elpa2_kernels_complex_sse_1hv_double_precision.c 19.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
//    This file is part of ELPA.
//
//    The ELPA library was originally created by the ELPA consortium,
//    consisting of the following organizations:
//
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
13
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
//      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//      and
//    - IBM Deutschland GmbH
//
//    This particular source code file contains additions, changes and
//    enhancements authored by Intel Corporation which is not part of
//    the ELPA consortium.
//
//    More information can be found here:
//    http://elpa.mpcdf.mpg.de/
//
//    ELPA is free software: you can redistribute it and/or modify
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
//    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
//
// --------------------------------------------------------------------------------------------------
//
// This file contains the compute intensive kernels for the Householder transformations.
// It should be compiled with the highest possible optimization level.
//
// On Intel Nehalem or Intel Westmere or AMD Magny Cours use -O3 -msse3
// On Intel Sandy Bridge use -O3 -mavx
//
// Copyright of the original code rests with the authors inside the ELPA
// consortium. The copyright of any additional modifications shall rest
// with their original authors, but shall adhere to the licensing terms
// distributed along with the original code in the file "COPYING".
//
// Author: Alexander Heinecke (alexander.heinecke@mytum.de)
// Adapted for building a shared-library by Andreas Marek, MPCDF (andreas.marek@mpcdf.mpg.de)
// --------------------------------------------------------------------------------------------------

#include "config-f90.h"

Andreas Marek's avatar
Andreas Marek committed
65
#include <complex.h>
66
67
68
69
#include <x86intrin.h>

#define __forceinline __attribute__((always_inline))

70
#ifdef HAVE_SSE_INTRINSICS
71
72
73
74
75
#undef __AVX__
#endif


//Forward declaration
76
77
78
static __forceinline void hh_trafo_complex_kernel_6_SSE_1hv_double(double complex* q, double complex* hh, int nb, int ldq);
static __forceinline void hh_trafo_complex_kernel_4_SSE_1hv_double(double complex* q, double complex* hh, int nb, int ldq);
static __forceinline void hh_trafo_complex_kernel_2_SSE_1hv_double(double complex* q, double complex* hh, int nb, int ldq);
79

80
/*
81
!f>#ifdef HAVE_SSE_INTRINSICS
82
!f> interface
83
84
!f>   subroutine single_hh_trafo_complex_sse_1hv_double(q, hh, pnb, pnq, pldq) &
!f>                             bind(C, name="single_hh_trafo_complex_sse_1hv_double")
85
86
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
87
88
!f>     ! complex(kind=c_double_complex)     :: q(*)
!f>     type(c_ptr), value                   :: q
89
!f>     complex(kind=c_double_complex)     :: hh(pnb,2)
90
91
92
93
94
!f>   end subroutine
!f> end interface
!f>#endif
*/

95
void single_hh_trafo_complex_sse_1hv_double(double complex* q, double complex* hh, int* pnb, int* pnq, int* pldq)
96
97
98
99
100
101
102
103
104
{
	int i;
	int nb = *pnb;
	int nq = *pldq;
	int ldq = *pldq;
	//int ldh = *pldh;

	for (i = 0; i < nq-4; i+=6)
	{
105
		hh_trafo_complex_kernel_6_SSE_1hv_double(&q[i], hh, nb, ldq);
106
	}
107
108
109
	if (nq-i == 0) {
	  return;
	} else {
110

111
112
	if (nq-i > 2)
	{
113
		hh_trafo_complex_kernel_4_SSE_1hv_double(&q[i], hh, nb, ldq);
114
	}
115
	else
116
	{
117
		hh_trafo_complex_kernel_2_SSE_1hv_double(&q[i], hh, nb, ldq);
118
	  }
119
120
121
	}
}

122
static __forceinline void hh_trafo_complex_kernel_6_SSE_1hv_double(double complex* q, double complex* hh, int nb, int ldq)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m128d x1, x2, x3, x4, x5, x6;
	__m128d q1, q2, q3, q4, q5, q6;
	__m128d h1_real, h1_imag;
	__m128d tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
	int i=0;

	__m128d sign = (__m128d)_mm_set_epi64x(0x8000000000000000, 0x8000000000000000);

	x1 = _mm_load_pd(&q_dbl[0]);
	x2 = _mm_load_pd(&q_dbl[2]);
	x3 = _mm_load_pd(&q_dbl[4]);
	x4 = _mm_load_pd(&q_dbl[6]);
	x5 = _mm_load_pd(&q_dbl[8]);
	x6 = _mm_load_pd(&q_dbl[10]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm_loaddup_pd(&hh_dbl[i*2]);
		h1_imag = _mm_loaddup_pd(&hh_dbl[(i*2)+1]);
#ifndef __ELPA_USE_FMA__
		// conjugate
		h1_imag = _mm_xor_pd(h1_imag, sign);
#endif

		q1 = _mm_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm_load_pd(&q_dbl[(2*i*ldq)+2]);
		q3 = _mm_load_pd(&q_dbl[(2*i*ldq)+4]);
		q4 = _mm_load_pd(&q_dbl[(2*i*ldq)+6]);
		q5 = _mm_load_pd(&q_dbl[(2*i*ldq)+8]);
		q6 = _mm_load_pd(&q_dbl[(2*i*ldq)+10]);

		tmp1 = _mm_mul_pd(h1_imag, q1);
#ifdef __ELPA_USE_FMA__
		x1 = _mm_add_pd(x1, _mm_msubadd_pd(h1_real, q1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#else
		x1 = _mm_add_pd(x1, _mm_addsub_pd( _mm_mul_pd(h1_real, q1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#endif
		tmp2 = _mm_mul_pd(h1_imag, q2);
#ifdef __ELPA_USE_FMA__
		x2 = _mm_add_pd(x2, _mm_msubadd_pd(h1_real, q2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#else
		x2 = _mm_add_pd(x2, _mm_addsub_pd( _mm_mul_pd(h1_real, q2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#endif
		tmp3 = _mm_mul_pd(h1_imag, q3);
#ifdef __ELPA_USE_FMA__
		x3 = _mm_add_pd(x3, _mm_msubadd_pd(h1_real, q3, _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1))));
#else
		x3 = _mm_add_pd(x3, _mm_addsub_pd( _mm_mul_pd(h1_real, q3), _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1))));
#endif
		tmp4 = _mm_mul_pd(h1_imag, q4);
#ifdef __ELPA_USE_FMA__
		x4 = _mm_add_pd(x4, _mm_msubadd_pd(h1_real, q4, _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1))));
#else
		x4 = _mm_add_pd(x4, _mm_addsub_pd( _mm_mul_pd(h1_real, q4), _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1))));
#endif
		tmp5 = _mm_mul_pd(h1_imag, q5);
#ifdef __ELPA_USE_FMA__
		x5 = _mm_add_pd(x5, _mm_msubadd_pd(h1_real, q5, _mm_shuffle_pd(tmp5, tmp5, _MM_SHUFFLE2(0,1))));
#else
		x5 = _mm_add_pd(x5, _mm_addsub_pd( _mm_mul_pd(h1_real, q5), _mm_shuffle_pd(tmp5, tmp5, _MM_SHUFFLE2(0,1))));
#endif
		tmp6 = _mm_mul_pd(h1_imag, q6);
#ifdef __ELPA_USE_FMA__
		x6 = _mm_add_pd(x6, _mm_msubadd_pd(h1_real, q6, _mm_shuffle_pd(tmp6, tmp6, _MM_SHUFFLE2(0,1))));
#else
		x6 = _mm_add_pd(x6, _mm_addsub_pd( _mm_mul_pd(h1_real, q6), _mm_shuffle_pd(tmp6, tmp6, _MM_SHUFFLE2(0,1))));
#endif
	}

	h1_real = _mm_loaddup_pd(&hh_dbl[0]);
	h1_imag = _mm_loaddup_pd(&hh_dbl[1]);
	h1_real = _mm_xor_pd(h1_real, sign);
	h1_imag = _mm_xor_pd(h1_imag, sign);

	tmp1 = _mm_mul_pd(h1_imag, x1);
#ifdef __ELPA_USE_FMA__
	x1 = _mm_maddsub_pd(h1_real, x1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1)));
#else
	x1 = _mm_addsub_pd( _mm_mul_pd(h1_real, x1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1)));
#endif
	tmp2 = _mm_mul_pd(h1_imag, x2);
#ifdef __ELPA_USE_FMA__
	x2 = _mm_maddsub_pd(h1_real, x2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1)));
#else
	x2 = _mm_addsub_pd( _mm_mul_pd(h1_real, x2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1)));
#endif
	tmp3 = _mm_mul_pd(h1_imag, x3);
#ifdef __ELPA_USE_FMA__
	x3 = _mm_maddsub_pd(h1_real, x3, _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1)));
#else
	x3 = _mm_addsub_pd( _mm_mul_pd(h1_real, x3), _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1)));
#endif
	tmp4 = _mm_mul_pd(h1_imag, x4);
#ifdef __ELPA_USE_FMA__
	x4 = _mm_maddsub_pd(h1_real, x4, _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1)));
#else
	x4 = _mm_addsub_pd( _mm_mul_pd(h1_real, x4), _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1)));
#endif
	tmp5 = _mm_mul_pd(h1_imag, x5);
#ifdef __ELPA_USE_FMA__
	x5 = _mm_maddsub_pd(h1_real, x5, _mm_shuffle_pd(tmp5, tmp5, _MM_SHUFFLE2(0,1)));
#else
	x5 = _mm_addsub_pd( _mm_mul_pd(h1_real, x5), _mm_shuffle_pd(tmp5, tmp5, _MM_SHUFFLE2(0,1)));
#endif
	tmp6 = _mm_mul_pd(h1_imag, x6);
#ifdef __ELPA_USE_FMA__
	x6 = _mm_maddsub_pd(h1_real, x6, _mm_shuffle_pd(tmp6, tmp6, _MM_SHUFFLE2(0,1)));
#else
	x6 = _mm_addsub_pd( _mm_mul_pd(h1_real, x6), _mm_shuffle_pd(tmp6, tmp6, _MM_SHUFFLE2(0,1)));
#endif

	q1 = _mm_load_pd(&q_dbl[0]);
	q2 = _mm_load_pd(&q_dbl[2]);
	q3 = _mm_load_pd(&q_dbl[4]);
	q4 = _mm_load_pd(&q_dbl[6]);
	q5 = _mm_load_pd(&q_dbl[8]);
	q6 = _mm_load_pd(&q_dbl[10]);

	q1 = _mm_add_pd(q1, x1);
	q2 = _mm_add_pd(q2, x2);
	q3 = _mm_add_pd(q3, x3);
	q4 = _mm_add_pd(q4, x4);
	q5 = _mm_add_pd(q5, x5);
	q6 = _mm_add_pd(q6, x6);

	_mm_store_pd(&q_dbl[0], q1);
	_mm_store_pd(&q_dbl[2], q2);
	_mm_store_pd(&q_dbl[4], q3);
	_mm_store_pd(&q_dbl[6], q4);
	_mm_store_pd(&q_dbl[8], q5);
	_mm_store_pd(&q_dbl[10], q6);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm_loaddup_pd(&hh_dbl[i*2]);
		h1_imag = _mm_loaddup_pd(&hh_dbl[(i*2)+1]);

		q1 = _mm_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm_load_pd(&q_dbl[(2*i*ldq)+2]);
		q3 = _mm_load_pd(&q_dbl[(2*i*ldq)+4]);
		q4 = _mm_load_pd(&q_dbl[(2*i*ldq)+6]);
		q5 = _mm_load_pd(&q_dbl[(2*i*ldq)+8]);
		q6 = _mm_load_pd(&q_dbl[(2*i*ldq)+10]);

		tmp1 = _mm_mul_pd(h1_imag, x1);
#ifdef __ELPA_USE_FMA__
		q1 = _mm_add_pd(q1, _mm_maddsub_pd(h1_real, x1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#else
		q1 = _mm_add_pd(q1, _mm_addsub_pd( _mm_mul_pd(h1_real, x1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#endif
		tmp2 = _mm_mul_pd(h1_imag, x2);
#ifdef __ELPA_USE_FMA__
		q2 = _mm_add_pd(q2, _mm_maddsub_pd(h1_real, x2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#else
		q2 = _mm_add_pd(q2, _mm_addsub_pd( _mm_mul_pd(h1_real, x2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#endif
		tmp3 = _mm_mul_pd(h1_imag, x3);
#ifdef __ELPA_USE_FMA__
		q3 = _mm_add_pd(q3, _mm_maddsub_pd(h1_real, x3, _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1))));
#else
		q3 = _mm_add_pd(q3, _mm_addsub_pd( _mm_mul_pd(h1_real, x3), _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1))));
#endif
		tmp4 = _mm_mul_pd(h1_imag, x4);
#ifdef __ELPA_USE_FMA__
		q4 = _mm_add_pd(q4, _mm_maddsub_pd(h1_real, x4, _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1))));
#else
		q4 = _mm_add_pd(q4, _mm_addsub_pd( _mm_mul_pd(h1_real, x4), _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1))));
#endif
		tmp5 = _mm_mul_pd(h1_imag, x5);
#ifdef __ELPA_USE_FMA__
		q5 = _mm_add_pd(q5, _mm_maddsub_pd(h1_real, x5, _mm_shuffle_pd(tmp5, tmp5, _MM_SHUFFLE2(0,1))));
#else
		q5 = _mm_add_pd(q5, _mm_addsub_pd( _mm_mul_pd(h1_real, x5), _mm_shuffle_pd(tmp5, tmp5, _MM_SHUFFLE2(0,1))));
#endif
		tmp6 = _mm_mul_pd(h1_imag, x6);
#ifdef __ELPA_USE_FMA__
		q6 = _mm_add_pd(q6, _mm_maddsub_pd(h1_real, x6, _mm_shuffle_pd(tmp6, tmp6, _MM_SHUFFLE2(0,1))));
#else
		q6 = _mm_add_pd(q6, _mm_addsub_pd( _mm_mul_pd(h1_real, x6), _mm_shuffle_pd(tmp6, tmp6, _MM_SHUFFLE2(0,1))));
#endif

		_mm_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm_store_pd(&q_dbl[(2*i*ldq)+2], q2);
		_mm_store_pd(&q_dbl[(2*i*ldq)+4], q3);
		_mm_store_pd(&q_dbl[(2*i*ldq)+6], q4);
		_mm_store_pd(&q_dbl[(2*i*ldq)+8], q5);
		_mm_store_pd(&q_dbl[(2*i*ldq)+10], q6);
	}
}

317
static __forceinline void hh_trafo_complex_kernel_4_SSE_1hv_double(double complex* q, double complex* hh, int nb, int ldq)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m128d x1, x2, x3, x4;
	__m128d q1, q2, q3, q4;
	__m128d h1_real, h1_imag;
	__m128d tmp1, tmp2, tmp3, tmp4;
	int i=0;

	__m128d sign = (__m128d)_mm_set_epi64x(0x8000000000000000, 0x8000000000000000);

	x1 = _mm_load_pd(&q_dbl[0]);
	x2 = _mm_load_pd(&q_dbl[2]);
	x3 = _mm_load_pd(&q_dbl[4]);
	x4 = _mm_load_pd(&q_dbl[6]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm_loaddup_pd(&hh_dbl[i*2]);
		h1_imag = _mm_loaddup_pd(&hh_dbl[(i*2)+1]);
#ifndef __ELPA_USE_FMA__
		// conjugate
		h1_imag = _mm_xor_pd(h1_imag, sign);
#endif

		q1 = _mm_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm_load_pd(&q_dbl[(2*i*ldq)+2]);
		q3 = _mm_load_pd(&q_dbl[(2*i*ldq)+4]);
		q4 = _mm_load_pd(&q_dbl[(2*i*ldq)+6]);

		tmp1 = _mm_mul_pd(h1_imag, q1);
#ifdef __ELPA_USE_FMA__
		x1 = _mm_add_pd(x1, _mm_msubadd_pd(h1_real, q1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#else
		x1 = _mm_add_pd(x1, _mm_addsub_pd( _mm_mul_pd(h1_real, q1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#endif
		tmp2 = _mm_mul_pd(h1_imag, q2);
#ifdef __ELPA_USE_FMA__
		x2 = _mm_add_pd(x2, _mm_msubadd_pd(h1_real, q2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#else
		x2 = _mm_add_pd(x2, _mm_addsub_pd( _mm_mul_pd(h1_real, q2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#endif
		tmp3 = _mm_mul_pd(h1_imag, q3);
#ifdef __ELPA_USE_FMA__
		x3 = _mm_add_pd(x3, _mm_msubadd_pd(h1_real, q3, _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1))));
#else
		x3 = _mm_add_pd(x3, _mm_addsub_pd( _mm_mul_pd(h1_real, q3), _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1))));
#endif
		tmp4 = _mm_mul_pd(h1_imag, q4);
#ifdef __ELPA_USE_FMA__
		x4 = _mm_add_pd(x4, _mm_msubadd_pd(h1_real, q4, _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1))));
#else
		x4 = _mm_add_pd(x4, _mm_addsub_pd( _mm_mul_pd(h1_real, q4), _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1))));
#endif
	}

	h1_real = _mm_loaddup_pd(&hh_dbl[0]);
	h1_imag = _mm_loaddup_pd(&hh_dbl[1]);
	h1_real = _mm_xor_pd(h1_real, sign);
	h1_imag = _mm_xor_pd(h1_imag, sign);

	tmp1 = _mm_mul_pd(h1_imag, x1);
#ifdef __ELPA_USE_FMA__
	x1 = _mm_maddsub_pd(h1_real, x1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1)));
#else
	x1 = _mm_addsub_pd( _mm_mul_pd(h1_real, x1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1)));
#endif
	tmp2 = _mm_mul_pd(h1_imag, x2);
#ifdef __ELPA_USE_FMA__
	x2 = _mm_maddsub_pd(h1_real, x2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1)));
#else
	x2 = _mm_addsub_pd( _mm_mul_pd(h1_real, x2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1)));
#endif
	tmp3 = _mm_mul_pd(h1_imag, x3);
#ifdef __ELPA_USE_FMA__
	x3 = _mm_maddsub_pd(h1_real, x3, _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1)));
#else
	x3 = _mm_addsub_pd( _mm_mul_pd(h1_real, x3), _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1)));
#endif
	tmp4 = _mm_mul_pd(h1_imag, x4);
#ifdef __ELPA_USE_FMA__
	x4 = _mm_maddsub_pd(h1_real, x4, _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1)));
#else
	x4 = _mm_addsub_pd( _mm_mul_pd(h1_real, x4), _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1)));
#endif

	q1 = _mm_load_pd(&q_dbl[0]);
	q2 = _mm_load_pd(&q_dbl[2]);
	q3 = _mm_load_pd(&q_dbl[4]);
	q4 = _mm_load_pd(&q_dbl[6]);

	q1 = _mm_add_pd(q1, x1);
	q2 = _mm_add_pd(q2, x2);
	q3 = _mm_add_pd(q3, x3);
	q4 = _mm_add_pd(q4, x4);

	_mm_store_pd(&q_dbl[0], q1);
	_mm_store_pd(&q_dbl[2], q2);
	_mm_store_pd(&q_dbl[4], q3);
	_mm_store_pd(&q_dbl[6], q4);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm_loaddup_pd(&hh_dbl[i*2]);
		h1_imag = _mm_loaddup_pd(&hh_dbl[(i*2)+1]);

		q1 = _mm_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm_load_pd(&q_dbl[(2*i*ldq)+2]);
		q3 = _mm_load_pd(&q_dbl[(2*i*ldq)+4]);
		q4 = _mm_load_pd(&q_dbl[(2*i*ldq)+6]);

		tmp1 = _mm_mul_pd(h1_imag, x1);
#ifdef __ELPA_USE_FMA__
		q1 = _mm_add_pd(q1, _mm_maddsub_pd(h1_real, x1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#else
		q1 = _mm_add_pd(q1, _mm_addsub_pd( _mm_mul_pd(h1_real, x1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#endif
		tmp2 = _mm_mul_pd(h1_imag, x2);
#ifdef __ELPA_USE_FMA__
		q2 = _mm_add_pd(q2, _mm_maddsub_pd(h1_real, x2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#else
		q2 = _mm_add_pd(q2, _mm_addsub_pd( _mm_mul_pd(h1_real, x2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#endif
		tmp3 = _mm_mul_pd(h1_imag, x3);
#ifdef __ELPA_USE_FMA__
		q3 = _mm_add_pd(q3, _mm_maddsub_pd(h1_real, x3, _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1))));
#else
		q3 = _mm_add_pd(q3, _mm_addsub_pd( _mm_mul_pd(h1_real, x3), _mm_shuffle_pd(tmp3, tmp3, _MM_SHUFFLE2(0,1))));
#endif
		tmp4 = _mm_mul_pd(h1_imag, x4);
#ifdef __ELPA_USE_FMA__
		q4 = _mm_add_pd(q4, _mm_maddsub_pd(h1_real, x4, _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1))));
#else
		q4 = _mm_add_pd(q4, _mm_addsub_pd( _mm_mul_pd(h1_real, x4), _mm_shuffle_pd(tmp4, tmp4, _MM_SHUFFLE2(0,1))));
#endif

		_mm_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm_store_pd(&q_dbl[(2*i*ldq)+2], q2);
		_mm_store_pd(&q_dbl[(2*i*ldq)+4], q3);
		_mm_store_pd(&q_dbl[(2*i*ldq)+6], q4);
	}
}

462
static __forceinline void hh_trafo_complex_kernel_2_SSE_1hv_double(double complex* q, double complex* hh, int nb, int ldq)
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
{
	double* q_dbl = (double*)q;
	double* hh_dbl = (double*)hh;

	__m128d x1, x2;
	__m128d q1, q2;
	__m128d h1_real, h1_imag;
	__m128d tmp1, tmp2;
	int i=0;

	__m128d sign = (__m128d)_mm_set_epi64x(0x8000000000000000, 0x8000000000000000);

	x1 = _mm_load_pd(&q_dbl[0]);
	x2 = _mm_load_pd(&q_dbl[2]);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm_loaddup_pd(&hh_dbl[i*2]);
		h1_imag = _mm_loaddup_pd(&hh_dbl[(i*2)+1]);
#ifndef __ELPA_USE_FMA__
		// conjugate
		h1_imag = _mm_xor_pd(h1_imag, sign);
#endif

		q1 = _mm_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm_load_pd(&q_dbl[(2*i*ldq)+2]);

		tmp1 = _mm_mul_pd(h1_imag, q1);
#ifdef __ELPA_USE_FMA__
		x1 = _mm_add_pd(x1, _mm_msubadd_pd(h1_real, q1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#else
		x1 = _mm_add_pd(x1, _mm_addsub_pd( _mm_mul_pd(h1_real, q1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#endif
		tmp2 = _mm_mul_pd(h1_imag, q2);
#ifdef __ELPA_USE_FMA__
		x2 = _mm_add_pd(x2, _mm_msubadd_pd(h1_real, q2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#else
		x2 = _mm_add_pd(x2, _mm_addsub_pd( _mm_mul_pd(h1_real, q2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#endif
	}

	h1_real = _mm_loaddup_pd(&hh_dbl[0]);
	h1_imag = _mm_loaddup_pd(&hh_dbl[1]);
	h1_real = _mm_xor_pd(h1_real, sign);
	h1_imag = _mm_xor_pd(h1_imag, sign);

	tmp1 = _mm_mul_pd(h1_imag, x1);
#ifdef __ELPA_USE_FMA__
	x1 = _mm_maddsub_pd(h1_real, x1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1)));
#else
	x1 = _mm_addsub_pd( _mm_mul_pd(h1_real, x1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1)));
#endif
	tmp2 = _mm_mul_pd(h1_imag, x2);
#ifdef __ELPA_USE_FMA__
	x2 = _mm_maddsub_pd(h1_real, x2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1)));
#else
	x2 = _mm_addsub_pd( _mm_mul_pd(h1_real, x2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1)));
#endif

	q1 = _mm_load_pd(&q_dbl[0]);
	q2 = _mm_load_pd(&q_dbl[2]);

	q1 = _mm_add_pd(q1, x1);
	q2 = _mm_add_pd(q2, x2);

	_mm_store_pd(&q_dbl[0], q1);
	_mm_store_pd(&q_dbl[2], q2);

	for (i = 1; i < nb; i++)
	{
		h1_real = _mm_loaddup_pd(&hh_dbl[i*2]);
		h1_imag = _mm_loaddup_pd(&hh_dbl[(i*2)+1]);

		q1 = _mm_load_pd(&q_dbl[(2*i*ldq)+0]);
		q2 = _mm_load_pd(&q_dbl[(2*i*ldq)+2]);

		tmp1 = _mm_mul_pd(h1_imag, x1);
#ifdef __ELPA_USE_FMA__
		q1 = _mm_add_pd(q1, _mm_maddsub_pd(h1_real, x1, _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#else
		q1 = _mm_add_pd(q1, _mm_addsub_pd( _mm_mul_pd(h1_real, x1), _mm_shuffle_pd(tmp1, tmp1, _MM_SHUFFLE2(0,1))));
#endif
		tmp2 = _mm_mul_pd(h1_imag, x2);
#ifdef __ELPA_USE_FMA__
		q2 = _mm_add_pd(q2, _mm_maddsub_pd(h1_real, x2, _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#else
		q2 = _mm_add_pd(q2, _mm_addsub_pd( _mm_mul_pd(h1_real, x2), _mm_shuffle_pd(tmp2, tmp2, _MM_SHUFFLE2(0,1))));
#endif

		_mm_store_pd(&q_dbl[(2*i*ldq)+0], q1);
		_mm_store_pd(&q_dbl[(2*i*ldq)+2], q2);
	}
}