elpa_impl.F90 90 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56
57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62

63
   !> \brief methods available with the elpa_impl_t type
64
   contains
65
     !> \brief the puplic methods
66
     ! con-/destructor
67
68
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
69

70
     ! KV store
71
72
73
74
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
75

76
77
78
79

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
80
81
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
82
83


84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
119

120
  end type elpa_impl_t
121

122
123

  !> \brief the implementation of the generic methods
124
  contains
125
126


127
128
129
130
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
131
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
132
133
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
134
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
135

136
137
138
139
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
140

Andreas Marek's avatar
Andreas Marek committed
141
      ! check whether init has ever been called
142
      if ( elpa_initialized() .ne. ELPA_OK) then
143
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
144
145
        if(present(error)) then
          error = ELPA_ERROR
146
        endif
Andreas Marek's avatar
Andreas Marek committed
147
148
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
149

150
      obj%index = elpa_index_instance_c()
151
152

      ! Associate some important integer pointers for convenience
153
154
155
156
157
158
159
160
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
161
162
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
163

164
165
166
167
168
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
169
    !c> elpa_t elpa_allocate();
170
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
171
172
173
174
175
176
177
178
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

179
180
181
182
183
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
184
    !c> void elpa_deallocate(elpa_t handle);
185
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
186
187
188
189
190
191
192
193
194
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


195
196
197
198
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
199
    function elpa_setup(self) result(error)
200
      use elpa1_impl, only : elpa_get_communicators_impl
201
      class(elpa_impl_t), intent(inout) :: self
202
203
204
      integer                           :: error
      integer                           :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                           mpierr, process_row, process_col, timings
205

206
#ifdef WITH_MPI
207
208
209
210
      error = ELPA_ERROR
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
211

212
213
214
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
215
        mpierr = elpa_get_communicators_impl(&
216
217
218
                        mpi_comm_parent, &
                        process_row, &
                        process_col, &
219
220
                        mpi_comm_rows, &
                        mpi_comm_cols)
221

222
223
224
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

225
        error = ELPA_OK
226
      endif
227

228
229
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
        error = ELPA_OK
230
      endif
231
232
233
#else
      error = ELPA_OK
#endif
234

235
#ifdef HAVE_DETAILED_TIMINGS
236
237
      call self%get("timings",timings)
      if (timings == 1) then
238
239
        call self%timer%enable()
      endif
240
#endif
241

242
    end function
243

244
245
246
247
248
249
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
250
    !c> int elpa_setup(elpa_t handle);
251
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
252
253
254
255
256
257
258
259
260
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


261
262
263
264
265
266
267
268
269
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
270
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
271
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
272
273
274
275
276
277
278
279
280
281
282
283
284
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


285
286
287
288
289
290
291
292
293
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
294
295
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
296
297
298
299
300
301
302
303
304
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
305
306
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
307
308


309
310
311
312
313
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
314
    function elpa_is_set(self, name) result(state)
315
316
      use iso_c_binding
      use elpa_generated_fortran_interfaces
317
      class(elpa_impl_t)       :: self
318
      character(*), intent(in) :: name
319
      integer                  :: state
320

321
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
322
323
    end function

324
325
326
327
328
329
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
330
331
332
333
334
335
336
337
338
339
340
341
342
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
343
344
345
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
346
347
348
349
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
350

351
352
      nullify(string)

353
      call self%get(option_name, val, actual_error)
354
355
356
357
358
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
359
360
      endif

361
362
363
364
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
365

366
367
368
369
      if (present(error)) then
        error = actual_error
      endif
    end function
370

Andreas Marek's avatar
Andreas Marek committed
371

372
373
374
375
376
377
378
379
380
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
381
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
382
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
383
384
385
386
387
388
389
390
391
392
393
394
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

395

396
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
397
398
399
400
401
402
403
404
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
405
406
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
407
408
409
410
411
412
413
414
415
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
416
417
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
418
419


420
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
421
      use iso_c_binding
422
      use elpa_generated_fortran_interfaces
423
424
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
425
426
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
427

428
429
      type(c_ptr)                    :: value_p

430
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
431
432
433
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
434
435
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
436

437

438
439
440
441
442
443
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

444
#ifdef HAVE_DETAILED_TIMINGS
445
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
446
447
448
#else
      s = -1.0
#endif
449
450
451
    end function


452
    subroutine elpa_print_times(self, name1, name2, name3, name4)
453
      class(elpa_impl_t), intent(in) :: self
454
      character(len=*), intent(in), optional :: name1, name2, name3, name4
455
#ifdef HAVE_DETAILED_TIMINGS
456
      call self%timer%print(name1, name2, name3, name4)
457
#endif
458
459
    end subroutine

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


479
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
480
    !>
481
482
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
504
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
505
506
      use elpa2_impl
      use elpa1_impl
507
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
508
      use iso_c_binding
509
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
510

511
512
513
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
514
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
515
#endif
516
      real(kind=c_double) :: ev(self%na)
517

518
      integer, optional   :: error
519
      integer(kind=c_int) :: solver
520
      logical             :: success_l
521

522

523
524
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
525
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
526

527
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
528
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
529
530
531
532
      else
        print *,"unknown solver"
        stop
      endif
533

534
      if (present(error)) then
535
        if (success_l) then
536
          error = ELPA_OK
537
        else
538
          error = ELPA_ERROR
539
540
541
542
543
544
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

545
546
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
547
548
549
550
551
552
553
554
555
556
557
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

558
      call elpa_eigenvectors_d(self, a, ev, q, error)
559
560
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
561

562
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
563
    !>
564
565
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
587
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
588
589
      use elpa2_impl
      use elpa1_impl
590
591
      use elpa_utilities, only : error_unit
      use iso_c_binding
592
      class(elpa_impl_t)  :: self
593
594
595
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
596
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
597
#endif
598
      real(kind=c_float)  :: ev(self%na)
599

600
      integer, optional   :: error
601
      integer(kind=c_int) :: solver
602
#ifdef WANT_SINGLE_PRECISION_REAL
603
      logical             :: success_l
604

605
606
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
607
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
608

609
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
610
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
611
612
613
614
      else
        print *,"unknown solver"
        stop
      endif
615

616
      if (present(error)) then
617
        if (success_l) then
618
          error = ELPA_OK
619
        else
620
          error = ELPA_ERROR
621
622
623
624
625
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
626
      print *,"This installation of the ELPA library has not been build with single-precision support"
627
      error = ELPA_ERROR
628
629
630
#endif
    end subroutine

631

632
633
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
634
635
636
637
638
639
640
641
642
643
644
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

645
      call elpa_eigenvectors_f(self, a, ev, q, error)
646
647
648
    end subroutine


649
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
650
    !>
651
652
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
674
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
675
676
      use elpa2_impl
      use elpa1_impl
677
678
      use elpa_utilities, only : error_unit
      use iso_c_binding
679
      class(elpa_impl_t)             :: self
680

681
682
683
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
684
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
685
#endif
686
      real(kind=c_double)            :: ev(self%na)
687

688
      integer, optional              :: error
689
      integer(kind=c_int)            :: solver
690
      logical                        :: success_l
691

692
693
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
694
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
695

696
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
697
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
698
699
700
701
      else
        print *,"unknown solver"
        stop
      endif
702

703
      if (present(error)) then
704
        if (success_l) then
705
          error = ELPA_OK
706
        else
707
          error = ELPA_ERROR
708
709
710
711
712
713
714
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


715
716
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
717
718
719
720
721
722
723
724
725
726
727
728
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

729
      call elpa_eigenvectors_dc(self, a, ev, q, error)
730
731
732
    end subroutine


733
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
734
    !>
735
736
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
758
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
759
760
      use elpa2_impl
      use elpa1_impl
761
762
763
      use elpa_utilities, only : error_unit

      use iso_c_binding
764
      class(elpa_impl_t)            :: self
765
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
766
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
767
#else
Andreas Marek's avatar
Andreas Marek committed
768
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
769
#endif
Andreas Marek's avatar
Andreas Marek committed
770
      real(kind=c_float)            :: ev(self%na)
771

772
      integer, optional             :: error
773
      integer(kind=c_int)           :: solver
774
#ifdef WANT_SINGLE_PRECISION_COMPLEX
775
      logical                       :: success_l
776

777
778
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
779
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
780

781
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
782
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
783
784
785
786
      else
        print *,"unknown solver"
        stop
      endif
787

788
      if (present(error)) then
789
        if (success_l) then
790
          error = ELPA_OK
791
        else
792
          error = ELPA_ERROR
793
794
795
796
797
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
798
      print *,"This installation of the ELPA library has not been build with single-precision support"
799
      error = ELPA_ERROR
800
801
802
#endif
    end subroutine

803

804
805
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
806
807
808
809
810
811
812
813
814
815
816
817
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

818
      call elpa_eigenvectors_fc(self, a, ev, q, error)
819
820
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self

#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
937
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_f(elpa_t handle, float *a, float *ev, int *error);
    subroutine elpa_eigenvalues_f_c(handle, a_p, ev_p,  error) bind(C, name="elpa_eigenvalues_f")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_f(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_dc: class method to solve the eigenvalue problem for double complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_dc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)             :: self

#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

      integer, optional              :: error
      integer(kind=c_int)            :: solver
      logical                        :: success_l

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


    !c> void elpa_eigenvalues_dc(elpa_t handle, double complex *a, double *ev, int *error);
    subroutine elpa_eigenvalues_dc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_dc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_dc(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_fc: class method to solve the eigenvalue problem for float complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_fc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit

      use iso_c_binding
      class(elpa_impl_t)            :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)            :: ev(self%na)

      integer, optional             :: error
      integer(kind=c_int)           :: solver
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1097
      logical                       :: success_l
Andreas Marek's avatar
Andreas Marek committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_fc(elpa_t handle, float complex *a, float *ev, int *error);
    subroutine elpa_eigenvalues_fc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_fc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_fc(self, a, ev, error)
    end subroutine



Andreas Marek's avatar
Andreas Marek committed
1144
    !> \brief  elpa_hermitian_multiply_d: class method to perform C : = A**T * B for double real matrices
1145
1146
1147
    !>         where   A is a square matrix (self%na,self%na) which is optionally upper or lower triangular
    !>                 B is a (self%na,ncb) matrix
    !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar
Andreas Marek committed
1148
1149
1150
1151
1152
1153
1154
    !>                   triangle may be computed
    !>
    !> the MPI commicators and the block-cyclic distribution block size are already known to the type.
    !> Thus the class method "setup" must be called BEFORE this method is used
    !>
    !> \details
    !>
1155
    !> \param  self                 class(elpa_t), the ELPA object
Andreas Marek's avatar
Andreas Marek committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
    !> \param  uplo_a               'U' if A is upper triangular
    !>                              'L' if A is lower triangular
    !>                              anything else if A is a full matrix
    !>                              Please note: This pertains to the original A (as set in the calling program)
    !>                                           whereas the transpose of A is used for calculations
    !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
    !>                              i.e. it may contain arbitrary numbers
    !> \param uplo_c                'U' if only the upper diagonal part of C is needed
    !>                              'L' if only the upper diagonal part of C is needed
    !>                              anything else if the full matrix C is needed
    !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
    !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
    !> \param ncb                   Number of columns  of global matrices B and C
    !> \param a                     matrix a
1170
1171
    !> \param local_nrows           number of rows of local (sub) matrix a, set with class method set("local_nrows",value)
    !> \param local_ncols           number of columns of local (sub) matrix a, set with class method set("local_ncols",value)
Andreas Marek's avatar
Andreas Marek committed
1172
1173
1174
1175
1176
1177
1178
    !> \param b                     matrix b
    !> \param nrows_b               number of rows of local (sub) matrix b
    !> \param ncols_b               number of columns of local (sub) matrix b
    !> \param c                     matrix c
    !> \param nrows_c               number of rows of local (sub) matrix c
    !> \param ncols_c               number of columns of local (sub) matrix c
    !> \param error                 optional argument, error code which can be queried with elpa_strerr
1179
    subroutine elpa_hermitian_multiply_d (self, uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
1180
                                          c, nrows_c, ncols_c, error)
1181
      use iso_c_binding
1182
      use elpa1_auxiliary_impl
1183
      class(elpa_impl_t)              :: self
1184
      character*1                     :: uplo_a, uplo_c
1185
      integer(kind=c_int), intent(in) :: nrows_b, ncols_b, nrows_c, ncols_c, ncb
1186
#ifdef USE_ASSUMED_SIZE
1187
      real(kind=c_double)             :: a(self%local_nrows,*), b(nrows_b,*), c(nrows_c,*)
1188
#else
1189
      real(kind=c_double)             :: a(self%local_nrows,self%local_ncols), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
1190
#endif
1191
      integer, optional               :: error
1192
1193
      logical                         :: success_l

1194
      success_l = elpa_mult_at_b_real_double_impl(self, uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
1195
                                                  c, nrows_c, ncols_c)
1196
      if (present(error)) then
1197
        if (success_l) then
1198
          error = ELPA_OK
1199
        else
1200
          error = ELPA_ERROR
1201
1202
        endif
      else if (.not. success_l) then
1203
        write(error_unit,'(a)') "ELPA: Error in hermitian_multiply() and you did not check for errors!"
1204
1205
1206
      endif
    end subroutine

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    !c> void elpa_hermitian_multiply_d(elpa_t handle, char uplo_a, char uplo_c, int ncb, double *a, double *b, int nrows_b, int ncols_b, double *c, int nrows_c, int ncols_c, int *error);
    subroutine elpa_hermitian_multiply_d_c(handle, uplo_a, uplo_c, ncb, a_p, b, nrows_b, &
                                           ncols_b, c, nrows_c, ncols_c, error)          &
                                           bind(C, name="elpa_hermitian_multiply_d")
      type(c_ptr), intent(in), value            :: handle, a_p
      character(1,C_CHAR), value                :: uplo_a, uplo_c
      integer(kind=c_int), value                :: ncb, nrows_b, ncols_b, nrows_c, ncols_c
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer              :: a(:, :)
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double)                       :: b(nrows_b,*), c(nrows_c,*)
#else
      real(kind=c_double)                       :: b(nrows_b,ncols_b), c