elpa_impl.F90 91.4 KB
Newer Older
1 2 3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56 57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62
   integer :: communicators_owned
63

64
   !> \brief methods available with the elpa_impl_t type
65
   contains
66
     !> \brief the puplic methods
67
     ! con-/destructor
68 69
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
70

71
     ! KV store
72 73 74 75
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
76

77 78 79 80

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
81 82
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
83 84


85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
120

121
  end type elpa_impl_t
122

123 124

  !> \brief the implementation of the generic methods
125
  contains
126 127


128 129 130 131
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
132
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
133 134
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
135
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
136

137 138 139 140
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
141

Andreas Marek's avatar
Andreas Marek committed
142
      ! check whether init has ever been called
143
      if ( elpa_initialized() .ne. ELPA_OK) then
144
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
145 146
        if(present(error)) then
          error = ELPA_ERROR
147
        endif
Andreas Marek's avatar
Andreas Marek committed
148 149
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
150

151
      obj%index = elpa_index_instance_c()
152 153

      ! Associate some important integer pointers for convenience
154 155 156 157 158 159 160 161
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
162 163
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
164

165 166 167 168 169
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
170
    !c> elpa_t elpa_allocate();
171
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
172 173 174 175 176 177 178 179
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

180 181 182 183 184
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
185
    !c> void elpa_deallocate(elpa_t handle);
186
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
187 188 189 190 191 192 193 194 195
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


196 197 198 199
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
200
    function elpa_setup(self) result(error)
201 202 203 204 205 206
      use elpa_utilities, only : error_unit
#ifdef WITH_MPI
      use elpa_mpi
#endif
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
207

208
#ifdef WITH_MPI
209 210 211 212
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string

213
      error = ELPA_ERROR
214

215 216 217
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
218

219 220 221
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
241

242 243 244
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

245 246 247
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

248
        error = ELPA_OK
249
      endif
250

251
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
252
        self%communicators_owned = 0
253
        error = ELPA_OK
254
      endif
255
#else /* !WITH_MPI */
256 257
      error = ELPA_OK
#endif
258

259
#ifdef HAVE_DETAILED_TIMINGS
260 261
      call self%get("timings",timings)
      if (timings == 1) then
262 263
        call self%timer%enable()
      endif
264
#endif
265

266
    end function
267

268 269 270 271 272 273
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
274
    !c> int elpa_setup(elpa_t handle);
275
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
276 277 278 279 280 281 282 283 284
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


285 286 287 288 289 290 291 292 293
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
294
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
295
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
296 297 298 299 300 301 302 303 304 305 306 307 308
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


309 310 311 312 313 314 315 316 317
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
318 319
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
320 321 322 323 324 325 326 327 328
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
329 330
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
331 332


333 334 335 336 337
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
338
    function elpa_is_set(self, name) result(state)
339 340
      use iso_c_binding
      use elpa_generated_fortran_interfaces
341
      class(elpa_impl_t)       :: self
342
      character(*), intent(in) :: name
343
      integer                  :: state
344

345
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
346 347
    end function

348 349 350 351 352 353
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
354 355 356 357 358 359 360 361 362 363 364 365 366
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
367 368 369
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
370 371 372 373
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
374

375 376
      nullify(string)

377
      call self%get(option_name, val, actual_error)
378 379 380 381 382
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
383 384
      endif

385 386 387 388
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
389

390 391 392 393
      if (present(error)) then
        error = actual_error
      endif
    end function
394

Andreas Marek's avatar
Andreas Marek committed
395

396 397 398 399 400 401 402 403 404
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
405
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
406
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
407 408 409 410 411 412 413 414 415 416 417 418
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

419

420
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
421 422 423 424 425 426 427 428
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
429 430
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
431 432 433 434 435 436 437 438 439
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
440 441
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
442 443


444
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
445
      use iso_c_binding
446
      use elpa_generated_fortran_interfaces
447 448
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
449 450
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
451

452 453
      type(c_ptr)                    :: value_p

454
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
455 456 457
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
458 459
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
460

461

462 463 464 465 466 467
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

468
#ifdef HAVE_DETAILED_TIMINGS
469
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
470 471 472
#else
      s = -1.0
#endif
473 474 475
    end function


476
    subroutine elpa_print_times(self, name1, name2, name3, name4)
477
      class(elpa_impl_t), intent(in) :: self
478
      character(len=*), intent(in), optional :: name1, name2, name3, name4
479
#ifdef HAVE_DETAILED_TIMINGS
480
      call self%timer%print(name1, name2, name3, name4)
481
#endif
482 483
    end subroutine

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


503
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
504
    !>
505 506
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
528
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
529 530
      use elpa2_impl
      use elpa1_impl
531
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
532
      use iso_c_binding
533
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
534

535 536 537
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
538
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
539
#endif
540
      real(kind=c_double) :: ev(self%na)
541

542
      integer, optional   :: error
543
      integer(kind=c_int) :: solver
544
      logical             :: success_l
545

546

547 548
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
549
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
550

551
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
552
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
553 554 555 556
      else
        print *,"unknown solver"
        stop
      endif
557

558
      if (present(error)) then
559
        if (success_l) then
560
          error = ELPA_OK
561
        else
562
          error = ELPA_ERROR
563 564 565 566 567 568
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

569 570
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
571 572 573 574 575 576 577 578 579 580 581
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

582
      call elpa_eigenvectors_d(self, a, ev, q, error)
583 584
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
585

586
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
587
    !>
588 589
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
611
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
612 613
      use elpa2_impl
      use elpa1_impl
614 615
      use elpa_utilities, only : error_unit
      use iso_c_binding
616
      class(elpa_impl_t)  :: self
617 618 619
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
620
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
621
#endif
622
      real(kind=c_float)  :: ev(self%na)
623

624
      integer, optional   :: error
625
      integer(kind=c_int) :: solver
626
#ifdef WANT_SINGLE_PRECISION_REAL
627
      logical             :: success_l
628

629 630
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
631
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
632

633
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
634
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
635 636 637 638
      else
        print *,"unknown solver"
        stop
      endif
639

640
      if (present(error)) then
641
        if (success_l) then
642
          error = ELPA_OK
643
        else
644
          error = ELPA_ERROR
645 646 647 648 649
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
650
      print *,"This installation of the ELPA library has not been build with single-precision support"
651
      error = ELPA_ERROR
652 653 654
#endif
    end subroutine

655

656 657
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
658 659 660 661 662 663 664 665 666 667 668
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

669
      call elpa_eigenvectors_f(self, a, ev, q, error)
670 671 672
    end subroutine


673
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
674
    !>
675 676
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
698
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
699 700
      use elpa2_impl
      use elpa1_impl
701 702
      use elpa_utilities, only : error_unit
      use iso_c_binding
703
      class(elpa_impl_t)             :: self
704

705 706 707
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
708
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
709
#endif
710
      real(kind=c_double)            :: ev(self%na)
711

712
      integer, optional              :: error
713
      integer(kind=c_int)            :: solver
714
      logical                        :: success_l
715

716 717
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
718
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
719

720
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
721
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
722 723 724 725
      else
        print *,"unknown solver"
        stop
      endif
726

727
      if (present(error)) then
728
        if (success_l) then
729
          error = ELPA_OK
730
        else
731
          error = ELPA_ERROR
732 733 734 735 736 737 738
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


739 740
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
741 742 743 744 745 746 747 748 749 750 751 752
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

753
      call elpa_eigenvectors_dc(self, a, ev, q, error)
754 755 756
    end subroutine


757
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
758
    !>
759 760
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
782
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
783 784
      use elpa2_impl
      use elpa1_impl
785 786 787
      use elpa_utilities, only : error_unit

      use iso_c_binding
788
      class(elpa_impl_t)            :: self
789
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
790
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
791
#else
Andreas Marek's avatar
Andreas Marek committed
792
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
793
#endif
Andreas Marek's avatar
Andreas Marek committed
794
      real(kind=c_float)            :: ev(self%na)
795

796
      integer, optional             :: error
797
      integer(kind=c_int)           :: solver
798
#ifdef WANT_SINGLE_PRECISION_COMPLEX
799
      logical                       :: success_l
800

801 802
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
803
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
804

805
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
806
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
807 808 809 810
      else
        print *,"unknown solver"
        stop
      endif
811

812
      if (present(error)) then
813
        if (success_l) then
814
          error = ELPA_OK
815
        else
816
          error = ELPA_ERROR
817 818 819 820 821
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
822
      print *,"This installation of the ELPA library has not been build with single-precision support"
823
      error = ELPA_ERROR
824 825 826
#endif
    end subroutine

827

828 829
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
830 831 832 833 834 835 836 837 838 839 840 841
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

842
      call elpa_eigenvectors_fc(self, a, ev, q, error)
843 844
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self

#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
961
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999