = a1_1;

	__SSE_DATATYPE a1_2 = _SSE_LOAD(&q[(ldq*3)+offset]);
	__SSE_DATATYPE a2_2 = _SSE_LOAD(&q[(ldq*2)+offset]);
	__SSE_DATATYPE a3_2 = _SSE_LOAD(&q[ldq+offset]);
	__SSE_DATATYPE a4_2 = _SSE_LOAD(&q[0+offset]);

	register __SSE_DATATYPE w2 = _SSE_ADD(a4_2, _SSE_MUL(a3_2, h_4_3));
	w2 = _SSE_ADD(w2, _SSE_MUL(a2_2, h_4_2));
	w2 = _SSE_ADD(w2, _SSE_MUL(a1_2, h_4_1));
	register __SSE_DATATYPE z2 = _SSE_ADD(a3_2, _SSE_MUL(a2_2, h_3_2));
	z2 = _SSE_ADD(z2, _SSE_MUL(a1_2, h_3_1));
	register __SSE_DATATYPE y2 = _SSE_ADD(a2_2, _SSE_MUL(a1_2, h_2_1));
	register __SSE_DATATYPE x2 = a1_2;

	__SSE_DATATYPE a1_3 = _SSE_LOAD(&q[(ldq*3)+2*offset]);
	__SSE_DATATYPE a2_3 = _SSE_LOAD(&q[(ldq*2)+2*offset]);
	__SSE_DATATYPE a3_3 = _SSE_LOAD(&q[ldq+2*offset]);
	__SSE_DATATYPE a4_3 = _SSE_LOAD(&q[0+2*offset]);

	register __SSE_DATATYPE w3 = _SSE_ADD(a4_3, _SSE_MUL(a3_3, h_4_3));
	w3 = _SSE_ADD(w3, _SSE_MUL(a2_3, h_4_2));
	w3 = _SSE_ADD(w3, _SSE_MUL(a1_3, h_4_1));
	register __SSE_DATATYPE z3 = _SSE_ADD(a3_3, _SSE_MUL(a2_3, h_3_2));
	z3 = _SSE_ADD(z3, _SSE_MUL(a1_3, h_3_1));
	register __SSE_DATATYPE y3 = _SSE_ADD(a2_3, _SSE_MUL(a1_3, h_2_1));
	register __SSE_DATATYPE x3 = a1_3;

	__SSE_DATATYPE q1;
	__SSE_DATATYPE q2;
	__SSE_DATATYPE q3;

	__SSE_DATATYPE h1;
	__SSE_DATATYPE h2;
	__SSE_DATATYPE h3;
	__SSE_DATATYPE h4;

	for(i = 4; i < nb; i++)
	{
499
#ifdef HAVE_SSE_INTRINSICS
500
#ifdef DOUBLE_PRECISION_REAL
501
		h1 = _mm_set1_pd(hh[i-3]);
502
503
#endif
#ifdef SINGLE_PRECISION_REAL
504
		h1 = _mm_set1_ps(hh[i-3]);
505
506
507
508
509
510
511
512
513
514
#endif
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
		h1 = _mm_set_pd(hh[i-3], hh[i-3]);
#endif
#ifdef SINGLE_PRECISION_REAL
		h1 = _mm_set_ps(hh[i-3], hh[i-3]);
#endif
515
516
517
518
519
520
521
522
523
#endif
		q1 = _SSE_LOAD(&q[i*ldq]);
		q2 = _SSE_LOAD(&q[(i*ldq)+offset]);
		q3 = _SSE_LOAD(&q[(i*ldq)+2*offset]);

		x1 = _SSE_ADD(x1, _SSE_MUL(q1,h1));
		x2 = _SSE_ADD(x2, _SSE_MUL(q2,h1));
		x3 = _SSE_ADD(x3, _SSE_MUL(q3,h1));

524
#ifdef HAVE_SSE_INTRINSICS
525
#ifdef DOUBLE_PRECISION_REAL
526
		h2 = _mm_set1_pd(hh[ldh+i-2]);
527
528
#endif
#ifdef SINGLE_PRECISION_REAL
529
		h2 = _mm_set1_ps(hh[ldh+i-2]);
530
531
532
533
534
535
536
537
538
539
540
#endif
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
		h2 = _mm_set_pd(hh[ldh+i-2], hh[ldh+i-2]);
#endif
#ifdef SINGLE_PRECISION_REAL
		h2 = _mm_set_ps(hh[ldh+i-2], hh[ldh+i-2]);
#endif

541
542
543
544
545
#endif
		y1 = _SSE_ADD(y1, _SSE_MUL(q1,h2));
		y2 = _SSE_ADD(y2, _SSE_MUL(q2,h2));
		y3 = _SSE_ADD(y3, _SSE_MUL(q3,h2));

546
#ifdef HAVE_SSE_INTRINSICS
547
#ifdef DOUBLE_PRECISION_REAL
548
		h3 = _mm_set1_pd(hh[(ldh*2)+i-1]);
549
550
#endif
#ifdef SINGLE_PRECISION_REAL
551
		h3 = _mm_set1_ps(hh[(ldh*2)+i-1]);
552
#endif
553
554
555
556
557
558
559
560
561
562
563
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
		h3 = _mm_set_pd(hh[(ldh*2)+i-1], hh[(ldh*2)+i-1]);
#endif
#ifdef SINGLE_PRECISION_REAL
		h3 = _mm_set_ps(hh[(ldh*2)+i-1], hh[(ldh*2)+i-1]);
#endif
#endif

564
565
566
567

		z1 = _SSE_ADD(z1, _SSE_MUL(q1,h3));
		z2 = _SSE_ADD(z2, _SSE_MUL(q2,h3));
		z3 = _SSE_ADD(z3, _SSE_MUL(q3,h3));
568
#ifdef HAVE_SSE_INTRINSICS
569
#ifdef DOUBLE_PRECISION_REAL
570
		h4 = _mm_set1_pd(hh[(ldh*3)+i]);
571
572
#endif
#ifdef SINGLE_PRECISION_REAL
573
		h4 = _mm_set1_ps(hh[(ldh*3)+i]);
574
#endif
575
576
577
578
579
580
581
582
583
584
585
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
		h4 = _mm_set_pd(hh[(ldh*3)+i], hh[(ldh*3)+i]);
#endif
#ifdef SINGLE_PRECISION_REAL
		h4 = _mm_set_ps(hh[(ldh*3)+i], hh[(ldh*3)+i]);
#endif
#endif

586
587
588
589
590
		w1 = _SSE_ADD(w1, _SSE_MUL(q1,h4));
		w2 = _SSE_ADD(w2, _SSE_MUL(q2,h4));
		w3 = _SSE_ADD(w3, _SSE_MUL(q3,h4));
	}

591
#ifdef HAVE_SSE_INTRINSICS
592
#ifdef DOUBLE_PRECISION_REAL
593
	h1 = _mm_set1_pd(hh[nb-3]);
594
595
#endif
#ifdef SINGLE_PRECISION_REAL
596
	h1 = _mm_set1_ps(hh[nb-3]);
597
#endif
598
#endif
599

600
601
602
603
604
605
606
607
#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h1 = _mm_set_pd(hh[nb-3], hh[nb-3]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h1 = _mm_set_ps(hh[nb-3], hh[nb-3]);
#endif
#endif
608
609
610
611
612
613
614
615
	q1 = _SSE_LOAD(&q[nb*ldq]);
	q2 = _SSE_LOAD(&q[(nb*ldq)+offset]);
	q3 = _SSE_LOAD(&q[(nb*ldq)+2*offset]);

	x1 = _SSE_ADD(x1, _SSE_MUL(q1,h1));
	x2 = _SSE_ADD(x2, _SSE_MUL(q2,h1));
	x3 = _SSE_ADD(x3, _SSE_MUL(q3,h1));

616
#ifdef HAVE_SSE_INTRINSICS
617
#ifdef DOUBLE_PRECISION_REAL
618
	h2 = _mm_set1_pd(hh[ldh+nb-2]);
619
620
#endif
#ifdef SINGLE_PRECISION_REAL
621
	h2 = _mm_set1_ps(hh[ldh+nb-2]);
622
623
624
625
626
627
628
629
630
631
#endif
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h2 = _mm_set_pd(hh[ldh+nb-2], hh[ldh+nb-2]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h2 = _mm_set_ps(hh[ldh+nb-2], hh[ldh+nb-2]);
#endif
632
633
634
635
636
637
#endif

	y1 = _SSE_ADD(y1, _SSE_MUL(q1,h2));
	y2 = _SSE_ADD(y2, _SSE_MUL(q2,h2));
	y3 = _SSE_ADD(y3, _SSE_MUL(q3,h2));

638
#ifdef HAVE_SSE_INTRINSICS
639
#ifdef DOUBLE_PRECISION_REAL
640
	h3 = _mm_set1_pd(hh[(ldh*2)+nb-1]);
641
642
#endif
#ifdef SINGLE_PRECISION_REAL
643
	h3 = _mm_set1_ps(hh[(ldh*2)+nb-1]);
644
#endif
645
646
647
648
649
650
651
652
653
654
655
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h3 = _mm_set_pd(hh[(ldh*2)+nb-1], hh[(ldh*2)+nb-1]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h3 = _mm_set_ps(hh[(ldh*2)+nb-1], hh[(ldh*2)+nb-1]);
#endif
#endif

656
657
658
659
	z1 = _SSE_ADD(z1, _SSE_MUL(q1,h3));
	z2 = _SSE_ADD(z2, _SSE_MUL(q2,h3));
	z3 = _SSE_ADD(z3, _SSE_MUL(q3,h3));

660
#ifdef HAVE_SSE_INTRINSICS
661
#ifdef DOUBLE_PRECISION_REAL
662
	h1 = _mm_set1_pd(hh[nb-2]);
663
664
#endif
#ifdef SINGLE_PRECISION_REAL
665
	h1 = _mm_set1_ps(hh[nb-2]);
666
#endif
667
668
669
670
671
672
673
674
675
676
677
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h1 = _mm_set_pd(hh[nb-2], hh[nb-2]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h1 = _mm_set_ps(hh[nb-2], hh[nb-2]);
#endif
#endif

678
679
680
681
682
683
684
685
	q1 = _SSE_LOAD(&q[(nb+1)*ldq]);
	q2 = _SSE_LOAD(&q[((nb+1)*ldq)+offset]);
	q3 = _SSE_LOAD(&q[((nb+1)*ldq)+2*offset]);

	x1 = _SSE_ADD(x1, _SSE_MUL(q1,h1));
	x2 = _SSE_ADD(x2, _SSE_MUL(q2,h1));
	x3 = _SSE_ADD(x3, _SSE_MUL(q3,h1));

686
#ifdef HAVE_SSE_INTRINSICS
687
#ifdef DOUBLE_PRECISION_REAL
688
	h2 = _mm_set1_pd(hh[(ldh*1)+nb-1]);
689
690
#endif
#ifdef SINGLE_PRECISION_REAL
691
	h2 = _mm_set1_ps(hh[ldh+nb-1]);
692
#endif
693
694
695
696
697
698
699
700
701
702
703
704
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h2 = _mm_set_pd(hh[(ldh*1)+nb-1], hh[(ldh*1)+nb-1]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h2 = _mm_set_ps(hh[ldh+nb-1], hh[(ldh*1)+nb-1]);
#endif
#endif


705
706
707
708
	y1 = _SSE_ADD(y1, _SSE_MUL(q1,h2));
	y2 = _SSE_ADD(y2, _SSE_MUL(q2,h2));
	y3 = _SSE_ADD(y3, _SSE_MUL(q3,h2));

709
#ifdef HAVE_SSE_INTRINSICS
710
#ifdef DOUBLE_PRECISION_REAL
711
	h1 = _mm_set1_pd(hh[nb-1]);
712
713
#endif
#ifdef SINGLE_PRECISION_REAL
714
	h1 = _mm_set1_ps(hh[nb-1]);
715
#endif
716
717
718
719
720
721
722
723
724
725
726
727
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h1 = _mm_set_pd(hh[nb-1], hh[nb-1]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h1 = _mm_set_ps(hh[nb-1], hh[nb-1]);
#endif
#endif


728
729
730
731
732
733
734
735
736
737
738
739
	q1 = _SSE_LOAD(&q[(nb+2)*ldq]);
	q2 = _SSE_LOAD(&q[((nb+2)*ldq)+offset]);
	q3 = _SSE_LOAD(&q[((nb+2)*ldq)+2*offset]);

	x1 = _SSE_ADD(x1, _SSE_MUL(q1,h1));
	x2 = _SSE_ADD(x2, _SSE_MUL(q2,h1));
	x3 = _SSE_ADD(x3, _SSE_MUL(q3,h1));

	/////////////////////////////////////////////////////
	// Rank-1 update of Q [6 x nb+3]
	/////////////////////////////////////////////////////

740
#ifdef HAVE_SSE_INTRINSICS
741
#ifdef DOUBLE_PRECISION_REAL
742
	__SSE_DATATYPE tau1 = _mm_set1_pd(hh[0]);
743
744
#endif
#ifdef SINGLE_PRECISION_REAL
745
       __m128 tau1 = _mm_set1_ps(hh[0]);
746
#endif
747
748
749
750
751
752
753
754
755
756
757
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	__SSE_DATATYPE tau1 = _mm_set_pd(hh[0], hh[0]);
#endif
#ifdef SINGLE_PRECISION_REAL
       __m128 tau1 = _mm_set_ps(hh[0], hh[0]);
#endif
#endif

758
759
760
761

	h1 = tau1;
	x1 = _SSE_MUL(x1, h1);
	x2 = _SSE_MUL(x2, h1);
762
	x3 = _SSE_MUL(x3, h1)
763

764
#ifdef HAVE_SSE_INTRINSICS
765
#ifdef DOUBLE_PRECISION_REAL
766
767
	__SSE_DATATYPE tau2 = _mm_set1_pd(hh[ldh]);
	__SSE_DATATYPE vs_1_2 = _mm_set1_pd(s_1_2);
768
769
#endif
#ifdef SINGLE_PRECISION_REAL
770
771
	__m128 tau2 = _mm_set1_ps(hh[ldh]);
	__m128 vs_1_2 = _mm_set1_ps(s_1_2);
772
#endif
773
774
775
776
777
778
779
780
781
782
783
784
785
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	__SSE_DATATYPE tau2 = _mm_set_pd(hh[ldh], hh[ldh]);
	__SSE_DATATYPE vs_1_2 = _mm_set_pd(s_1_2, s_1_2);
#endif
#ifdef SINGLE_PRECISION_REAL
	__m128 tau2 = _mm_set_ps(hh[ldh], hh[ldh]);
	__m128 vs_1_2 = _mm_set_ps(s_1_2, s_1_2);
#endif
#endif

786
787
788
789
790
791
792
793

	h1 = tau2;
	h2 = _SSE_MUL(h1, vs_1_2);

	y1 = _SSE_SUB(_SSE_MUL(y1,h1), _SSE_MUL(x1,h2));
	y2 = _SSE_SUB(_SSE_MUL(y2,h1), _SSE_MUL(x2,h2));
	y3 = _SSE_SUB(_SSE_MUL(y3,h1), _SSE_MUL(x3,h2));

794
#ifdef HAVE_SSE_INTRINSICS
795
#ifdef DOUBLE_PRECISION_REAL
796
797
798
	__SSE_DATATYPE tau3 = _mm_set1_pd(hh[ldh*2]);
	__SSE_DATATYPE vs_1_3 = _mm_set1_pd(s_1_3);
	__SSE_DATATYPE vs_2_3 = _mm_set1_pd(s_2_3);
799
800
#endif
#ifdef SINGLE_PRECISION_REAL
801
802
803
	__m128 tau3 = _mm_set1_ps(hh[ldh*2]);
	__m128 vs_1_3 = _mm_set1_ps(s_1_3);
	__m128 vs_2_3 = _mm_set1_ps(s_2_3);
804
#endif
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	__SSE_DATATYPE tau3 = _mm_set_pd(hh[ldh*2], hh[ldh*2]);
	__SSE_DATATYPE vs_1_3 = _mm_set_pd(s_1_3, s_1_3);
	__SSE_DATATYPE vs_2_3 = _mm_set_pd(s_2_3, s_2_3);
#endif
#ifdef SINGLE_PRECISION_REAL
	__m128 tau3 = _mm_set_ps(hh[ldh*2], hh[ldh*2]);
	__m128 vs_1_3 = _mm_set_ps(s_1_3, s_1_3);
	__m128 vs_2_3 = _mm_set_ps(s_2_3, s_2_3);
#endif
#endif

820
821
822
823
824
825
826
827
828

	h1 = tau3;
	h2 = _SSE_MUL(h1, vs_1_3);
	h3 = _SSE_MUL(h1, vs_2_3);

	z1 = _SSE_SUB(_SSE_MUL(z1,h1), _SSE_ADD(_SSE_MUL(y1,h3), _SSE_MUL(x1,h2)));
	z2 = _SSE_SUB(_SSE_MUL(z2,h1), _SSE_ADD(_SSE_MUL(y2,h3), _SSE_MUL(x2,h2)));
	z3 = _SSE_SUB(_SSE_MUL(z3,h1), _SSE_ADD(_SSE_MUL(y3,h3), _SSE_MUL(x3,h2)));

829
#ifdef HAVE_SSE_INTRINSICS
830
#ifdef DOUBLE_PRECISION_REAL
831
832
833
834
	__SSE_DATATYPE tau4 = _mm_set1_pd(hh[ldh*3]);
	__SSE_DATATYPE vs_1_4 = _mm_set1_pd(s_1_4);
	__SSE_DATATYPE vs_2_4 = _mm_set1_pd(s_2_4);
	__SSE_DATATYPE vs_3_4 = _mm_set1_pd(s_3_4);
835
836
#endif
#ifdef SINGLE_PRECISION_REAL
837
838
839
840
	__m128 tau4 = _mm_set1_ps(hh[ldh*3]);
	__m128 vs_1_4 = _mm_set1_ps(s_1_4);
	__m128 vs_2_4 = _mm_set1_ps(s_2_4);
	__m128 vs_3_4 = _mm_set1_ps(s_3_4);
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
#endif
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	__SSE_DATATYPE tau4 = _mm_set_pd(hh[ldh*3], hh[ldh*3]);
	__SSE_DATATYPE vs_1_4 = _mm_set_pd(s_1_4, s_1_4);
	__SSE_DATATYPE vs_2_4 = _mm_set_pd(s_2_4, s_2_4);
	__SSE_DATATYPE vs_3_4 = _mm_set_pd(s_3_4, s_3_4);
#endif
#ifdef SINGLE_PRECISION_REAL
	__m128 tau4 = _mm_set_ps(hh[ldh*3], hh[ldh*3]);
	__m128 vs_1_4 = _mm_set_ps(s_1_4, s_1_4);
	__m128 vs_2_4 = _mm_set_ps(s_2_4, s_2_4);
	__m128 vs_3_4 = _mm_set_ps(s_3_4, s_3_4);
#endif
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
#endif

	h1 = tau4;
	h2 = _SSE_MUL(h1, vs_1_4);
	h3 = _SSE_MUL(h1, vs_2_4);
	h4 = _SSE_MUL(h1, vs_3_4);

	w1 = _SSE_SUB(_SSE_MUL(w1,h1), _SSE_ADD(_SSE_MUL(z1,h4), _SSE_ADD(_SSE_MUL(y1,h3), _SSE_MUL(x1,h2))));
	w2 = _SSE_SUB(_SSE_MUL(w2,h1), _SSE_ADD(_SSE_MUL(z2,h4), _SSE_ADD(_SSE_MUL(y2,h3), _SSE_MUL(x2,h2))));
	w3 = _SSE_SUB(_SSE_MUL(w3,h1), _SSE_ADD(_SSE_MUL(z3,h4), _SSE_ADD(_SSE_MUL(y3,h3), _SSE_MUL(x3,h2))));

	q1 = _SSE_LOAD(&q[0]);
	q2 = _SSE_LOAD(&q[offset]);
	q3 = _SSE_LOAD(&q[2*offset]);
	q1 = _SSE_SUB(q1, w1);
	q2 = _SSE_SUB(q2, w2);
	q3 = _SSE_SUB(q3, w3);
	_SSE_STORE(&q[0],q1);
	_SSE_STORE(&q[offset],q2);
	_SSE_STORE(&q[2*offset],q3);

878
#ifdef HAVE_SSE_INTRINSICS
879
#ifdef DOUBLE_PRECISION_REAL
880
	h4 = _mm_set1_pd(hh[(ldh*3)+1]);
881
882
#endif
#ifdef SINGLE_PRECISION_REAL
883
	h4 = _mm_set1_ps(hh[(ldh*3)+1]);
884
#endif
885
886
887
888
889
890
891
892
893
894
895
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h4 = _mm_set_pd(hh[(ldh*3)+1], hh[(ldh*3)+1]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h4 = _mm_set_ps(hh[(ldh*3)+1], hh[(ldh*3)+1]);
#endif
#endif

896
897
898
899
900
901
902
903
904
905
906
907
908

	q1 = _SSE_LOAD(&q[ldq]);
	q2 = _SSE_LOAD(&q[ldq+offset]);
	q3 = _SSE_LOAD(&q[ldq+2*offset]);

	q1 = _SSE_SUB(q1, _SSE_ADD(z1, _SSE_MUL(w1, h4)));
	q2 = _SSE_SUB(q2, _SSE_ADD(z2, _SSE_MUL(w2, h4)));
	q3 = _SSE_SUB(q3, _SSE_ADD(z3, _SSE_MUL(w3, h4)));

	_SSE_STORE(&q[ldq],q1);
	_SSE_STORE(&q[ldq+offset],q2);
	_SSE_STORE(&q[ldq+2*offset],q3);

909
#ifdef HAVE_SSE_INTRINSICS
910
#ifdef DOUBLE_PRECISION_REAL
911
	h4 = _mm_set1_pd(hh[(ldh*3)+2]);
912
913
#endif
#ifdef SINGLE_PRECISION_REAL
914
	h4 = _mm_set1_ps(hh[(ldh*3)+2]);
915
#endif
916
917
918
919
920
921
922
923
924
925
926
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h4 = _mm_set_pd(hh[(ldh*3)+2], hh[(ldh*3)+2]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h4 = _mm_set_ps(hh[(ldh*3)+2], hh[(ldh*3)+2]);
#endif
#endif

927
928
929
930
931
932
933
934
935
936
937
	q1 = _SSE_LOAD(&q[ldq*2]);
	q2 = _SSE_LOAD(&q[(ldq*2)+offset]);
	q3 = _SSE_LOAD(&q[(ldq*2)+2*offset]);
	q1 = _SSE_SUB(q1, y1);
	q2 = _SSE_SUB(q2, y2);
	q3 = _SSE_SUB(q3, y3);

	q1 = _SSE_SUB(q1, _SSE_MUL(w1, h4));
	q2 = _SSE_SUB(q2, _SSE_MUL(w2, h4));
	q3 = _SSE_SUB(q3, _SSE_MUL(w3, h4));

938
#ifdef HAVE_SSE_INTRINSICS
939
#ifdef DOUBLE_PRECISION_REAL
940
	h3 = _mm_set1_pd(hh[(ldh*2)+1]);
941
942
#endif
#ifdef SINGLE_PRECISION_REAL
943
	h3 = _mm_set1_ps(hh[(ldh*2)+1]);
944
#endif
945
946
947
948
949
950
951
952
953
954
955
#endif

#ifdef HAVE_SPARC64_INTRINSICS
#ifdef DOUBLE_PRECISION_REAL
	h3 = _mm_set_pd(hh[(ldh*2)+1], hh[(ldh*2)+1]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h3 = _mm_set_ps(hh[(ldh*2)+1], hh[(ldh*2)+1]);
#endif
#endif

956
957
958
959
960
961
962
963
	q1 = _SSE_SUB(q1, _SSE_MUL(z1, h3));
	q2 = _SSE_SUB(q2, _SSE_MUL(z2, h3));
	q3 = _SSE_SUB(q3, _SSE_MUL(z3, h3));

	_SSE_STORE(&q[ldq*2],q1);
	_SSE_STORE(&q[(ldq*2)+offset],q2);
	_SSE_STORE(&q[(ldq*2)+2*offset],q3);

964
#ifdef HAVE_SSE_INTRINSICS
965
#ifdef DOUBLE_PRECISION_REAL
966
	h4 = _mm_set1_pd(hh[(ldh*3)+3]);
967
968
#endif
#ifdef SINGLE_PRECISION_REAL
969
	h4 = _mm_set1_ps(hh[(ldh*3)+3]);
970
#endif
971
972
973
974
975
976
977
978
979
980
981
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h4 = _mm_set_pd(hh[(ldh*3)+3], hh[(ldh*3)+3]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h4 = _mm_set_ps(hh[(ldh*3)+3], hh[(ldh*3)+3]);
#endif
#endif

982
983
984
985
986
987
988
989
990
991
992
	q1 = _SSE_LOAD(&q[ldq*3]);
	q2 = _SSE_LOAD(&q[(ldq*3)+offset]);
	q3 = _SSE_LOAD(&q[(ldq*3)+2*offset]);
	q1 = _SSE_SUB(q1, x1);
	q2 = _SSE_SUB(q2, x2);
	q3 = _SSE_SUB(q3, x3);

	q1 = _SSE_SUB(q1, _SSE_MUL(w1, h4));
	q2 = _SSE_SUB(q2, _SSE_MUL(w2, h4));
	q3 = _SSE_SUB(q3, _SSE_MUL(w3, h4));

993
#ifdef HAVE_SSE_INTRINSICS
994
#ifdef DOUBLE_PRECISION_REAL
995
	h2 = _mm_set1_pd(hh[ldh+1]);
996
997
#endif
#ifdef SINGLE_PRECISION_REAL
998
	h2 = _mm_set1_ps(hh[ldh+1]);
999
#endif
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h2 = _mm_set_pd(hh[ldh+1], hh[ldh+1]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h2 = _mm_set_ps(hh[ldh+1], hh[ldh+1]);
#endif
#endif

1011
1012
1013
1014
1015

	q1 = _SSE_SUB(q1, _SSE_MUL(y1, h2));
	q2 = _SSE_SUB(q2, _SSE_MUL(y2, h2));
	q3 = _SSE_SUB(q3, _SSE_MUL(y3, h2));

1016
#ifdef HAVE_SSE_INTRINSICS
1017
#ifdef DOUBLE_PRECISION_REAL
1018
	h3 = _mm_set1_pd(hh[(ldh*2)+2]);
1019
1020
#endif
#ifdef SINGLE_PRECISION_REAL
1021
	h3 = _mm_set1_ps(hh[(ldh*2)+2]);
1022
#endif
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h3 = _mm_set_pd(hh[(ldh*2)+2], hh[(ldh*2)+2]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h3 = _mm_set_ps(hh[(ldh*2)+2], hh[(ldh*2)+2]);
#endif
#endif

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

	q1 = _SSE_SUB(q1, _SSE_MUL(z1, h3));
	q2 = _SSE_SUB(q2, _SSE_MUL(z2, h3));
	q3 = _SSE_SUB(q3, _SSE_MUL(z3, h3));
	_SSE_STORE(&q[ldq*3], q1);
	_SSE_STORE(&q[(ldq*3)+offset], q2);
	_SSE_STORE(&q[(ldq*3)+2*offset], q3);

	for (i = 4; i < nb; i++)
	{
1044
#ifdef HAVE_SSE_INTRINSICS
1045
#ifdef DOUBLE_PRECISION_REAL
1046
		h1 = _mm_set1_pd(hh[i-3]);
1047
1048
#endif
#ifdef SINGLE_PRECISION_REAL
1049
		h1 = _mm_set1_ps(hh[i-3]);
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
#endif
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
		h1 = _mm_set_pd(hh[i-3], hh[i-3]);
#endif
#ifdef SINGLE_PRECISION_REAL
		h1 = _mm_set_ps(hh[i-3], hh[i-3]);
#endif
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
#endif

		q1 = _SSE_LOAD(&q[i*ldq]);
		q2 = _SSE_LOAD(&q[(i*ldq)+offset]);
		q3 = _SSE_LOAD(&q[(i*ldq)+2*offset]);

		q1 = _SSE_SUB(q1, _SSE_MUL(x1,h1));
		q2 = _SSE_SUB(q2, _SSE_MUL(x2,h1));
		q3 = _SSE_SUB(q3, _SSE_MUL(x3,h1));

1070
#ifdef HAVE_SSE_INTRINSICS
1071
#ifdef DOUBLE_PRECISION_REAL
1072
		h2 = _mm_set1_pd(hh[ldh+i-2]);
1073
1074
#endif
#ifdef SINGLE_PRECISION_REAL
1075
		h2 = _mm_set1_ps(hh[ldh+i-2]);
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
#endif
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
		h2 = _mm_set_pd(hh[ldh+i-2], hh[ldh+i-2]);
#endif
#ifdef SINGLE_PRECISION_REAL
		h2 = _mm_set_ps(hh[ldh+i-2], hh[ldh+i-2]);
#endif
1086
1087
1088
1089
1090
1091
#endif

		q1 = _SSE_SUB(q1, _SSE_MUL(y1,h2));
		q2 = _SSE_SUB(q2, _SSE_MUL(y2,h2));
		q3 = _SSE_SUB(q3, _SSE_MUL(y3,h2));

1092
#ifdef HAVE_SSE_INTRINSICS
1093
#ifdef DOUBLE_PRECISION_REAL
1094
		h3 = _mm_set1_pd(hh[(ldh*2)+i-1]);
1095
1096
#endif
#ifdef SINGLE_PRECISION_REAL
1097
		h3 = _mm_set1_ps(hh[(ldh*2)+i-1]);
1098
#endif
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
		h3 = _mm_set_pd(hh[(ldh*2)+i-1], hh[(ldh*2)+i-1]);
#endif
#ifdef SINGLE_PRECISION_REAL
		h3 = _mm_set_ps(hh[(ldh*2)+i-1], hh[(ldh*2)+i-1]);
#endif
#endif

1110
1111
1112
1113
		q1 = _SSE_SUB(q1, _SSE_MUL(z1,h3));
		q2 = _SSE_SUB(q2, _SSE_MUL(z2,h3));
		q3 = _SSE_SUB(q3, _SSE_MUL(z3,h3));

1114
#ifdef HAVE_SSE_INTRINSICS
1115
#ifdef DOUBLE_PRECISION_REAL
1116
		h4 = _mm_set1_pd(hh[(ldh*3)+i]);
1117
1118
#endif
#ifdef SINGLE_PRECISION_REAL
1119
		h4 = _mm_set1_ps(hh[(ldh*3)+i]);
1120
#endif
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
#endif

#ifdef HAVE_SPRC64_SSE
#ifdef DOUBLE_PRECISION_REAL
		h4 = _mm_set_pd(hh[(ldh*3)+i], hh[(ldh*3)+i]);
#endif
#ifdef SINGLE_PRECISION_REAL
		h4 = _mm_set_ps(hh[(ldh*3)+i], hh[(ldh*3)+i]);
#endif
#endif

1132
1133
1134
1135
1136
1137
1138
1139
1140
		q1 = _SSE_SUB(q1, _SSE_MUL(w1,h4));
		q2 = _SSE_SUB(q2, _SSE_MUL(w2,h4));
		q3 = _SSE_SUB(q3, _SSE_MUL(w3,h4));

		_SSE_STORE(&q[i*ldq],q1);
		_SSE_STORE(&q[(i*ldq)+offset],q2);
		_SSE_STORE(&q[(i*ldq)+2*offset],q3);
	}

1141
#ifdef HAVE_SSE_INTRINSICS
1142
#ifdef DOUBLE_PRECISION_REAL
1143
	h1 = _mm_set1_pd(hh[nb-3]);
1144
1145
#endif
#ifdef SINGLE_PRECISION_REAL
1146
	h1 = _mm_set1_ps(hh[nb-3]);
1147
#endif
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h1 = _mm_set_pd(hh[nb-3], hh[nb-3]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h1 = _mm_set_ps(hh[nb-3], hh[nb-3]);
#endif
#endif

1159
1160
1161
1162
1163
1164
1165
1166
	q1 = _SSE_LOAD(&q[nb*ldq]);
	q2 = _SSE_LOAD(&q[(nb*ldq)+offset]);
	q3 = _SSE_LOAD(&q[(nb*ldq)+2*offset]);

	q1 = _SSE_SUB(q1, _SSE_MUL(x1, h1));
	q2 = _SSE_SUB(q2, _SSE_MUL(x2, h1));
	q3 = _SSE_SUB(q3, _SSE_MUL(x3, h1));

1167
#ifdef HAVE_SSE_INTRINSCS
1168
#ifdef DOUBLE_PRECISION_REAL
1169
	h2 = _mm_set1_pd(hh[ldh+nb-2]);
1170
1171
#endif
#ifdef SINGLE_PRECISION_REAL
1172
	h2 = _mm_set1_ps(hh[ldh+nb-2]);
1173
#endif
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h2 = _mm_set_pd(hh[ldh+nb-2], hh[ldh+nb-2]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h2 = _mm_set_ps(hh[ldh+nb-2], hh[ldh+nb-2]);
#endif
#endif
1184
1185
1186
1187
1188
1189


	q1 = _SSE_SUB(q1, _SSE_MUL(y1, h2));
	q2 = _SSE_SUB(q2, _SSE_MUL(y2, h2));
	q3 = _SSE_SUB(q3, _SSE_MUL(y3, h2));

1190
#ifdef HAVE_SSE_INTRINSICS
1191
#ifdef DOUBLE_PRECISION_REAL
1192
	h3 = _mm_set1_pd(hh[(ldh*2)+nb-1]);
1193
1194
#endif
#ifdef SINGLE_PRECISION_REAL
1195
	h3 = _mm_set1_ps(hh[(ldh*2)+nb-1]);
1196
#endif
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h3 = _mm_set_pd(hh[(ldh*2)+nb-1], hh[(ldh*2)+nb-1]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h3 = _mm_set_ps(hh[(ldh*2)+nb-1], hh[(ldh*2)+nb-1]);
#endif
#endif

1208
1209
1210
1211
1212
1213
1214
1215
1216

	q1 = _SSE_SUB(q1, _SSE_MUL(z1, h3));
	q2 = _SSE_SUB(q2, _SSE_MUL(z2, h3));
	q3 = _SSE_SUB(q3, _SSE_MUL(z3, h3));

	_SSE_STORE(&q[nb*ldq],q1);
	_SSE_STORE(&q[(nb*ldq)+offset],q2);
	_SSE_STORE(&q[(nb*ldq)+2*offset],q3);

1217
#ifdef HAVE_SSE_INTRINSICS
1218
#ifdef DOUBLE_PRECISION_REAL
1219
	h1 = _mm_set1_pd(hh[nb-2]);
1220
1221
#endif
#ifdef SINGLE_PRECISION_REAL
1222
	h1 = _mm_set1_ps(hh[nb-2]);
1223
#endif
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h1 = _mm_set_pd(hh[nb-2], hh[nb-2]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h1 = _mm_set_ps(hh[nb-2], hh[nb-2]);
#endif
#endif

1235
1236
1237
1238
1239
1240
1241
1242
	q1 = _SSE_LOAD(&q[(nb+1)*ldq]);
	q2 = _SSE_LOAD(&q[((nb+1)*ldq)+offset]);
	q3 = _SSE_LOAD(&q[((nb+1)*ldq)+2*offset]);

	q1 = _SSE_SUB(q1, _SSE_MUL(x1, h1));
	q2 = _SSE_SUB(q2, _SSE_MUL(x2, h1));
	q3 = _SSE_SUB(q3, _SSE_MUL(x3, h1));

1243
#ifdef HAVE_SSE_INTRINSICS
1244
#ifdef DOUBLE_PRECISION_REAL
1245
	h2 = _mm_set1_pd(hh[ldh+nb-1]);
1246
1247
#endif
#ifdef SINGLE_PRECISION_REAL
1248
	h2 = _mm_set1_ps(hh[ldh+nb-1]);
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
#endif
#endif

#ifdef HAVE_SPARC64_SSE
#ifdef DOUBLE_PRECISION_REAL
	h2 = _mm_set_pd(hh[ldh+nb-1], hh[ldh+nb-1]);
#endif
#ifdef SINGLE_PRECISION_REAL
	h2 = _mm_set_ps(hh[ldh+nb-1], hh[ldh+nb-1]);
#endif
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
#endif

	q1 = _SSE_SUB(q1, _SSE_MUL(y1, h2));
	q2 = _SSE_SUB(q2, _SSE_MUL(y2, h2));
	q3 = _SSE_SUB(q3, _SSE_MUL(y3, h2));

	_SSE_STORE(&q[(nb+