elpa_impl.F90 91.6 KB
Newer Older
1 2 3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56 57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62
   integer :: communicators_owned
63

64
   !> \brief methods available with the elpa_impl_t type
65
   contains
66
     !> \brief the puplic methods
67
     ! con-/destructor
68 69
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
70

71
     ! KV store
72 73 74 75
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
76

77 78 79 80

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
81 82
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
83 84


85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
120

121
  end type elpa_impl_t
122

123 124

  !> \brief the implementation of the generic methods
125
  contains
126 127


128 129 130 131
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
132
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
133 134
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
135
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
136

137 138 139 140
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
141

Andreas Marek's avatar
Andreas Marek committed
142
      ! check whether init has ever been called
143
      if ( elpa_initialized() .ne. ELPA_OK) then
144
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
145 146
        if(present(error)) then
          error = ELPA_ERROR
147
        endif
Andreas Marek's avatar
Andreas Marek committed
148 149
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
150

151
      obj%index = elpa_index_instance_c()
152 153

      ! Associate some important integer pointers for convenience
154 155 156 157 158 159 160 161
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
162 163
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
164

165 166 167 168 169
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
170
    !c> elpa_t elpa_allocate();
171
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
172 173 174 175 176 177 178 179
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

180 181 182 183 184
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
185
    !c> void elpa_deallocate(elpa_t handle);
186
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
187 188 189 190 191 192 193 194 195
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


196 197 198 199
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
200
    function elpa_setup(self) result(error)
201 202 203 204 205 206
      use elpa_utilities, only : error_unit
#ifdef WITH_MPI
      use elpa_mpi
#endif
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
207

208
#ifdef WITH_MPI
209 210 211
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
212
#endif
213

214 215 216 217 218 219 220 221
#ifdef HAVE_DETAILED_TIMINGS
      call self%get("timings",timings)
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
222

223 224
#ifdef WITH_MPI
      ! Create communicators ourselves
225 226 227
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
228

229 230 231
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
232 233 234 235 236 237 238

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
239

240 241 242 243 244 245 246 247 248 249 250 251
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
252

253 254 255
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

256 257 258
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

259
        error = ELPA_OK
260
        return
261
      endif
262

263
      ! Externally supplied communicators
264
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
265
        self%communicators_owned = 0
266
        error = ELPA_OK
267
        return
268
      endif
269

270 271
      ! Otherwise parameters are missing
      error = ELPA_ERROR
272
#endif
273

274
    end function
275

276 277 278 279 280 281
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
282
    !c> int elpa_setup(elpa_t handle);
283
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
284 285 286 287 288 289 290 291 292
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


293 294 295 296 297 298 299 300 301
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
302
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
303
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
304 305 306 307 308 309 310 311 312 313 314 315 316
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


317 318 319 320 321 322 323 324 325
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
326 327
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
328 329 330 331 332 333 334 335 336
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
337 338
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
339 340


341 342 343 344 345
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
346
    function elpa_is_set(self, name) result(state)
347 348
      use iso_c_binding
      use elpa_generated_fortran_interfaces
349
      class(elpa_impl_t)       :: self
350
      character(*), intent(in) :: name
351
      integer                  :: state
352

353
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
354 355
    end function

356 357 358 359 360 361
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
362 363 364 365 366 367 368 369 370 371 372 373 374
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
375 376 377
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
378 379 380 381
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
382

383 384
      nullify(string)

385
      call self%get(option_name, val, actual_error)
386 387 388 389 390
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
391 392
      endif

393 394 395 396
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
397

398 399 400 401
      if (present(error)) then
        error = actual_error
      endif
    end function
402

Andreas Marek's avatar
Andreas Marek committed
403

404 405 406 407 408 409 410 411 412
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
413
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
414
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
415 416 417 418 419 420 421 422 423 424 425 426
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

427

428
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
429 430 431 432 433 434 435 436
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
437 438
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
439 440 441 442 443 444 445 446 447
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
448 449
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
450 451


452
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
453
      use iso_c_binding
454
      use elpa_generated_fortran_interfaces
455 456
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
457 458
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
459

460 461
      type(c_ptr)                    :: value_p

462
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
463 464 465
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
466 467
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
468

469

470 471 472 473 474 475
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

476
#ifdef HAVE_DETAILED_TIMINGS
477
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
478 479 480
#else
      s = -1.0
#endif
481 482 483
    end function


484
    subroutine elpa_print_times(self, name1, name2, name3, name4)
485
      class(elpa_impl_t), intent(in) :: self
486
      character(len=*), intent(in), optional :: name1, name2, name3, name4
487
#ifdef HAVE_DETAILED_TIMINGS
488
      call self%timer%print(name1, name2, name3, name4)
489
#endif
490 491
    end subroutine

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


511
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
512
    !>
513 514
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
536
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
537 538
      use elpa2_impl
      use elpa1_impl
539
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
540
      use iso_c_binding
541
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
542

543 544 545
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
546
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
547
#endif
548
      real(kind=c_double) :: ev(self%na)
549

550
      integer, optional   :: error
551
      integer(kind=c_int) :: solver
552
      logical             :: success_l
553

554

555 556
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
557
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
558

559
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
560
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
561 562 563 564
      else
        print *,"unknown solver"
        stop
      endif
565

566
      if (present(error)) then
567
        if (success_l) then
568
          error = ELPA_OK
569
        else
570
          error = ELPA_ERROR
571 572 573 574 575 576
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

577 578
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
579 580 581 582 583 584 585 586 587 588 589
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

590
      call elpa_eigenvectors_d(self, a, ev, q, error)
591 592
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
593

594
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
595
    !>
596 597
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
619
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
620 621
      use elpa2_impl
      use elpa1_impl
622 623
      use elpa_utilities, only : error_unit
      use iso_c_binding
624
      class(elpa_impl_t)  :: self
625 626 627
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
628
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
629
#endif
630
      real(kind=c_float)  :: ev(self%na)
631

632
      integer, optional   :: error
633
      integer(kind=c_int) :: solver
634
#ifdef WANT_SINGLE_PRECISION_REAL
635
      logical             :: success_l
636

637 638
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
639
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
640

641
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
642
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
643 644 645 646
      else
        print *,"unknown solver"
        stop
      endif
647

648
      if (present(error)) then
649
        if (success_l) then
650
          error = ELPA_OK
651
        else
652
          error = ELPA_ERROR
653 654 655 656 657
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
658
      print *,"This installation of the ELPA library has not been build with single-precision support"
659
      error = ELPA_ERROR
660 661 662
#endif
    end subroutine

663

664 665
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
666 667 668 669 670 671 672 673 674 675 676
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

677
      call elpa_eigenvectors_f(self, a, ev, q, error)
678 679 680
    end subroutine


681
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
682
    !>
683 684
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
706
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
707 708
      use elpa2_impl
      use elpa1_impl
709 710
      use elpa_utilities, only : error_unit
      use iso_c_binding
711
      class(elpa_impl_t)             :: self
712

713 714 715
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
716
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
717
#endif
718
      real(kind=c_double)            :: ev(self%na)
719

720
      integer, optional              :: error
721
      integer(kind=c_int)            :: solver
722
      logical                        :: success_l
723

724 725
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
726
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
727

728
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
729
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
730 731 732 733
      else
        print *,"unknown solver"
        stop
      endif
734

735
      if (present(error)) then
736
        if (success_l) then
737
          error = ELPA_OK
738
        else
739
          error = ELPA_ERROR
740 741 742 743 744 745 746
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


747 748
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
749 750 751 752 753 754 755 756 757 758 759 760
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

761
      call elpa_eigenvectors_dc(self, a, ev, q, error)
762 763 764
    end subroutine


765
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
766
    !>
767 768
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
790
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
791 792
      use elpa2_impl
      use elpa1_impl
793 794 795
      use elpa_utilities, only : error_unit

      use iso_c_binding
796
      class(elpa_impl_t)            :: self
797
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
798
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
799
#else
Andreas Marek's avatar
Andreas Marek committed
800
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
801
#endif
Andreas Marek's avatar
Andreas Marek committed
802
      real(kind=c_float)            :: ev(self%na)
803

804
      integer, optional             :: error
805
      integer(kind=c_int)           :: solver
806
#ifdef WANT_SINGLE_PRECISION_COMPLEX
807
      logical                       :: success_l
808

809 810
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
811
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
812

813
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
814
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
815 816 817 818
      else
        print *,"unknown solver"
        stop
      endif
819

820
      if (present(error)) then
821
        if (success_l) then
822
          error = ELPA_OK
823
        else
824
          error = ELPA_ERROR
825 826 827 828 829
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
830
      print *,"This installation of the ELPA library has not been build with single-precision support"
831
      error = ELPA_ERROR
832 833 834
#endif
    end subroutine

835

836 837
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
838 839 840 841 842 843 844 845 846 847 848 849
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

850
      call elpa_eigenvectors_fc(self, a, ev, q, error)
851 852
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self

#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
969
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_f(elpa_t handle, float *a, float *ev, int *error);
    subroutine elpa_eigenvalues_f_c(handle, a_p, ev_p,  error) bind(C, name="elpa_eigenvalues_f")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_f(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_dc: class method to solve the eigenvalue problem for double complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_dc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)             :: self

#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

      integer, optional              :: error
      integer(kind=c_int)            :: solver
      logical                        :: success_l

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


    !c> void elpa_eigenvalues_dc(elpa_t handle, double complex *a, double *ev, int *error);
    subroutine elpa_eigenvalues_dc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_dc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_dc(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_fc: class method to solve the eigenvalue problem for float complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_fc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit

      use iso_c_binding
      class(elpa_impl_t)            :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows,