elpa2.F90 210 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!
!    More information can be found here:
!    http://elpa.rzg.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"

module ELPA2

! Version 1.1.2, 2011-02-21

  USE ELPA1

67
68
69
#ifdef HAVE_ISO_FORTRAN_ENV
  use iso_fortran_env, only : error_unit
#endif
70
71
72
73
74

#ifdef WITH_QR
  use elpa_pdgeqrf
#endif

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  implicit none

  PRIVATE ! By default, all routines contained are private

  ! The following routines are public:

  public :: solve_evp_real_2stage
  public :: solve_evp_complex_2stage

  public :: bandred_real
  public :: tridiag_band_real
  public :: trans_ev_tridi_to_band_real
  public :: trans_ev_band_to_full_real

  public :: bandred_complex
  public :: tridiag_band_complex
  public :: trans_ev_tridi_to_band_complex
  public :: trans_ev_band_to_full_complex

Andreas Marek's avatar
Andreas Marek committed
94
95
96
97
98
99
100
101
102
103
104
105
  public :: get_actual_real_kernel_name, get_actual_complex_kernel_name
  public :: REAL_ELPA_KERNEL_GENERIC, REAL_ELPA_KERNEL_GENERIC_SIMPLE, &
            REAL_ELPA_KERNEL_BGP, REAL_ELPA_KERNEL_BGQ,                &
            REAL_ELPA_KERNEL_SSE, REAL_ELPA_KERNEL_AVX_BLOCK2,         &
            REAL_ELPA_KERNEL_AVX_BLOCK4, REAL_ELPA_KERNEL_AVX_BLOCK6

  public :: COMPLEX_ELPA_KERNEL_GENERIC, COMPLEX_ELPA_KERNEL_GENERIC_SIMPLE, &
            COMPLEX_ELPA_KERNEL_BGP, COMPLEX_ELPA_KERNEL_BGQ,                &
            COMPLEX_ELPA_KERNEL_SSE, COMPLEX_ELPA_KERNEL_AVX_BLOCK1,         &
            COMPLEX_ELPA_KERNEL_AVX_BLOCK2

  public :: print_available_real_kernels, print_available_complex_kernels
106
107
108
109
#ifndef HAVE_ISO_FORTRAN_ENV
  integer, parameter :: error_unit = 6
#endif

Andreas Marek's avatar
Andreas Marek committed
110
111
112
113
114
115
116
117
118
119
120
121

  integer, parameter :: number_of_real_kernels           = 8
  integer, parameter :: REAL_ELPA_KERNEL_GENERIC         = 1
  integer, parameter :: REAL_ELPA_KERNEL_GENERIC_SIMPLE  = 2
  integer, parameter :: REAL_ELPA_KERNEL_BGP             = 3
  integer, parameter :: REAL_ELPA_KERNEL_BGQ             = 4
  integer, parameter :: REAL_ELPA_KERNEL_SSE             = 5
  integer, parameter :: REAL_ELPA_KERNEL_AVX_BLOCK2      = 6
  integer, parameter :: REAL_ELPA_KERNEL_AVX_BLOCK4      = 7
  integer, parameter :: REAL_ELPA_KERNEL_AVX_BLOCK6      = 8

#if defined(WITH_REAL_AVX_BLOCK2_KERNEL)
122
  integer, parameter :: DEFAULT_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
123
#else
124
  integer, parameter :: DEFAULT_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
125
126
#endif
  character(35), parameter, dimension(number_of_real_kernels) :: &
127
128
129
130
131
132
133
134
  REAL_ELPA_KERNEL_NAMES =    (/"REAL_ELPA_KERNEL_GENERIC         ", &
                                "REAL_ELPA_KERNEL_GENERIC_SIMPLE  ", &
                                "REAL_ELPA_KERNEL_BGP             ", &
                                "REAL_ELPA_KERNEL_BGQ             ", &
                                "REAL_ELPA_KERNEL_SSE             ", &
                                "REAL_ELPA_KERNEL_AVX_BLOCK2      ", &
                                "REAL_ELPA_KERNEL_AVX_BLOCK4      ", &
                                "REAL_ELPA_KERNEL_AVX_BLOCK6      "/)
Andreas Marek's avatar
Andreas Marek committed
135
136
137
138
139
140
141
142
143
144
145

  integer, parameter :: number_of_complex_kernels           = 7
  integer, parameter :: COMPLEX_ELPA_KERNEL_GENERIC         = 1
  integer, parameter :: COMPLEX_ELPA_KERNEL_GENERIC_SIMPLE  = 2
  integer, parameter :: COMPLEX_ELPA_KERNEL_BGP             = 3
  integer, parameter :: COMPLEX_ELPA_KERNEL_BGQ             = 4
  integer, parameter :: COMPLEX_ELPA_KERNEL_SSE             = 5
  integer, parameter :: COMPLEX_ELPA_KERNEL_AVX_BLOCK1      = 6
  integer, parameter :: COMPLEX_ELPA_KERNEL_AVX_BLOCK2      = 7

#if defined(WITH_COMPLEX_AVX_BLOCK1_KERNEL)
146
  integer, parameter :: DEFAULT_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
147
#else
148
  integer, parameter :: DEFAULT_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
149
150
#endif
  character(35), parameter, dimension(number_of_complex_kernels) :: &
151
152
153
154
155
156
157
  COMPLEX_ELPA_KERNEL_NAMES = (/"COMPLEX_ELPA_KERNEL_GENERIC         ", &
                                "COMPLEX_ELPA_KERNEL_GENERIC_SIMPLE  ", &
                                "COMPLEX_ELPA_KERNEL_BGP             ", &
                                "COMPLEX_ELPA_KERNEL_BGQ             ", &
                                "COMPLEX_ELPA_KERNEL_SSE             ", &
                                "COMPLEX_ELPA_KERNEL_AVX_BLOCK1      ", &
                                "COMPLEX_ELPA_KERNEL_AVX_BLOCK2      "/)
Andreas Marek's avatar
Andreas Marek committed
158
159
160
161
162
163
164

  integer, parameter                                    ::             &
           AVAILABLE_REAL_ELPA_KERNELS(number_of_real_kernels) =       &
                                      (/                               &
#if WITH_REAL_GENERIC_KERNEL
                                        1                              &
#else
165
                                        0                              &
Andreas Marek's avatar
Andreas Marek committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#endif
#if WITH_REAL_GENERIC_SIMPLE_KERNEL
                                          ,1                           &
#else
                                          ,0                           &
#endif
#if WITH_REAL_BGP_KERNEL
                                            ,1                         &
#else
                                            ,0                         &
#endif
#if WITH_REAL_BGQ_KERNEL
                                              ,1                       &
#else
                                              ,0                       &
#endif
#if WITH_REAL_SSE_KERNEL
                                                ,1                     &
#else
                                                ,0                     &
#endif
#if WITH_REAL_AVX_BLOCK2_KERNEL
                                                  ,1                   &
#else
                                                  ,0                   &
#endif
#if WITH_REAL_AVX_BLOCK4_KERNEL
                                                    ,1                 &
#else
                                                    ,0                 &
#endif
#if WITH_REAL_AVX_BLOCK6_KERNEL
                                                      ,1               &
#else
                                                      ,0               &
#endif
                                                       /)

  integer, parameter ::                                                   &
           AVAILABLE_COMPLEX_ELPA_KERNELS(number_of_complex_kernels) =    &
                                      (/                                  &
#if WITH_COMPLEX_GENERIC_KERNEL
                                        1                                 &
#else
                                        0                                 &
#endif
#if WITH_COMPLEX_GENERIC_SIMPLE_KERNEL
                                          ,1                              &
#else
                                          ,0                              &
#endif
#if WITH_COMPLEX_BGP_KERNEL
                                            ,1                            &
#else
                                            ,0                            &
#endif
#if WITH_COMPLEX_BGQ_KERNEL
                                              ,1                          &
#else
                                              ,0                          &
#endif
#if WITH_COMPLEX_SSE_KERNEL
                                                ,1                        &
#else
                                                ,0                        &
#endif
232
#if WITH_COMPLEX_AVX_BLOCK1_KERNEL
Andreas Marek's avatar
Andreas Marek committed
233
234
235
236
                                                  ,1                      &
#else
                                                  ,0                      &
#endif
237
#if WITH_COMPLEX_AVX_BLOCK2_KERNEL
Andreas Marek's avatar
Andreas Marek committed
238
239
240
241
242
                                                    ,1                    &
#else
                                                    ,0                    &
#endif
                                                   /)
243
244
245
246
247
248
249
250
251
252

#ifdef WITH_QR
  public :: band_band_real
  public :: divide_band

  integer, public :: which_qr_decomposition = 1     ! defines, which QR-decomposition algorithm will be used
                                                    ! 0 for unblocked
                                                    ! 1 for blocked (maxrank: nblk)

#endif
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
!-------------------------------------------------------------------------------

  ! The following array contains the Householder vectors of the
  ! transformation band -> tridiagonal.
  ! It is allocated and set in tridiag_band_real and used in
  ! trans_ev_tridi_to_band_real.
  ! It must be deallocated by the user after trans_ev_tridi_to_band_real!

  real*8, allocatable :: hh_trans_real(:,:)
  complex*16, allocatable :: hh_trans_complex(:,:)

!-------------------------------------------------------------------------------

  include 'mpif.h'


!******
contains
271

Andreas Marek's avatar
Andreas Marek committed
272
273
274
275
276
subroutine print_available_real_kernels

  implicit none

  integer :: i
277

Andreas Marek's avatar
Andreas Marek committed
278
  do i=1, number_of_real_kernels
279
280
281
    if (AVAILABLE_REAL_ELPA_KERNELS(i) .eq. 1) then
      write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
    endif
Andreas Marek's avatar
Andreas Marek committed
282
283
284
285
286
287
288
289
290
291
292
293
294
  enddo
  write(error_unit,*) " "
  write(error_unit,*) " At the moment the following kernel would be choosen:"
  write(error_unit,*) get_actual_real_kernel_name()


end subroutine print_available_real_kernels

subroutine print_available_complex_kernels

  implicit none

  integer :: i
295

296
  do i=1, number_of_complex_kernels
297
298
299
    if (AVAILABLE_COMPLEX_ELPA_KERNELS(i) .eq. 1) then
       write(error_unit,*) COMPLEX_ELPA_KERNEL_NAMES(i)
    endif
Andreas Marek's avatar
Andreas Marek committed
300
301
302
  enddo
  write(error_unit,*) " "
  write(error_unit,*) " At the moment the following kernel would be choosen:"
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
303
  write(error_unit,*) get_actual_complex_kernel_name()
Andreas Marek's avatar
Andreas Marek committed
304
305
306
307


end subroutine print_available_complex_kernels

308
function get_actual_real_kernel() result(actual_kernel)
Andreas Marek's avatar
Andreas Marek committed
309
310

  integer :: actual_kernel
311

Andreas Marek's avatar
Andreas Marek committed
312
313
314
  ! if kernel is not choosen via api
  ! check whether set by environment variable
  actual_kernel = real_kernel_via_environment_variable()
315

Andreas Marek's avatar
Andreas Marek committed
316
  if (actual_kernel .eq. 0) then
317
318
    ! if not then set default kernel
    actual_kernel = DEFAULT_REAL_ELPA_KERNEL
Andreas Marek's avatar
Andreas Marek committed
319
320
321
  endif
end function get_actual_real_kernel

322
function get_actual_real_kernel_name() result(actual_kernel_name)
Andreas Marek's avatar
Andreas Marek committed
323
324
325
326
327
328
329

  character(35) :: actual_kernel_name
  integer       :: actual_kernel
  actual_kernel = get_actual_real_kernel()
  actual_kernel_name = REAL_ELPA_KERNEL_NAMES(actual_kernel)
end function get_actual_real_kernel_name

330
function get_actual_complex_kernel() result(actual_kernel)
Andreas Marek's avatar
Andreas Marek committed
331
332

  integer :: actual_kernel
333

Andreas Marek's avatar
Andreas Marek committed
334
335
336
  ! if kernel is not choosen via api
  ! check whether set by environment variable
  actual_kernel = complex_kernel_via_environment_variable()
337

Andreas Marek's avatar
Andreas Marek committed
338
  if (actual_kernel .eq. 0) then
339
340
    ! if not then set default kernel
    actual_kernel = DEFAULT_COMPLEX_ELPA_KERNEL
Andreas Marek's avatar
Andreas Marek committed
341
342
343
  endif
end function get_actual_complex_kernel

344
function get_actual_complex_kernel_name() result(actual_kernel_name)
Andreas Marek's avatar
Andreas Marek committed
345
346
347
348
349
350
351
352
353
354
355

  character(35) :: actual_kernel_name
  integer       :: actual_kernel
  actual_kernel = get_actual_complex_kernel()
  actual_kernel_name = COMPLEX_ELPA_KERNEL_NAMES(actual_kernel)
end function get_actual_complex_kernel_name

function check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL) result(err)

  implicit none
  integer, intent(in) :: THIS_REAL_ELPA_KERNEL
356

Andreas Marek's avatar
Andreas Marek committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
  logical             :: err

  err = .false.

  if (AVAILABLE_REAL_ELPA_KERNELS(THIS_REAL_ELPA_KERNEL) .ne. 1) err=.true.

end function check_allowed_real_kernels

function check_allowed_complex_kernels(THIS_COMPLEX_ELPA_KERNEL) result(err)

  implicit none
  integer, intent(in) :: THIS_COMPLEX_ELPA_KERNEL

  logical             :: err

  err = .false.

  if (AVAILABLE_COMPLEX_ELPA_KERNELS(THIS_COMPLEX_ELPA_KERNEL) .ne. 1) err=.true.
end function check_allowed_complex_kernels

377
function real_kernel_via_environment_variable() result(kernel)
Andreas Marek's avatar
Andreas Marek committed
378
379
380
381
382
383
384
385
386
387
  implicit none
  integer :: kernel
  CHARACTER(len=255) :: REAL_KERNEL_ENVIRONMENT
  integer :: i

#if defined(HAVE_ENVIRONMENT_CHECKING)
  call get_environment_variable("REAL_ELPA_KERNEL",REAL_KERNEL_ENVIRONMENT)
#endif
  do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
!     if (trim(dummy_char) .eq. trim(REAL_ELPA_KERNEL_NAMES(i))) then
388
389
390
391
392
393
    if (trim(REAL_KERNEL_ENVIRONMENT) .eq. trim(REAL_ELPA_KERNEL_NAMES(i))) then
      kernel = i
      exit
    else
      kernel = 0
    endif
Andreas Marek's avatar
Andreas Marek committed
394
395
396
  enddo
end function real_kernel_via_environment_variable

397
function complex_kernel_via_environment_variable() result(kernel)
Andreas Marek's avatar
Andreas Marek committed
398
399
400
401
402
403
404
405
406
407
  implicit none
  integer :: kernel

  CHARACTER(len=255) :: COMPLEX_KERNEL_ENVIRONMENT
  integer :: i
#if defined(HAVE_ENVIRONMENT_CHECKING)
  call get_environment_variable("COMPLEX_ELPA_KERNEL",COMPLEX_KERNEL_ENVIRONMENT)
#endif

  do i=1,size(COMPLEX_ELPA_KERNEL_NAMES(:))
408
409
410
411
412
413
    if (trim(COMPLEX_ELPA_KERNEL_NAMES(i)) .eq. trim(COMPLEX_KERNEL_ENVIRONMENT)) then
      kernel = i
      exit
    else
      kernel = 0
    endif
Andreas Marek's avatar
Andreas Marek committed
414
415
416
417
  enddo

end function complex_kernel_via_environment_variable

418
function solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk,   &
Andreas Marek's avatar
Andreas Marek committed
419
                                 mpi_comm_rows, mpi_comm_cols,        &
420
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API) result(success)
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

!-------------------------------------------------------------------------------
!  solve_evp_real_2stage: Solves the real eigenvalue problem with a 2 stage approach
!
!  Parameters
!
!  na          Order of matrix a
!
!  nev         Number of eigenvalues needed
!
!  a(lda,*)    Distributed matrix for which eigenvalues are to be computed.
!              Distribution is like in Scalapack.
!              The full matrix must be set (not only one half like in scalapack).
!              Destroyed on exit (upper and lower half).
!
!  lda         Leading dimension of a
!
!  ev(na)      On output: eigenvalues of a, every processor gets the complete set
!
!  q(ldq,*)    On output: Eigenvectors of a
!              Distribution is like in Scalapack.
!              Must be always dimensioned to the full size (corresponding to (na,na))
!              even if only a part of the eigenvalues is needed.
!
!  ldq         Leading dimension of q
!
!  nblk        blocksize of cyclic distribution, must be the same in both directions!
!
!  mpi_comm_rows
!  mpi_comm_cols
!              MPI-Communicators for rows/columns
!  mpi_comm_all
!              MPI-Communicator for the total processor set
!
!-------------------------------------------------------------------------------
456
457
458
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
459
   implicit none
Andreas Marek's avatar
Andreas Marek committed
460
   integer, intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
461
   integer                       :: THIS_REAL_ELPA_KERNEL
462

463
464
465
   integer, intent(in)           :: na, nev, lda, ldq, nblk, mpi_comm_rows, &
                                    mpi_comm_cols, mpi_comm_all
   real*8, intent(inout)         :: a(lda,*), ev(na), q(ldq,*)
466

467
468
469
470
471
472
   integer                       :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer                       :: nbw, num_blocks
   real*8, allocatable           :: tmat(:,:,:), e(:)
   real*8                        :: ttt0, ttt1, ttts
   integer                       :: i
   logical                       :: success
473
474
475
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_real_2stage")
#endif
476
477
478
479
480
481
482
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
483

484
485
   success = .true.

486
487
488
   if (present(THIS_REAL_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
489
   else
490

491
492
493
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
Andreas Marek's avatar
Andreas Marek committed
494
495
496
497
   endif

   ! check whether choosen kernel is allowed
   if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then
498

499
500
501
502
503
504
505
506
507
508
509
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
510

511
512
513
514
       write(error_unit,*) " "
       write(error_unit,*) "The defaul kernel REAL_ELPA_KERNEL_GENERIC will be used !"
     endif
     THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
515
516

   endif
517
518
519
520
521
522
523
524
525
526
527
528
529

   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

   nbw = (31/nblk+1)*nblk

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
530
531
532
   call bandred_real(na, a, lda, nblk, nbw, mpi_comm_rows, mpi_comm_cols, &
                     tmat, success)
   if (.not.(success)) return
533
   ttt1 = MPI_Wtime()
534
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
535
      write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
536
537
538
539
540
541

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
Andreas Marek's avatar
Andreas Marek committed
542
543
   call tridiag_band_real(na, nbw, nblk, a, lda, ev, e, mpi_comm_rows, &
                          mpi_comm_cols, mpi_comm_all)
544
   ttt1 = MPI_Wtime()
545
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
546
      write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
547
548
549
550
551
552
553
554
555
556

   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)

   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
557
558
559
560
   call solve_tridi(na, nev, ev, e, q, ldq, nblk, mpi_comm_rows,  &
                    mpi_comm_cols, success)
   if (.not.(success)) return

561
   ttt1 = MPI_Wtime()
562
563
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
564
565
566
567
568
569
570
571
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   deallocate(e)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
572
573
574
   call trans_ev_tridi_to_band_real(na, nev, nblk, nbw, q, ldq, mpi_comm_rows, &
                                    mpi_comm_cols, success, THIS_REAL_ELPA_KERNEL)
   if (.not.(success)) return
575
   ttt1 = MPI_Wtime()
576
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
577
      write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
578
579
580
581
582
583
584
585
586

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_real)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
   call trans_ev_band_to_full_real(na, nev, nblk, nbw, a, lda, tmat, q, ldq, mpi_comm_rows, mpi_comm_cols)
   ttt1 = MPI_Wtime()
587
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
588
      write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
589
590
591
   time_evp_back = ttt1-ttts

   deallocate(tmat)
592
593
594
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_real_2stage")
#endif
595
596
1  format(a,f10.3)

597
end function solve_evp_real_2stage
598
599
600
601
602

!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------

603
function solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, &
Andreas Marek's avatar
Andreas Marek committed
604
                                    mpi_comm_rows, mpi_comm_cols,      &
605
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

!-------------------------------------------------------------------------------
!  solve_evp_complex_2stage: Solves the complex eigenvalue problem with a 2 stage approach
!
!  Parameters
!
!  na          Order of matrix a
!
!  nev         Number of eigenvalues needed
!
!  a(lda,*)    Distributed matrix for which eigenvalues are to be computed.
!              Distribution is like in Scalapack.
!              The full matrix must be set (not only one half like in scalapack).
!              Destroyed on exit (upper and lower half).
!
!  lda         Leading dimension of a
!
!  ev(na)      On output: eigenvalues of a, every processor gets the complete set
!
!  q(ldq,*)    On output: Eigenvectors of a
!              Distribution is like in Scalapack.
!              Must be always dimensioned to the full size (corresponding to (na,na))
!              even if only a part of the eigenvalues is needed.
!
!  ldq         Leading dimension of q
!
!  nblk        blocksize of cyclic distribution, must be the same in both directions!
!
!  mpi_comm_rows
!  mpi_comm_cols
!              MPI-Communicators for rows/columns
!  mpi_comm_all
!              MPI-Communicator for the total processor set
!
!-------------------------------------------------------------------------------
641
642
643
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
644
   implicit none
Andreas Marek's avatar
Andreas Marek committed
645
646
   integer, intent(in), optional :: THIS_COMPLEX_ELPA_KERNEL_API
   integer                       :: THIS_COMPLEX_ELPA_KERNEL
647
648
649
650
651
652
653
654
655
656
   integer, intent(in)           :: na, nev, lda, ldq, nblk, mpi_comm_rows, mpi_comm_cols, mpi_comm_all
   complex*16, intent(inout)     :: a(lda,*), q(ldq,*)
   real*8, intent(inout)         :: ev(na)

   integer                       :: my_prow, my_pcol, np_rows, np_cols, mpierr, my_pe, n_pes
   integer                       :: l_cols, l_rows, l_cols_nev, nbw, num_blocks
   complex*16, allocatable       :: tmat(:,:,:)
   real*8, allocatable           :: q_real(:,:), e(:)
   real*8                        :: ttt0, ttt1, ttts
   integer                       :: i
657

658
   logical                       :: success
659
660
661
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_complex_2stage")
#endif
Andreas Marek's avatar
Andreas Marek committed
662
663
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)
664
665
666
667
668

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
669
670
671

   success = .true.

672
673
674
   if (present(THIS_COMPLEX_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_COMPLEX_ELPA_KERNEL = THIS_COMPLEX_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
675
   else
676
677
678
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_COMPLEX_ELPA_KERNEL = get_actual_complex_kernel()
Andreas Marek's avatar
Andreas Marek committed
679
   endif
680

Andreas Marek's avatar
Andreas Marek committed
681
682
   ! check whether choosen kernel is allowed
   if (check_allowed_complex_kernels(THIS_COMPLEX_ELPA_KERNEL)) then
683

684
685
686
687
688
689
690
691
692
693
694
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",COMPLEX_ELPA_KERNEL_NAMES(THIS_COMPLEX_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(COMPLEX_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_COMPLEX_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) COMPLEX_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
695

696
697
698
699
       write(error_unit,*) " "
       write(error_unit,*) "The defaul kernel COMPLEX_ELPA_KERNEL_GENERIC will be used !"
     endif
     THIS_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
700
701
!      call MPI_ABORT(mpi_comm_all, mpierr)
   endif
702
703
704
705
706
707
708
709
710
711
712
713
   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

   nbw = (31/nblk+1)*nblk

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
714
715
   call bandred_complex(na, a, lda, nblk, nbw, mpi_comm_rows, mpi_comm_cols, &
                        tmat, success)
716
717
718
719
720
721
   if (.not.(success)) then
#ifdef HAVE_DETAILED_TIMINGS
     call timer%stop()
#endif
     return
   endif
722
   ttt1 = MPI_Wtime()
723
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
724
      write(error_unit,*) 'Time bandred_complex               :',ttt1-ttt0
725
726
727
728
729
730
731
732

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
   call tridiag_band_complex(na, nbw, nblk, a, lda, ev, e, mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
   ttt1 = MPI_Wtime()
733
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
734
      write(error_unit,*) 'Time tridiag_band_complex          :',ttt1-ttt0
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)

   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   l_rows = local_index(na, my_prow, np_rows, nblk, -1) ! Local rows of a and q
   l_cols = local_index(na, my_pcol, np_cols, nblk, -1) ! Local columns of q
   l_cols_nev = local_index(nev, my_pcol, np_cols, nblk, -1) ! Local columns corresponding to nev

   allocate(q_real(l_rows,l_cols))

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
751
752
753
754
   call solve_tridi(na, nev, ev, e, q_real, ubound(q_real,1), nblk, &
                    mpi_comm_rows, mpi_comm_cols, success)
   if (.not.(success)) return

755
   ttt1 = MPI_Wtime()
756
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times)  &
757
      write(error_unit,*) 'Time solve_tridi                   :',ttt1-ttt0
758
759
760
761
762
763
764
765
766
767
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   q(1:l_rows,1:l_cols_nev) = q_real(1:l_rows,1:l_cols_nev)

   deallocate(e, q_real)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
Andreas Marek's avatar
Andreas Marek committed
768
   call trans_ev_tridi_to_band_complex(na, nev, nblk, nbw, q, ldq,  &
769
770
771
                                       mpi_comm_rows, mpi_comm_cols,&
                                       success,THIS_COMPLEX_ELPA_KERNEL)
   if (.not.(success)) return
772
   ttt1 = MPI_Wtime()
773
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
774
      write(error_unit,*) 'Time trans_ev_tridi_to_band_complex:',ttt1-ttt0
775
776
777
778
779
780
781
782
783

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_complex)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
   call trans_ev_band_to_full_complex(na, nev, nblk, nbw, a, lda, tmat, q, ldq, mpi_comm_rows, mpi_comm_cols)
   ttt1 = MPI_Wtime()
784
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
785
      write(error_unit,*) 'Time trans_ev_band_to_full_complex :',ttt1-ttt0
786
787
788
   time_evp_back = ttt1-ttts

   deallocate(tmat)
789
790
791
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_complex_2stage")
#endif
792
793
794

1  format(a,f10.3)

795
end function solve_evp_complex_2stage
796
797
798

!-------------------------------------------------------------------------------

799
800
subroutine bandred_real(na, a, lda, nblk, nbw, mpi_comm_rows, mpi_comm_cols, &
                        tmat, success)
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

!-------------------------------------------------------------------------------
!  bandred_real: Reduces a distributed symmetric matrix to band form
!
!  Parameters
!
!  na          Order of matrix
!
!  a(lda,*)    Distributed matrix which should be reduced.
!              Distribution is like in Scalapack.
!              Opposed to Scalapack, a(:,:) must be set completely (upper and lower half)
!              a(:,:) is overwritten on exit with the band and the Householder vectors
!              in the upper half.
!
!  lda         Leading dimension of a
!
!  nblk        blocksize of cyclic distribution, must be the same in both directions!
!
!  nbw         semi bandwith of output matrix
!
!  mpi_comm_rows
!  mpi_comm_cols
!              MPI-Communicators for rows/columns
!
!  tmat(nbw,nbw,num_blocks)    where num_blocks = (na-1)/nbw + 1
!              Factors for the Householder vectors (returned), needed for back transformation
!
!-------------------------------------------------------------------------------
829
830
831
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
832
833
   implicit none

834
835
   integer             :: na, lda, nblk, nbw, mpi_comm_rows, mpi_comm_cols
   real*8              :: a(lda,*), tmat(nbw,nbw,*)
836

837
838
839
840
841
   integer             :: my_prow, my_pcol, np_rows, np_cols, mpierr
   integer             :: l_cols, l_rows
   integer             :: i, j, lcs, lce, lre, lc, lr, cur_pcol, n_cols, nrow
   integer             :: istep, ncol, lch, lcx, nlc
   integer             :: tile_size, l_rows_tile, l_cols_tile
842

843
   real*8              :: vnorm2, xf, aux1(nbw), aux2(nbw), vrl, tau, vav(nbw,nbw)
844

845
   real*8, allocatable :: tmp(:,:), vr(:), vmr(:,:), umc(:,:)
846

847
   integer             :: pcol, prow
848
849
850
851
852
853
854
855

#ifdef WITH_QR
   ! needed for blocked QR decomposition
   integer             :: PQRPARAM(11), work_size
   real*8              :: dwork_size(1)
   real*8, allocatable :: work_blocked(:), tauvector(:), blockheuristic(:)
#endif

856
857
858
   pcol(i) = MOD((i-1)/nblk,np_cols) !Processor col for global col number
   prow(i) = MOD((i-1)/nblk,np_rows) !Processor row for global row number

859
860
   logical, intent(out):: success

861
862
863
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("bandred_real")
#endif
864
865
866
867
   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
868
   success = .true.
869
870
871

   ! Semibandwith nbw must be a multiple of blocksize nblk

872
873
874
875
876
   if (mod(nbw,nblk)/=0) then
     if (my_prow==0 .and. my_pcol==0) then
       write(error_unit,*) 'ERROR: nbw=',nbw,', nblk=',nblk
       write(error_unit,*) 'ELPA2 works only for nbw==n*nblk'
       success = .false.
877
!         call mpi_abort(mpi_comm_world,0,mpierr)
878
     endif
879
880
881
882
883
884
885
886
887
888
   endif

   ! Matrix is split into tiles; work is done only for tiles on the diagonal or above

   tile_size = nblk*least_common_multiple(np_rows,np_cols) ! minimum global tile size
   tile_size = ((128*max(np_rows,np_cols)-1)/tile_size+1)*tile_size ! make local tiles at least 128 wide

   l_rows_tile = tile_size/np_rows ! local rows of a tile
   l_cols_tile = tile_size/np_cols ! local cols of a tile

889
890
891
#ifdef WITH_QR

   if (which_qr_decomposition == 1) then
892
893
894
895
896
     call qr_pqrparam_init(pqrparam,    nblk,'M',0,   nblk,'M',0,   nblk,'M',1,'s')
     allocate(tauvector(na))
     allocate(blockheuristic(nblk))
     l_rows = local_index(na, my_prow, np_rows, nblk, -1)
     allocate(vmr(max(l_rows,1),na))
897

898
     call qr_pdgeqrf_2dcomm(a, lda, vmr, max(l_rows,1), tauvector(1), tmat(1,1,1), nbw, dwork_size(1), -1, na, &
899
                             nbw, nblk, nblk, na, na, 1, 0, PQRPARAM, mpi_comm_rows, mpi_comm_cols, blockheuristic)
900
901
     work_size = dwork_size(1)
     allocate(work_blocked(work_size))
902

903
904
     work_blocked = 0.0d0
     deallocate(vmr)
905
906
907
908
   endif
#endif


909
910
   do istep = (na-1)/nbw, 1, -1

911
     n_cols = MIN(na,(istep+1)*nbw) - istep*nbw ! Number of columns in current step
912

913
914
915
     ! Number of local columns/rows of remaining matrix
     l_cols = local_index(istep*nbw, my_pcol, np_cols, nblk, -1)
     l_rows = local_index(istep*nbw, my_prow, np_rows, nblk, -1)
916

917
     ! Allocate vmr and umc to their exact sizes so that they can be used in bcasts and reduces
918

919
920
     allocate(vmr(max(l_rows,1),2*n_cols))
     allocate(umc(max(l_cols,1),2*n_cols))
921

922
     allocate(vr(l_rows+1))
923

924
925
926
     vmr(1:l_rows,1:n_cols) = 0.
     vr(:) = 0
     tmat(:,:,istep) = 0
927

928
     ! Reduce current block to lower triangular form
929
#ifdef WITH_QR
930
931
932
933
934
935
936
937
     if (which_qr_decomposition == 1) then
       call qr_pdgeqrf_2dcomm(a, lda, vmr, max(l_rows,1), tauvector(1), &
                               tmat(1,1,istep), nbw, work_blocked,       &
                               work_size, na, n_cols, nblk, nblk,        &
                               istep*nbw+n_cols-nbw, istep*nbw+n_cols, 1,&
                               0, PQRPARAM, mpi_comm_rows, mpi_comm_cols,&
                               blockheuristic)
     else
938

939
#endif
940
       do lc = n_cols, 1, -1
941

942
943
         ncol = istep*nbw + lc ! absolute column number of householder vector
         nrow = ncol - nbw ! Absolute number of pivot row
944

945
946
         lr  = local_index(nrow, my_prow, np_rows, nblk, -1) ! current row length
         lch = local_index(ncol, my_pcol, np_cols, nblk, -1) ! HV local column number
947

948
         tau = 0
949

950
         if (nrow == 1) exit ! Nothing to do
951

952
         cur_pcol = pcol(ncol) ! Processor column owning current block
953

954
         if (my_pcol==cur_pcol) then
955

956
957
           ! Get vector to be transformed; distribute last element and norm of
           ! remaining elements to all procs in current column
958

959
           vr(1:lr) = a(1:lr,lch) ! vector to be transformed
960

961
962
963
964
965
966
967
           if (my_prow==prow(nrow)) then
             aux1(1) = dot_product(vr(1:lr-1),vr(1:lr-1))
             aux1(2) = vr(lr)
           else
             aux1(1) = dot_product(vr(1:lr),vr(1:lr))
             aux1(2) = 0.
           endif
968

969
           call mpi_allreduce(aux1,aux2,2,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
970

971
972
           vnorm2 = aux2(1)
           vrl    = aux2(2)
973

974
           ! Householder transformation
975

976
           call hh_transform_real(vrl, vnorm2, xf, tau)
977

978
           ! Scale vr and store Householder vector for back transformation
979

980
981
982
983
984
985
986
           vr(1:lr) = vr(1:lr) * xf
           if (my_prow==prow(nrow)) then
             a(1:lr-1,lch) = vr(1:lr-1)
             a(lr,lch) = vrl
             vr(lr) = 1.
           else
             a(1:lr,lch) = vr(1:lr)
987
           endif
988

989
         endif
990

991
         ! Broadcast Householder vector and tau along columns
992

993
994
995
996
997
         vr(lr+1) = tau
         call MPI_Bcast(vr,lr+1,MPI_REAL8,cur_pcol,mpi_comm_cols,mpierr)
         vmr(1:lr,lc) = vr(1:lr)
         tau = vr(lr+1)
         tmat(lc,lc,istep) = tau ! Store tau in diagonal of tmat
998

999
1000
         ! Transform remaining columns in current block with Householder vector
         ! Local dot product
1001

1002
         aux1 = 0
1003

1004
1005
1006
1007
1008
1009
1010
1011
         nlc = 0 ! number of local columns
         do j=1,lc-1
           lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
           if (lcx>0) then
             nlc = nlc+1
             if (lr>0) aux1(nlc) = dot_product(vr(1:lr),a(1:lr,lcx))
           endif
         enddo
1012

1013
1014
         ! Get global dot products
         if (nlc>0) call mpi_allreduce(aux1,aux2,nlc,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
1015

1016
         ! Transform
1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
         nlc = 0
         do j=1,lc-1
           lcx = local_index(istep*nbw+j, my_pcol, np_cols, nblk, 0)
           if (lcx>0) then
             nlc = nlc+1
             a(1:lr,lcx) = a(1:lr,lcx) - tau*aux2(nlc)*vr(1:lr)
           endif
         enddo

       enddo
1028

1029
1030
       ! Calculate scalar products of stored Householder vectors.
       ! This can be done in different ways, we use dsyrk
1031

1032
1033
       vav = 0
       if (l_rows>0) &
1034
           call dsyrk('U','T',n_cols,l_rows,1.d0,vmr,ubound(vmr,1),0.d0,vav,ubound(vav,1))
1035
       call symm_matrix_allreduce(n_cols,vav,ubound(vav,1),mpi_comm_rows)
1036

1037
       ! Calculate triangular matrix T for block Householder Transformation
1038

1039
1040
1041
1042
1043
1044
1045
       do lc=n_cols,1,-1
         tau = tmat(lc,lc,istep)
         if (lc<n_cols) then
           call dtrmv('U','T','N',n_cols-lc,tmat(lc+1,lc+1,istep),ubound(tmat,1),vav(lc+1,lc),1)
           tmat(lc,lc+1:n_cols,istep) = -tau * vav(lc+1:n_cols,lc)
         endif
       enddo
1046

1047
1048
1049
#ifdef WITH_QR
     endif
#endif
1050

1051
    ! Transpose vmr -> vmc (stored in umc, second half)
1052

1053
    call elpa_transpose_vectors  (vmr, ubound(vmr,1), mpi_comm_rows, &
1054
1055
1056
                                    umc(1,n_cols+1), ubound(umc,1), mpi_comm_cols, &
                                    1, istep*nbw, n_cols, nblk)

1057
1058
1059
1060
    ! Calculate umc = A**T * vmr
    ! Note that the distributed A has to be transposed
    ! Opposed to direct tridiagonalization there is no need to use the cache locality
    ! of the tiles, so we can use strips of the matrix
1061

1062
1063
1064
1065
    umc(1:l_cols,1:n_cols) = 0.d0
    vmr(1:l_rows,n_cols+1:2*n_cols) = 0
    if (l_cols>0 .and. l_rows>0) then
      do i=0,(istep*nbw-1)/tile_size
1066

1067
1068
1069
        lcs = i*l_cols_tile+1
        lce = min(l_cols,(i+1)*l_cols_tile)
        if (lce<lcs) cycle
1070

1071
1072
1073
        lre = min(l_rows,(i+1)*l_rows_tile)
        call DGEMM('T','N',lce-lcs+1,n_cols,lre,1.d0,a(1,lcs),ubound(a,1), &
                     vmr,ubound(vmr,1),1.d0,umc(lcs,1),ubound(umc,1))
1074

1075
1076
1077
1078
1079
1080
        if (i==0) cycle
        lre = min(l_rows,i*l_rows_tile)
        call DGEMM('N','N',lre,n_cols,lce-lcs+1,1.d0,a(1,lcs),lda, &
                     umc(lcs,n_cols+1),ubound(umc,1),1.d0,vmr(1,n_cols+1),ubound(vmr,1))
      enddo
    endif
1081

1082
1083
1084
1085
    ! Sum up all ur(:) parts along rows and add them to the uc(:) parts
    ! on the processors containing the diagonal
    ! This is only necessary if ur has been calculated, i.e. if the
    ! global tile size is smaller than the global remaining matrix
1086

1087
1088
1089
1090
1091
    if (tile_size < istep*nbw) then
       call elpa_reduce_add_vectors  (vmr(1,n_cols+1),ubound(vmr,1),mpi_comm_rows, &
                                      umc, ubound(umc,1), mpi_comm_cols, &
                                      istep*nbw, n_cols, nblk)
    endif
1092

1093
1094
1095
1096
1097
1098
    if (l_cols>0) then
      allocate(tmp(l_cols,n_cols))
      call mpi_allreduce(umc,tmp,l_cols*n_cols,MPI_REAL8,MPI_SUM,mpi_comm_rows,mpierr)
      umc(1:l_cols,1:n_cols) = tmp(1:l_cols,1:n_cols)
      deallocate(tmp)
    endif
1099

1100
    ! U = U * Tmat**T
1101

1102
    call dtrmm('Right','Upper','Trans','Nonunit',l_cols,n_cols,1.d0,tmat(1,1,istep),ubound(tmat,1),umc,ubound(umc,1))
1103

1104
    ! VAV = Tmat * V**T * A * V * Tmat**T = (U*Tmat**T)**T * V * Tmat**T
1105

1106
1107
    call dgemm('T','N',n_cols,n_cols,l_cols,1.d0,umc,ubound(umc,1),umc(1,n_cols+1),ubound(umc,1),0.d0,vav,ubound(vav,1))
    call dtrmm('Right','Upper','Trans','Nonunit',n_cols,n_cols,1.d0,tmat(1,1,istep),ubound(tmat,1),vav,ubound(vav,1))
1108

1109
    call symm_matrix_allreduce(n_cols,vav,ubound(vav,1),mpi_comm_cols)
1110

1111
1112
    ! U = U - 0.5 * V * VAV
    call dgemm('N','N',l_cols,n_cols,n_cols,-0.5d0,umc(1,n_cols+1),ubound(umc,1),vav,ubound(vav,1),1.d0,umc,ubound(umc,1))
1113

1114
    ! Transpose umc -> umr (stored in vmr, second half)
1115

1116
1117
1118
    call elpa_transpose_vectors  (umc, ubound(umc,1), mpi_comm_cols, &
                                   vmr(1,n_cols+1), ubound(vmr,1), mpi_comm_rows, &
                                   1, istep*nbw, n_cols, nblk)
1119

1120
    ! A = A - V*U**T - U*V**T
1121

1122
1123
1124
1125
1126
1127
1128
1129
1130
    do i=0,(istep*nbw-1)/tile_size
      lcs = i*l_cols_tile+1
      lce = min(l_cols,(i+1)*l_cols_tile)
      lre = min(l_rows,(i+1)*l_rows_tile)
      if (lce<lcs .or. lre<1) cycle
      call dgemm('N','T',lre,lce-lcs+1,2*n_cols,-1.d0, &
                  vmr,ubound(vmr,1),umc(lcs,1),ubound(umc,1), &
                  1.d0,a(1,lcs),lda)
    enddo
1131

1132
    deallocate(vmr, umc, vr)
1133

1134
  enddo
1135
#ifdef HAVE_DETAILED_TIMINGS
1136
  call timer%stop("bandred_real")
1137
#endif
1138

1139
#ifdef WITH_QR
1140
1141
1142
1143
  if (which_qr_decomposition == 1) then
    deallocate(work_blocked)
    deallocate(tauvector)
  endif
1144
1145
#endif

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
end subroutine bandred_real

!-------------------------------------------------------------------------------

subroutine symm_matrix_allreduce(n,a,lda,comm)

!-------------------------------------------------------------------------------
!  symm_matrix_allreduce: Does an mpi_allreduce for a symmetric matrix A.
!  On entry, only the upper half of A needs to be set
!  On exit, the complete matrix is set
!-------------------------------------------------------------------------------

   implicit none
   integer n, lda, comm
   real*8 a(lda,*)

   integer i, nc, mpierr
   real*8 h1(n*n), h2(n*n)

   nc = 0
   do i=1,n
1167
1168
     h1(nc+1:nc+i) = a(1:i,i)
     nc = nc+i
1169
1170
1171
1172
1173
1174
   enddo

   call mpi_allreduce(h1,h2,nc,MPI_REAL8,MPI_SUM,comm,mpierr)

   nc = 0
   do i=1,n
1175
1176
1177
     a(1:i,i) = h2(nc+1:nc+i)
     a(i,1:i-1) = a(1:i-1,i)
     nc = nc+i
1178
1179
1180
1181
1182
1183
1184
1185
   enddo

end subroutine symm_matrix_allreduce

!-------------------------------------------------------------------------------

subroutine trans_ev_band_to_full_real(na, nqc, nblk, nbw, a, lda, tmat, q, ldq, mpi_comm_rows, mpi_comm_cols)

Andreas Marek's avatar
Andreas Marek committed
1186

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
!-------------------------------------------------------------------------------
!  trans_ev_band_to_full_real:
!  Transforms the eigenvectors of a band matrix back to the eigenvectors of the original matrix
!
!  Parameters
!
!  na          Order of matrix a, number of rows of matrix q
!
!  nqc         Number of columns of matrix q
!
!  nblk        blocksize of cyclic distribution, must be the same in both directions!
!
!  nbw         semi bandwith
!
!  a(lda,*)    Matrix containing the Householder vectors (i.e. matrix a after bandred_real)
!              Distribution is like in Scalapack.
!
!  lda         Leading dimension of a
!
!  tmat(nbw,nbw,.) Factors returned by bandred_real
!
!  q           On input: Eigenvectors of band matrix
!              On output: Transformed eigenvectors
!              Distribution is like in Scalapack.
!
!  ldq         Leading dimension of q
!
!  mpi_comm_rows
!  mpi_comm_cols
!              MPI-Communicators for rows/columns
!
!-------------------------------------------------------------------------------
1219
1220
1221
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231