elpa_impl.F90 97 KB
Newer Older
1 2 3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52 53 54 55 56 57 58 59 60 61
  use precision
  use elpa2_impl
  use elpa1_impl
  use elpa1_auxiliary_impl
#ifdef WITH_MPI
  use elpa_mpi
#endif
  use elpa_generated_fortran_interfaces
  use elpa_utilities, only : error_unit

62
  use elpa_abstract_impl
63
  use elpa_autotune_impl
64
  use, intrinsic :: iso_c_binding
65
  implicit none
66

67 68
  private
  public :: elpa_impl_allocate
69

70
!> \brief Definition of the extended elpa_impl_t type
71
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
72
   private
73
   integer :: communicators_owned
74

75
   !> \brief methods available with the elpa_impl_t type
76
   contains
77
     !> \brief the puplic methods
78
     ! con-/destructor
79 80
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
81

82
     ! KV store
83 84 85 86
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
87

88 89 90 91

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
92 93
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
94 95


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
131

132 133 134
     procedure, public :: autotune_setup => elpa_autotune_setup
     procedure, public :: autotune_step => elpa_autotune_step
     procedure, public :: autotune_set_best => elpa_autotune_set_best
135

136
  end type elpa_impl_t
137 138

  !> \brief the implementation of the generic methods
139
  contains
140 141


142 143 144 145
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
146 147 148 149 150
    function elpa_impl_allocate(error) result(obj)
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
151

Andreas Marek's avatar
Andreas Marek committed
152
      ! check whether init has ever been called
153
      if ( elpa_initialized() .ne. ELPA_OK) then
154
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
155 156
        if(present(error)) then
          error = ELPA_ERROR
157
        endif
Andreas Marek's avatar
Andreas Marek committed
158 159
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
160

161
      obj%index = elpa_index_instance_c()
162 163

      ! Associate some important integer pointers for convenience
164 165 166 167 168 169 170 171
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
172 173
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
174

175 176 177 178 179
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
180
    !c> elpa_t elpa_allocate();
181
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
182 183 184 185 186 187 188 189
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

190 191 192 193 194
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
195
    !c> void elpa_deallocate(elpa_t handle);
196
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
197 198 199 200 201 202 203 204 205
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


206 207 208 209
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
210
    function elpa_setup(self) result(error)
211 212
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
213

214
#ifdef WITH_MPI
215 216 217
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
218
#endif
219

220 221 222 223 224 225 226 227
#ifdef HAVE_DETAILED_TIMINGS
      call self%get("timings",timings)
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
228

229 230
#ifdef WITH_MPI
      ! Create communicators ourselves
231 232 233
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
234

235 236 237
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
238 239 240 241 242 243 244

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
245

246 247 248 249 250 251 252 253 254 255 256 257
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
258

259 260 261
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

262 263 264
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

265
        error = ELPA_OK
266
        return
267
      endif
268

269
      ! Externally supplied communicators
270
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
271
        self%communicators_owned = 0
272
        error = ELPA_OK
273
        return
274
      endif
275

276 277
      ! Otherwise parameters are missing
      error = ELPA_ERROR
278
#endif
279

280
    end function
281

282 283 284 285 286 287
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
288
    !c> int elpa_setup(elpa_t handle);
289
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
290 291 292 293 294 295 296 297 298
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


299 300 301 302 303 304 305 306 307
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
308
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
309
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
310 311 312 313 314 315 316 317 318 319 320 321 322
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


323 324 325 326 327 328 329 330 331
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
332 333
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
334 335 336 337 338 339 340 341 342
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
343 344
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
345 346


347 348 349 350 351
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
352 353
    function elpa_is_set(self, name) result(state)
      class(elpa_impl_t)       :: self
354
      character(*), intent(in) :: name
355
      integer                  :: state
356

357
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
358 359
    end function

360 361 362 363 364 365
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
366 367 368 369 370 371 372 373 374 375
    function elpa_can_set(self, name, value) result(error)
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


376 377 378 379 380 381
    !> \brief function to convert a value to an human readable string
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   option_name string: the name of the options, whose value should be converted
    !> \param   error       integer: errpr code
    !> \result  string      string: the humanreadable string   
382
    function elpa_value_to_string(self, option_name, error) result(string)
383 384
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
385 386 387 388
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
389

390 391
      nullify(string)

392
      call self%get(option_name, val, actual_error)
393 394 395 396 397
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
398 399
      endif

400 401 402 403
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
404

405 406 407 408
      if (present(error)) then
        error = actual_error
      endif
    end function
409

Andreas Marek's avatar
Andreas Marek committed
410

411 412 413 414 415 416 417 418 419
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
420
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
421
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
422 423 424 425 426 427 428 429 430 431 432 433
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

434

435
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
436 437 438 439 440 441 442 443
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
444 445
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
446 447 448 449 450 451 452 453 454
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
455 456
      call elpa_get_double(self, name, value, error)
    end subroutine
457
 
Andreas Marek's avatar
Andreas Marek committed
458

459 460 461 462 463
    !> \brief function to associate a pointer with an integer value
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   name        string: the name of the entry
    !> \result  value       integer, pointer: the value for the entry
464
    function elpa_associate_int(self, name) result(value)
465
      class(elpa_impl_t)             :: self
466 467
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
468

469 470
      type(c_ptr)                    :: value_p

471
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
472 473 474
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
475 476
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
477

478

479 480 481 482 483 484 485
    !> \brief function to querry the timing information at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 6 nested levels can be queried
    !> \result  s               double: the timer metric for the region. Might be seconds,
    !>                                  or any other supported metric
486 487 488 489 490 491
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

492
#ifdef HAVE_DETAILED_TIMINGS
493
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
494 495 496
#else
      s = -1.0
#endif
497 498 499
    end function


500 501 502 503 504
    !> \brief function to print the timing tree below at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 4 nested levels can be specified
505
    subroutine elpa_print_times(self, name1, name2, name3, name4)
506
      class(elpa_impl_t), intent(in) :: self
507
      character(len=*), intent(in), optional :: name1, name2, name3, name4
508
#ifdef HAVE_DETAILED_TIMINGS
509
      call self%timer%print(name1, name2, name3, name4)
510
#endif
511 512
    end subroutine

513

514 515 516 517
    !> \brief function to start the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: a chosen identifier name for the code region
518 519 520 521 522 523 524 525 526
    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


527 528 529 530
    !> \brief function to stop the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: identifier name for the code region to stop
531 532 533 534 535 536 537 538 539
    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


540
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
541
    !>
542 543
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
565
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
566
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
567

568 569 570
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
571
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
572
#endif
573
      real(kind=c_double) :: ev(self%na)
574

575
      integer, optional   :: error
576
      integer(kind=c_int) :: solver
577
      logical             :: success_l
578

579

580 581
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
582
        call self%autotune_timer%start("accumulator")
583
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
584
        call self%autotune_timer%stop("accumulator")
585

586
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
587
        call self%autotune_timer%start("accumulator")
588
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
589 590
        call self%autotune_timer%stop("accumulator")

591 592 593 594
      else
        print *,"unknown solver"
        stop
      endif
595

596
      if (present(error)) then
597
        if (success_l) then
598
          error = ELPA_OK
599
        else
600
          error = ELPA_ERROR
601 602 603 604 605 606
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

607 608
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
609 610 611 612 613 614 615 616 617 618 619
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

620
      call elpa_eigenvectors_d(self, a, ev, q, error)
621 622
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
623

624
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
625
    !>
626 627
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
649
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
650
      class(elpa_impl_t)  :: self
651 652 653
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
654
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
655
#endif
656
      real(kind=c_float)  :: ev(self%na)
657

658
      integer, optional   :: error
659
      integer(kind=c_int) :: solver
660
#ifdef WANT_SINGLE_PRECISION_REAL
661
      logical             :: success_l
662

663 664
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
665
        call self%autotune_timer%start("accumulator")
666
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
667
        call self%autotune_timer%stop("accumulator")
668

669
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
670
        call self%autotune_timer%start("accumulator")
671
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
672 673
        call self%autotune_timer%stop("accumulator")

674 675 676 677
      else
        print *,"unknown solver"
        stop
      endif
678

679
      if (present(error)) then
680
        if (success_l) then
681
          error = ELPA_OK
682
        else
683
          error = ELPA_ERROR
684 685 686 687 688
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
689
      print *,"This installation of the ELPA library has not been build with single-precision support"
690
      error = ELPA_ERROR
691 692 693
#endif
    end subroutine

694

695 696
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
697 698 699 700 701 702 703 704 705 706 707
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

708
      call elpa_eigenvectors_f(self, a, ev, q, error)
709 710 711
    end subroutine


712
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
713
    !>
714 715
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
737
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
738
      class(elpa_impl_t)             :: self
739

740 741 742
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
743
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
744
#endif
745
      real(kind=c_double)            :: ev(self%na)
746

747
      integer, optional              :: error
748
      integer(kind=c_int)            :: solver
749
      logical                        :: success_l
750

751 752
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
753
        call self%autotune_timer%start("accumulator")
754
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
755
        call self%autotune_timer%stop("accumulator")
756

757
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
758
        call self%autotune_timer%start("accumulator")
759
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
760 761
        call self%autotune_timer%stop("accumulator")

762 763 764 765
      else
        print *,"unknown solver"
        stop
      endif
766

767
      if (present(error)) then
768
        if (success_l) then
769
          error = ELPA_OK
770
        else
771
          error = ELPA_ERROR
772 773 774 775 776 777 778
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


779 780
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
781 782 783 784 785 786 787 788 789 790 791 792
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

793
      call elpa_eigenvectors_dc(self, a, ev, q, error)
794 795 796
    end subroutine


797
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
798
    !>
799 800
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
822
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
823
      class(elpa_impl_t)            :: self
824
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
825
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
826
#else
Andreas Marek's avatar
Andreas Marek committed
827
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
828
#endif
Andreas Marek's avatar
Andreas Marek committed
829
      real(kind=c_float)            :: ev(self%na)
830

831
      integer, optional             :: error
832
      integer(kind=c_int)           :: solver
833
#ifdef WANT_SINGLE_PRECISION_COMPLEX
834
      logical                       :: success_l
835

836 837
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
838
        call self%autotune_timer%start("accumulator")
839
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
840
        call self%autotune_timer%stop("accumulator")
841

842
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
843
        call self%autotune_timer%start("accumulator")
844
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
845 846
        call self%autotune_timer%stop("accumulator")

847 848 849 850
      else
        print *,"unknown solver"
        stop
      endif
851

852
      if (present(error)) then
853
        if (success_l) then
854
          error = ELPA_OK
855
        else
856
          error = ELPA_ERROR
857 858 859 860 861
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
862
      print *,"This installation of the ELPA library has not been build with single-precision support"
863
      error = ELPA_ERROR
864 865 866
#endif
    end subroutine

867

868 869
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
870 871 872 873 874 875 876 877 878 879 880 881
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

882
      call elpa_eigenvectors_fc(self, a, ev, q, error)
883 884
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
924
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
925
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)
926
        call self%autotune_timer%stop("accumulator")
Andreas Marek's avatar
Andreas Marek committed
927 928

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
929
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
930
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
931 932
        call self%autotune_timer%stop("accumulator")

Andreas Marek's avatar
Andreas Marek committed
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
997
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
998 999 1000

      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
1001
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1002
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev)
1003
        call self%autotune_timer%stop("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1004 1005

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
1006
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1007
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev)
1008 1009
        call self%autotune_timer%stop("accumulator")

Andreas Marek's avatar
Andreas Marek committed
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 <