elpa_impl.F90 91.4 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56
57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62
   integer :: communicators_owned
63

64
   !> \brief methods available with the elpa_impl_t type
65
   contains
66
     !> \brief the puplic methods
67
     ! con-/destructor
68
69
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
70

71
     ! KV store
72
73
74
75
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
76

77
78
79
80

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
81
82
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
83
84


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
120

121
  end type elpa_impl_t
122

123
124

  !> \brief the implementation of the generic methods
125
  contains
126
127


128
129
130
131
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
132
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
133
134
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
135
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
136

137
138
139
140
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
141

Andreas Marek's avatar
Andreas Marek committed
142
      ! check whether init has ever been called
143
      if ( elpa_initialized() .ne. ELPA_OK) then
144
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
145
146
        if(present(error)) then
          error = ELPA_ERROR
147
        endif
Andreas Marek's avatar
Andreas Marek committed
148
149
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
150

151
      obj%index = elpa_index_instance_c()
152
153

      ! Associate some important integer pointers for convenience
154
155
156
157
158
159
160
161
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
162
163
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
164

165
166
167
168
169
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
170
    !c> elpa_t elpa_allocate();
171
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
172
173
174
175
176
177
178
179
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

180
181
182
183
184
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
185
    !c> void elpa_deallocate(elpa_t handle);
186
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
187
188
189
190
191
192
193
194
195
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


196
197
198
199
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
200
    function elpa_setup(self) result(error)
201
202
203
204
205
206
      use elpa_utilities, only : error_unit
#ifdef WITH_MPI
      use elpa_mpi
#endif
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
207

208
#ifdef WITH_MPI
209
210
211
212
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string

213
      error = ELPA_ERROR
214

215
216
217
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
218

219
220
221
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
241

242
243
244
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

245
246
247
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

248
        error = ELPA_OK
249
      endif
250

251
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
252
        self%communicators_owned = 0
253
        error = ELPA_OK
254
      endif
255
#else /* !WITH_MPI */
256
257
      error = ELPA_OK
#endif
258

259
#ifdef HAVE_DETAILED_TIMINGS
260
261
      call self%get("timings",timings)
      if (timings == 1) then
262
263
        call self%timer%enable()
      endif
264
#endif
265

266
    end function
267

268
269
270
271
272
273
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
274
    !c> int elpa_setup(elpa_t handle);
275
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
276
277
278
279
280
281
282
283
284
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


285
286
287
288
289
290
291
292
293
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
294
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
295
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
296
297
298
299
300
301
302
303
304
305
306
307
308
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


309
310
311
312
313
314
315
316
317
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
318
319
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
320
321
322
323
324
325
326
327
328
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
329
330
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
331
332


333
334
335
336
337
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
338
    function elpa_is_set(self, name) result(state)
339
340
      use iso_c_binding
      use elpa_generated_fortran_interfaces
341
      class(elpa_impl_t)       :: self
342
      character(*), intent(in) :: name
343
      integer                  :: state
344

345
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
346
347
    end function

348
349
350
351
352
353
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
354
355
356
357
358
359
360
361
362
363
364
365
366
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
367
368
369
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
370
371
372
373
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
374

375
376
      nullify(string)

377
      call self%get(option_name, val, actual_error)
378
379
380
381
382
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
383
384
      endif

385
386
387
388
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
389

390
391
392
393
      if (present(error)) then
        error = actual_error
      endif
    end function
394

Andreas Marek's avatar
Andreas Marek committed
395

396
397
398
399
400
401
402
403
404
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
405
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
406
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
407
408
409
410
411
412
413
414
415
416
417
418
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

419

420
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
421
422
423
424
425
426
427
428
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
429
430
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
431
432
433
434
435
436
437
438
439
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
440
441
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
442
443


444
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
445
      use iso_c_binding
446
      use elpa_generated_fortran_interfaces
447
448
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
449
450
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
451

452
453
      type(c_ptr)                    :: value_p

454
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
455
456
457
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
458
459
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
460

461

462
463
464
465
466
467
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

468
#ifdef HAVE_DETAILED_TIMINGS
469
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
470
471
472
#else
      s = -1.0
#endif
473
474
475
    end function


476
    subroutine elpa_print_times(self, name1, name2, name3, name4)
477
      class(elpa_impl_t), intent(in) :: self
478
      character(len=*), intent(in), optional :: name1, name2, name3, name4
479
#ifdef HAVE_DETAILED_TIMINGS
480
      call self%timer%print(name1, name2, name3, name4)
481
#endif
482
483
    end subroutine

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


503
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
504
    !>
505
506
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
528
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
529
530
      use elpa2_impl
      use elpa1_impl
531
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
532
      use iso_c_binding
533
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
534

535
536
537
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
538
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
539
#endif
540
      real(kind=c_double) :: ev(self%na)
541

542
      integer, optional   :: error
543
      integer(kind=c_int) :: solver
544
      logical             :: success_l
545

546

547
548
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
549
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
550

551
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
552
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
553
554
555
556
      else
        print *,"unknown solver"
        stop
      endif
557

558
      if (present(error)) then
559
        if (success_l) then
560
          error = ELPA_OK
561
        else
562
          error = ELPA_ERROR
563
564
565
566
567
568
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

569
570
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
571
572
573
574
575
576
577
578
579
580
581
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

582
      call elpa_eigenvectors_d(self, a, ev, q, error)
583
584
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
585

586
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
587
    !>
588
589
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
611
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
612
613
      use elpa2_impl
      use elpa1_impl
614
615
      use elpa_utilities, only : error_unit
      use iso_c_binding
616
      class(elpa_impl_t)  :: self
617
618
619
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
620
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
621
#endif
622
      real(kind=c_float)  :: ev(self%na)
623

624
      integer, optional   :: error
625
      integer(kind=c_int) :: solver
626
#ifdef WANT_SINGLE_PRECISION_REAL
627
      logical             :: success_l
628

629
630
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
631
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
632

633
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
634
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
635
636
637
638
      else
        print *,"unknown solver"
        stop
      endif
639

640
      if (present(error)) then
641
        if (success_l) then
642
          error = ELPA_OK
643
        else
644
          error = ELPA_ERROR
645
646
647
648
649
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
650
      print *,"This installation of the ELPA library has not been build with single-precision support"
651
      error = ELPA_ERROR
652
653
654
#endif
    end subroutine

655

656
657
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
658
659
660
661
662
663
664
665
666
667
668
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

669
      call elpa_eigenvectors_f(self, a, ev, q, error)
670
671
672
    end subroutine


673
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
674
    !>
675
676
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
698
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
699
700
      use elpa2_impl
      use elpa1_impl
701
702
      use elpa_utilities, only : error_unit
      use iso_c_binding
703
      class(elpa_impl_t)             :: self
704

705
706
707
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
708
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
709
#endif
710
      real(kind=c_double)            :: ev(self%na)
711

712
      integer, optional              :: error
713
      integer(kind=c_int)            :: solver
714
      logical                        :: success_l
715

716
717
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
718
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
719

720
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
721
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
722
723
724
725
      else
        print *,"unknown solver"
        stop
      endif
726

727
      if (present(error)) then
728
        if (success_l) then
729
          error = ELPA_OK
730
        else
731
          error = ELPA_ERROR
732
733
734
735
736
737
738
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


739
740
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
741
742
743
744
745
746
747
748
749
750
751
752
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

753
      call elpa_eigenvectors_dc(self, a, ev, q, error)
754
755
756
    end subroutine


757
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
758
    !>
759
760
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
782
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
783
784
      use elpa2_impl
      use elpa1_impl
785
786
787
      use elpa_utilities, only : error_unit

      use iso_c_binding
788
      class(elpa_impl_t)            :: self
789
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
790
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
791
#else
Andreas Marek's avatar
Andreas Marek committed
792
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
793
#endif
Andreas Marek's avatar
Andreas Marek committed
794
      real(kind=c_float)            :: ev(self%na)
795

796
      integer, optional             :: error
797
      integer(kind=c_int)           :: solver
798
#ifdef WANT_SINGLE_PRECISION_COMPLEX
799
      logical                       :: success_l
800

801
802
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
803
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
804

805
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
806
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
807
808
809
810
      else
        print *,"unknown solver"
        stop
      endif
811

812
      if (present(error)) then
813
        if (success_l) then
814
          error = ELPA_OK
815
        else
816
          error = ELPA_ERROR
817
818
819
820
821
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
822
      print *,"This installation of the ELPA library has not been build with single-precision support"
823
      error = ELPA_ERROR
824
825
826
#endif
    end subroutine

827

828
829
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
830
831
832
833
834
835
836
837
838
839
840
841
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

842
      call elpa_eigenvectors_fc(self, a, ev, q, error)
843
844
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self

#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
961
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_f(elpa_t handle, float *a, float *ev, int *error);
    subroutine elpa_eigenvalues_f_c(handle, a_p, ev_p,  error) bind(C, name="elpa_eigenvalues_f")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_f(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_dc: class method to solve the eigenvalue problem for double complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_dc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)             :: self

#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

      integer, optional              :: error
      integer(kind=c_int)            :: solver
      logical                        :: success_l

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


    !c> void elpa_eigenvalues_dc(elpa_t handle, double complex *a, double *ev, int *error);
    subroutine elpa_eigenvalues_dc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_dc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_dc(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_fc: class method to solve the eigenvalue problem for float complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_fc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit

      use iso_c_binding
      class(elpa_impl_t)            :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)            :: ev(self%na)

      integer, optional             :: error
      integer(kind=c_int)           :: solver
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1121
      logical                       :: success_l
Andreas Marek's avatar
Andreas Marek committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_fc(elpa_t handle, float complex *a, float *ev, int *error);
    subroutine elpa_eigenvalues_fc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_fc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_fc(self, a, ev, error)
    end subroutine



Andreas Marek's avatar
Andreas Marek committed
1168
    !> \brief  elpa_hermitian_multiply_d: class method to perform C : = A**T * B for double real matrices
1169
1170
1171
    !>         where   A is a square matrix (self%na,self%na) which is optionally upper or lower triangular
    !>                 B is a (self%na,ncb) matrix
    !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar
Andreas Marek committed
1172
1173
1174
1175
1176
1177
1178
    !>                   triangle may be computed
    !>
    !> the MPI commicators and the block-cyclic distribution block size are already known to the type.
    !> Thus the class method "setup" must be called BEFORE this method is used
    !>
    !> \details
    !>
1179
    !> \param  self                 class(elpa_t), the ELPA object
Andreas Marek's avatar
Andreas Marek committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
    !> \param  uplo_a               'U' if A is upper triangular
    !>                              'L' if A is lower triangular
    !>                              anything else if A is a full matrix
    !>                              Please note: This pertains to the original A (as set in the calling program)
    !>                                           whereas the transpose of A is used for calculations
    !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
    !>                              i.e. it may contain arbitrary numbers
    !> \param uplo_c                'U' if only the upper diagonal part of C is needed
    !>                              'L' if only the upper diagonal part of C is needed
    !>                              anything else if the full matrix C is needed
    !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
    !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
    !> \param ncb                   Number of columns  of global matrices B and C
    !> \param a                     matrix a
1194
1195
    !> \param local_nrows           number of rows of local (sub) matrix a, set with class method set("local_nrows",value)
    !> \param local_ncols           number of columns of local (sub) matrix a, set with class method set("local_ncols",value)
Andreas Marek's avatar
Andreas Marek committed
1196
1197
1198
1199
1200
1201
1202
    !> \param b                     matrix b
    !> \param nrows_b               number of rows of local (sub) matrix b
    !> \param ncols_b               number of columns of local (sub) matrix b
    !> \param c                     matrix c
    !> \param nrows_c               number of rows of local (sub) matrix c
    !> \param ncols_c               number of columns of local (sub) matrix c
    !> \param error                 optional argument, error code which can be queried with elpa_strerr
1203
    subroutine elpa_hermitian_multiply_d (self, uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
1204
                                          c, nrows_c, ncols_c, error)
1205
      use iso_c_binding
1206
      use elpa1_auxiliary_impl
1207
      class(elpa_impl_t)              :: self
1208
      character*1                     :: uplo_a, uplo_c
1209
      integer(kind=c_int), intent(in) :: nrows_b, ncols_b, nrows_c, ncols_c, ncb
1210
#ifdef USE_ASSUMED_SIZE
1211
      real(kind=c_double)             :: a(self%local_nrows,*), b(nrows_b,*), c(nrows_c,*)
1212
#else
1213
      real(kind=c_double)             :: a(self%local_nrows,self%local_ncols), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
1214
#endif
1215
      integer, optional               :: error
1216
1217
      logical                         :: success_l

1218
      success_l = elpa_mult_at_b_real_double_impl(self, uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
1219
                                                  c, nrows_c, ncols_c)
1220
      if (present(error)) then
1221
        if (success_l) then
1222
          error = ELPA_OK
1223
        else
1224
          error = ELPA_ERROR
1225
1226
        endif
      else if (.not. success_l) then
Andreas Marek's avatar