elpa_api.F90 56.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
#include "config-f90.h"
49
50
51
!> \brief Fortran module which provides the definition of the ELPA API. Do not use directly! Use the module "elpa"


52
53
54
55
56
module elpa_api
  use elpa_constants
  use, intrinsic :: iso_c_binding
  implicit none

57
58
59
60
  integer, private, parameter :: earliest_api_version = EARLIEST_API_VERSION !< Definition of the earliest API version supported
                                                                             !< with the current release
  integer, private, parameter :: current_api_version  = CURRENT_API_VERSION  !< Definition of the current API version

61
62
63
64
65
66
67
  logical, private :: initDone = .false.

  public :: elpa_t, &
      c_int, &
      c_double, c_double_complex, &
      c_float, c_float_complex

68
  !> \brief Abstract definition of the elpa_t type
69
70
71
  type, abstract :: elpa_t
    private

72
    !< these have to be public for proper bounds checking, sadly
73
74
75
76
77
78
79
80
    integer(kind=c_int), public, pointer :: na => NULL()
    integer(kind=c_int), public, pointer :: nev => NULL()
    integer(kind=c_int), public, pointer :: local_nrows => NULL()
    integer(kind=c_int), public, pointer :: local_ncols => NULL()
    integer(kind=c_int), public, pointer :: nblk => NULL()

    contains
      ! general
81
82
      procedure(elpa_setup_i),   deferred, public :: setup          !< method to setup an ELPA object
      procedure(elpa_destroy_i), deferred, public :: destroy        !< method to destroy an ELPA object
83

84
      ! key/value store
85
      generic, public :: set => &                                   !< export a method to set integer/double key/values
86
87
          elpa_set_integer, &
          elpa_set_double
88
89
90
91

      generic, public :: get => &                                   !< export a method to get integer/double key/values
          elpa_get_integer, &
          elpa_get_double
92

93
94
      procedure(elpa_is_set_i),  deferred, public :: is_set         !< method to check whether key/value is set
      procedure(elpa_can_set_i), deferred, public :: can_set        !< method to check whether key/value can be set
95

96
      ! Timer
97
98
99
      procedure(elpa_get_time_i), deferred, public :: get_time
      procedure(elpa_print_times_i), deferred, public :: print_times

100
      ! Actual math routines
Andreas Marek's avatar
Andreas Marek committed
101
102
103
      generic, public :: eigenvectors => &                          !< method eigenvectors for solving the full eigenvalue problem
          elpa_eigenvectors_d, &                                    !< the eigenvalues and (parts of) the eigenvectors are computed
          elpa_eigenvectors_f, &                                    !< for symmetric real valued / hermitian complex valued matrices
104
105
          elpa_eigenvectors_dc, &
          elpa_eigenvectors_fc
106

Andreas Marek's avatar
Andreas Marek committed
107
108
109
110
111
112
      generic, public :: eigenvalues => &                           !< method eigenvalues for solving the eigenvalue problem
          elpa_eigenvalues_d, &                                     !< only the eigenvalues are computed
          elpa_eigenvalues_f, &                                     !< for symmetric real valued / hermitian complex valued matrices
          elpa_eigenvalues_dc, &
          elpa_eigenvalues_fc

113
      generic, public :: hermitian_multiply => &                    !< method for a "hermitian" multiplication of matrices a and b
114
          elpa_hermitian_multiply_d, &                              !< for real valued matrices:   a**T * b
115
          elpa_hermitian_multiply_dc, &                             !< for complex valued matrices a**H * b
116
117
          elpa_hermitian_multiply_f, &
          elpa_hermitian_multiply_fc
118

119
      generic, public :: cholesky => &                              !< method for the cholesky factorisation of matrix a
120
121
122
123
          elpa_cholesky_d, &
          elpa_cholesky_f, &
          elpa_cholesky_dc, &
          elpa_cholesky_fc
124

Andreas Marek's avatar
Andreas Marek committed
125
      generic, public :: invert_triangular => &                     !< method to invert a upper triangular matrix a
126
127
128
129
          elpa_invert_trm_d, &
          elpa_invert_trm_f, &
          elpa_invert_trm_dc, &
          elpa_invert_trm_fc
130

131
      generic, private :: solve_tridi => &                          !< method to solve the eigenvalue problem for a tridiagonal
132
          elpa_solve_tridi_d, &                                     !< matrix
133
          elpa_solve_tridi_f
134
135


136
      !> \brief private methods of elpa_t type. NOT accessible for the user
137
138
139
140
      ! privates
      procedure(elpa_set_integer_i), deferred, private :: elpa_set_integer
      procedure(elpa_set_double_i),  deferred, private :: elpa_set_double

141
142
143
      procedure(elpa_get_integer_i), deferred, private :: elpa_get_integer
      procedure(elpa_get_double_i),  deferred, private :: elpa_get_double

144
145
146
147
      procedure(elpa_eigenvectors_d_i),    deferred, private :: elpa_eigenvectors_d
      procedure(elpa_eigenvectors_f_i),    deferred, private :: elpa_eigenvectors_f
      procedure(elpa_eigenvectors_dc_i), deferred, private :: elpa_eigenvectors_dc
      procedure(elpa_eigenvectors_fc_i), deferred, private :: elpa_eigenvectors_fc
148

Andreas Marek's avatar
Andreas Marek committed
149
150
151
152
153
      procedure(elpa_eigenvalues_d_i),    deferred, private :: elpa_eigenvalues_d
      procedure(elpa_eigenvalues_f_i),    deferred, private :: elpa_eigenvalues_f
      procedure(elpa_eigenvalues_dc_i), deferred, private :: elpa_eigenvalues_dc
      procedure(elpa_eigenvalues_fc_i), deferred, private :: elpa_eigenvalues_fc

154
155
156
157
      procedure(elpa_hermitian_multiply_d_i),  deferred, private :: elpa_hermitian_multiply_d
      procedure(elpa_hermitian_multiply_f_i),  deferred, private :: elpa_hermitian_multiply_f
      procedure(elpa_hermitian_multiply_dc_i), deferred, private :: elpa_hermitian_multiply_dc
      procedure(elpa_hermitian_multiply_fc_i), deferred, private :: elpa_hermitian_multiply_fc
158

159
160
161
162
      procedure(elpa_cholesky_d_i),    deferred, private :: elpa_cholesky_d
      procedure(elpa_cholesky_f_i),    deferred, private :: elpa_cholesky_f
      procedure(elpa_cholesky_dc_i), deferred, private :: elpa_cholesky_dc
      procedure(elpa_cholesky_fc_i), deferred, private :: elpa_cholesky_fc
163

164
165
166
167
      procedure(elpa_invert_trm_d_i),    deferred, private :: elpa_invert_trm_d
      procedure(elpa_invert_trm_f_i),    deferred, private :: elpa_invert_trm_f
      procedure(elpa_invert_trm_dc_i), deferred, private :: elpa_invert_trm_dc
      procedure(elpa_invert_trm_fc_i), deferred, private :: elpa_invert_trm_fc
168

169
170
      procedure(elpa_solve_tridi_d_i), deferred, private :: elpa_solve_tridi_d
      procedure(elpa_solve_tridi_f_i), deferred, private :: elpa_solve_tridi_f
171
172
173
  end type elpa_t


174
175
176
177
178
  !> \brief definition of helper function to get C strlen
  !> Parameters
  !> \details
  !> \param   ptr         type(c_ptr) : pointer to string
  !> \result  size        integer(kind=c_size_t) : length of string
179
180
181
  interface
    pure function elpa_strlen_c(ptr) result(size) bind(c, name="strlen")
      use, intrinsic :: iso_c_binding
182
      implicit none
183
184
185
186
187
      type(c_ptr), intent(in), value :: ptr
      integer(kind=c_size_t) :: size
    end function
  end interface

188
189
190
191
192
  !> \brief abstract definition of setup method
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \result  error       integer : error code, which can be queried with elpa_strerr()
193
  abstract interface
194
    function elpa_setup_i(self) result(error)
195
      import elpa_t
196
      implicit none
197
      class(elpa_t), intent(inout) :: self
198
      integer :: error
199
200
201
    end function
  end interface

202
203
204
205
206
207
208
  !> \brief abstract definition of set method for integer values
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \param   name        string: the name of the key
  !> \param   value       integer : the value to set for the key
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr()
209
  abstract interface
210
    subroutine elpa_set_integer_i(self, name, value, error)
211
212
      use iso_c_binding
      import elpa_t
213
      implicit none
214
215
216
      class(elpa_t)                   :: self
      character(*), intent(in)        :: name
      integer(kind=c_int), intent(in) :: value
217
      integer, optional               :: error
218
219
220
    end subroutine
  end interface

221
222
223
224
225
  !> \brief abstract definition of get method for integer values
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \param   name        string: the name of the key
226
  !> \param   value       integer : the value corresponding to the key
227
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr()
228
  abstract interface
229
    subroutine elpa_get_integer_i(self, name, value, error)
230
231
      use iso_c_binding
      import elpa_t
232
      implicit none
233
234
235
      class(elpa_t)                  :: self
      character(*), intent(in)       :: name
      integer(kind=c_int)            :: value
236
      integer, intent(out), optional :: error
237
    end subroutine
238
239
  end interface

240
241
242
243
244
245
246
  !> \brief abstract definition of is_set method for integer values
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \param   name        string: the name of the key
  !> \result  state       integer : 1 is set, 0 if not, else a negativ error code
  !>                                                    which can be queried with elpa_strerr
247
  abstract interface
248
    function elpa_is_set_i(self, name) result(state)
249
      import elpa_t
250
      implicit none
251
252
      class(elpa_t)            :: self
      character(*), intent(in) :: name
253
      integer                  :: state
254
255
256
    end function
  end interface

257
258
259
260
261
262
263
264
  !> \brief abstract definition of can_set method for integer values
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \param   name        string: the name of the key
  !> \param   value       integer: the valye to associate with the key
  !> \result  state       integer : 1 is set, 0 if not, else a negativ error code
  !>                                                    which can be queried with elpa_strerr
265
  abstract interface
266
    function elpa_can_set_i(self, name, value) result(state)
267
      import elpa_t, c_int
268
      implicit none
269
270
271
      class(elpa_t)                   :: self
      character(*), intent(in)        :: name
      integer(kind=c_int), intent(in) :: value
272
      integer                         :: state
273
    end function
274
275
  end interface

276
277
278
279
280
281
282
  !> \brief abstract definition of set method for double values
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \param   name        string: the name of the key
  !? \param   value       double: the value to associate with the key
  !> \param   error       integer. optional : error code, which can be queried with elpa_strerr
283
  abstract interface
284
    subroutine elpa_set_double_i(self, name, value, error)
285
286
      use iso_c_binding
      import elpa_t
287
      implicit none
288
289
290
      class(elpa_t)                   :: self
      character(*), intent(in)        :: name
      real(kind=c_double), intent(in) :: value
291
      integer, optional               :: error
292
293
294
    end subroutine
  end interface

295
296
297
298
299
  !> \brief abstract definition of get method for double values
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \param   name        string: the name of the key
300
  !> \param   value       double: the value associated with the key
301
  !> \param   error       integer. optional : error code, which can be queried with elpa_strerr
302
  abstract interface
303
    subroutine elpa_get_double_i(self, name, value, error)
304
305
      use iso_c_binding
      import elpa_t
306
      implicit none
307
308
309
      class(elpa_t)                  :: self
      character(*), intent(in)       :: name
      real(kind=c_double)            :: value
310
      integer, intent(out), optional :: error
311
    end subroutine
312
313
  end interface

314
315
316
317
318
319
  !> \brief abstract definition of associate method for integer pointers
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \param   name        string: the name of the key
  !> \result  value       integer pointer: the value associated with the key
320
321
322
323
  abstract interface
    function elpa_associate_int_i(self, name) result(value)
      use iso_c_binding
      import elpa_t
324
      implicit none
325
326
327
328
329
330
      class(elpa_t)                  :: self
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
    end function
  end interface

331
332
333

  ! Timer routines

334
335
336
337
338
339
  !> \brief abstract definition of get_time method to querry the timer
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
  !> \param   name1..6    string: the name of the timer entry, supports up to 6 levels
  !> \result  s           double: the time for the entry name1..6
340
341
342
  abstract interface
    function elpa_get_time_i(self, name1, name2, name3, name4, name5, name6) result(s)
      import elpa_t, c_double
343
      implicit none
344
345
346
347
348
349
350
      class(elpa_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s
    end function
  end interface

351
352
353
354
  !> \brief abstract definition of print method for timer
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t): the ELPA object
355
356
357
  abstract interface
    subroutine elpa_print_times_i(self)
      import elpa_t
358
      implicit none
359
360
361
362
363
      class(elpa_t), intent(in) :: self
    end subroutine
  end interface


364
  ! Actual math routines
365

366
  !> \brief abstract definition of interface to solve double real eigenvalue problem
367
368
369
370
371
372
373
374
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
  !>  blocksize, the number of eigenvectors
  !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
  !>  It is possible to change the behaviour of the method by setting tunable parameters with the
  !>  class method "set"
375
376
377
378
379
380
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           double real matrix a: defines the problem to solve
  !> \param   ev          double real: on output stores the eigenvalues
  !> \param   q           double real matrix q: on output stores the eigenvalues
381
  !> \result  error       integer, optional : error code, which can be queried with elpa_strerr
382
  abstract interface
383
    subroutine elpa_eigenvectors_d_i(self, a, ev, q, error)
384
385
      use iso_c_binding
      import elpa_t
386
      implicit none
387
388
389
390
391
392
393
394
      class(elpa_t)       :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

395
      integer, optional   :: error
396
397
398
    end subroutine
  end interface

399
  !> \brief abstract definition of interface to solve single real eigenvalue problem
400
401
402
403
404
405
406
407
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
  !>  blocksize, the number of eigenvectors
  !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
  !>  It is possible to change the behaviour of the method by setting tunable parameters with the
  !>  class method "set"
408
409
410
411
412
413
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           single real matrix a: defines the problem to solve
  !> \param   ev          single real: on output stores the eigenvalues
  !> \param   q           single real matrix q: on output stores the eigenvalues
414
  !> \result  error       integer, optional : error code, which can be queried with elpa_strerr
415
  abstract interface
416
    subroutine elpa_eigenvectors_f_i(self, a, ev, q, error)
417
418
      use iso_c_binding
      import elpa_t
419
      implicit none
420
421
422
423
424
425
426
427
      class(elpa_t)       :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

428
      integer, optional   :: error
429
430
431
    end subroutine
  end interface

432
  !> \brief abstract definition of interface to solve double complex eigenvalue problem
433
434
435
436
437
438
439
440
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
  !>  blocksize, the number of eigenvectors
  !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
  !>  It is possible to change the behaviour of the method by setting tunable parameters with the
  !>  class method "set"
441
442
443
444
445
446
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           double complex matrix a: defines the problem to solve
  !> \param   ev          double real: on output stores the eigenvalues
  !> \param   q           double complex matrix q: on output stores the eigenvalues
447
  !> \result  error       integer, optional : error code, which can be queried with elpa_strerr
448
  abstract interface
449
    subroutine elpa_eigenvectors_dc_i(self, a, ev, q, error)
450
451
      use iso_c_binding
      import elpa_t
452
      implicit none
453
454
455
456
457
458
459
460
461
      class(elpa_t)                  :: self

#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

462
      integer, optional              :: error
463
464
465
    end subroutine
  end interface

466
  !> \brief abstract definition of interface to solve single complex eigenvalue problem
467
468
469
470
471
472
473
474
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
  !>  blocksize, the number of eigenvectors
  !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
  !>  It is possible to change the behaviour of the method by setting tunable parameters with the
  !>  class method "set"
475
476
477
478
479
480
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           single complex matrix a: defines the problem to solve
  !> \param   ev          single real: on output stores the eigenvalues
  !> \param   q           single complex matrix q: on output stores the eigenvalues
481
  !> \result  error       integer, optional : error code, which can be queried with elpa_strerr
482
  abstract interface
483
    subroutine elpa_eigenvectors_fc_i(self, a, ev, q, error)
484
485
      use iso_c_binding
      import elpa_t
486
      implicit none
487
488
489
490
491
492
493
494
      class(elpa_t)                 :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)            :: ev(self%na)

495
      integer, optional             :: error
496
497
498
    end subroutine
  end interface

Andreas Marek's avatar
Andreas Marek committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630



  !> \brief abstract definition of interface to solve double real eigenvalue problem
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
  !>  blocksize, the number of eigenvectors
  !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
  !>  It is possible to change the behaviour of the method by setting tunable parameters with the
  !>  class method "set"
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           double real matrix a: defines the problem to solve
  !> \param   ev          double real: on output stores the eigenvalues
  !> \result  error       integer, optional : error code, which can be queried with elpa_strerr
  abstract interface
    subroutine elpa_eigenvalues_d_i(self, a, ev, error)
      use iso_c_binding
      import elpa_t
      implicit none
      class(elpa_t)       :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
    end subroutine
  end interface

  !> \brief abstract definition of interface to solve single real eigenvalue problem
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
  !>  blocksize, the number of eigenvectors
  !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
  !>  It is possible to change the behaviour of the method by setting tunable parameters with the
  !>  class method "set"
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           single real matrix a: defines the problem to solve
  !> \param   ev          single real: on output stores the eigenvalues
  !> \result  error       integer, optional : error code, which can be queried with elpa_strerr
  abstract interface
    subroutine elpa_eigenvalues_f_i(self, a, ev, error)
      use iso_c_binding
      import elpa_t
      implicit none
      class(elpa_t)       :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
    end subroutine
  end interface

  !> \brief abstract definition of interface to solve double complex eigenvalue problem
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
  !>  blocksize, the number of eigenvectors
  !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
  !>  It is possible to change the behaviour of the method by setting tunable parameters with the
  !>  class method "set"
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           double complex matrix a: defines the problem to solve
  !> \param   ev          double real: on output stores the eigenvalues
  !> \result  error       integer, optional : error code, which can be queried with elpa_strerr
  abstract interface
    subroutine elpa_eigenvalues_dc_i(self, a, ev, error)
      use iso_c_binding
      import elpa_t
      implicit none
      class(elpa_t)                  :: self

#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

      integer, optional              :: error
    end subroutine
  end interface

  !> \brief abstract definition of interface to solve single complex eigenvalue problem
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
  !>  blocksize, the number of eigenvectors
  !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
  !>  It is possible to change the behaviour of the method by setting tunable parameters with the
  !>  class method "set"
  !> Parameters
  !> \details
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           single complex matrix a: defines the problem to solve
  !> \param   ev          single real: on output stores the eigenvalues
  !> \result  error       integer, optional : error code, which can be queried with elpa_strerr
  abstract interface
    subroutine elpa_eigenvalues_fc_i(self, a, ev, error)
      use iso_c_binding
      import elpa_t
      implicit none
      class(elpa_t)                 :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)            :: ev(self%na)

      integer, optional             :: error
    end subroutine
  end interface

Andreas Marek's avatar
Andreas Marek committed
631
  !> \brief abstract definition of interface to compute C : = A**T * B for double real matrices
632
633
634
  !>         where   A is a square matrix (self%a,self%na) which is optionally upper or lower triangular
  !>                 B is a (self%na,ncb) matrix
  !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar
Andreas Marek committed
635
636
637
638
  !>                   triangle may be computed
  !>
  !> the MPI commicators are already known to the type. Thus the class method "setup" must be called
  !> BEFORE this method is used
639
  !> \details
Andreas Marek's avatar
Andreas Marek committed
640
  !>
641
  !> \param   self                class(elpa_t), the ELPA object
Andreas Marek's avatar
Andreas Marek committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
  !> \param  uplo_a               'U' if A is upper triangular
  !>                              'L' if A is lower triangular
  !>                              anything else if A is a full matrix
  !>                              Please note: This pertains to the original A (as set in the calling program)
  !>                                           whereas the transpose of A is used for calculations
  !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !>                              i.e. it may contain arbitrary numbers
  !> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !>                              'L' if only the upper diagonal part of C is needed
  !>                              anything else if the full matrix C is needed
  !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !> \param ncb                   Number of columns  of global matrices B and C
  !> \param a                     matrix a
656
657
  !> \param self%local_nrows      number of rows of local (sub) matrix a, set with method set("local_nrows,value")
  !> \param self%local_ncols      number of columns of local (sub) matrix a, set with method set("local_ncols,value")
Andreas Marek's avatar
Andreas Marek committed
658
659
660
661
662
663
664
665
  !> \param b                     matrix b
  !> \param nrows_b               number of rows of local (sub) matrix b
  !> \param ncols_b               number of columns of local (sub) matrix b
  !> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !> \param c                     matrix c
  !> \param nrows_c               number of rows of local (sub) matrix c
  !> \param ncols_c               number of columns of local (sub) matrix c
  !> \param error                 optional argument, error code which can be queried with elpa_strerr
666
  abstract interface
667
    subroutine elpa_hermitian_multiply_d_i (self,uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
668
                                          c, nrows_c, ncols_c, error)
669
670
      use iso_c_binding
      import elpa_t
671
      implicit none
672
673
      class(elpa_t)                   :: self
      character*1                     :: uplo_a, uplo_c
674
      integer(kind=c_int), intent(in) :: nrows_b, ncols_b, nrows_c, ncols_c, ncb
675
#ifdef USE_ASSUMED_SIZE
676
      real(kind=c_double)             :: a(self%local_nrows,*), b(nrows_b,*), c(nrows_c,*)
677
#else
678
      real(kind=c_double)             :: a(self%local_nrows,self%local_ncols), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
679
#endif
680
      integer, optional               :: error
681
682
683
    end subroutine
  end interface

684
  !> \brief abstract definition of interface to compute C : = A**T * B
685
686
687
  !>         where   A is a square matrix (self%na,self%na) which is optionally upper or lower triangular
  !>                 B is a (self%na,ncb) matrix
  !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar
Andreas Marek committed
688
689
690
691
  !>                   triangle may be computed
  !>
  !> the MPI commicators are already known to the type. Thus the class method "setup" must be called
  !> BEFORE this method is used
692
  !> \details
Andreas Marek's avatar
Andreas Marek committed
693
  !>
694
  !> \param   self                class(elpa_t), the ELPA object
Andreas Marek's avatar
Andreas Marek committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
  !> \param  uplo_a               'U' if A is upper triangular
  !>                              'L' if A is lower triangular
  !>                              anything else if A is a full matrix
  !>                              Please note: This pertains to the original A (as set in the calling program)
  !>                                           whereas the transpose of A is used for calculations
  !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !>                              i.e. it may contain arbitrary numbers
  !> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !>                              'L' if only the upper diagonal part of C is needed
  !>                              anything else if the full matrix C is needed
  !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !> \param ncb                   Number of columns  of global matrices B and C
  !> \param a                     matrix a
709
710
  !> \param self%local_nrows      number of rows of local (sub) matrix a, set with method set("local_nrows",value)
  !> \param self%local_ncols      number of columns of local (sub) matrix a, set with method set("local_nrows",value)
Andreas Marek's avatar
Andreas Marek committed
711
712
713
714
715
716
717
718
  !> \param b                     matrix b
  !> \param nrows_b               number of rows of local (sub) matrix b
  !> \param ncols_b               number of columns of local (sub) matrix b
  !> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !> \param c                     matrix c
  !> \param nrows_c               number of rows of local (sub) matrix c
  !> \param ncols_c               number of columns of local (sub) matrix c
  !> \param error                 optional argument, error code which can be queried with elpa_strerr
719
  abstract interface
720
    subroutine elpa_hermitian_multiply_f_i (self,uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
721
                                          c, nrows_c, ncols_c, error)
722
723
      use iso_c_binding
      import elpa_t
724
      implicit none
725
726
      class(elpa_t)                   :: self
      character*1                     :: uplo_a, uplo_c
727
      integer(kind=c_int), intent(in) :: nrows_b, ncols_b, nrows_c, ncols_c, ncb
728
#ifdef USE_ASSUMED_SIZE
729
      real(kind=c_float)              :: a(self%local_nrows,*), b(nrows_b,*), c(nrows_c,*)
730
#else
731
      real(kind=c_float)              :: a(self%local_nrows,self%local_ncols), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
732
#endif
733
      integer, optional               :: error
734
735
736
    end subroutine
  end interface

737
  !> \brief abstract definition of interface to compute C : = A**H * B
738
739
740
  !>         where   A is a square matrix (self%na,self%a) which is optionally upper or lower triangular
  !>                 B is a (self%na,ncb) matrix
  !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar
Andreas Marek committed
741
742
743
744
  !>                   triangle may be computed
  !>
  !> the MPI commicators are already known to the type. Thus the class method "setup" must be called
  !> BEFORE this method is used
745
  !> \details
Andreas Marek's avatar
Andreas Marek committed
746
  !>
747
  !> \param   self                class(elpa_t), the ELPA object
Andreas Marek's avatar
Andreas Marek committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
  !> \param  uplo_a               'U' if A is upper triangular
  !>                              'L' if A is lower triangular
  !>                              anything else if A is a full matrix
  !>                              Please note: This pertains to the original A (as set in the calling program)
  !>                                           whereas the transpose of A is used for calculations
  !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !>                              i.e. it may contain arbitrary numbers
  !> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !>                              'L' if only the upper diagonal part of C is needed
  !>                              anything else if the full matrix C is needed
  !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !> \param ncb                   Number of columns  of global matrices B and C
  !> \param a                     matrix a
762
763
  !> \param self%local_nrows      number of rows of local (sub) matrix a, set with the method set("local_nrows",value)
  !> \param self%local_ncols      number of columns of local (sub) matrix a, set with the method set("local_ncols",value)
Andreas Marek's avatar
Andreas Marek committed
764
765
766
767
768
769
770
771
  !> \param b                     matrix b
  !> \param nrows_b               number of rows of local (sub) matrix b
  !> \param ncols_b               number of columns of local (sub) matrix b
  !> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !> \param c                     matrix c
  !> \param nrows_c               number of rows of local (sub) matrix c
  !> \param ncols_c               number of columns of local (sub) matrix c
  !> \param error                 optional argument, error code which can be queried with elpa_strerr
772
  abstract interface
773
    subroutine elpa_hermitian_multiply_dc_i (self,uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
774
                                          c, nrows_c, ncols_c, error)
775
776
      use iso_c_binding
      import elpa_t
777
      implicit none
778
779
      class(elpa_t)                   :: self
      character*1                     :: uplo_a, uplo_c
780
      integer(kind=c_int), intent(in) :: nrows_b, ncols_b, nrows_c, ncols_c, ncb
781
#ifdef USE_ASSUMED_SIZE
782
      complex(kind=c_double_complex)  :: a(self%local_nrows,*), b(nrows_b,*), c(nrows_c,*)
783
#else
784
      complex(kind=c_double_complex)  :: a(self%local_nrows,self%local_ncols), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
785
#endif
786
      integer, optional               :: error
787
788
789
    end subroutine
  end interface

790
  !> \brief abstract definition of interface to compute C : = A**H * B
791
792
793
  !>         where   A is a square matrix (self%na,self%na) which is optionally upper or lower triangular
  !>                 B is a (self%na,ncb) matrix
  !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar
Andreas Marek committed
794
795
796
797
  !>                   triangle may be computed
  !>
  !> the MPI commicators are already known to the type. Thus the class method "setup" must be called
  !> BEFORE this method is used
798
  !> \details
Andreas Marek's avatar
Andreas Marek committed
799
  !>
800
  !> \param   self                class(elpa_t), the ELPA object
Andreas Marek's avatar
Andreas Marek committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
  !> \param  uplo_a               'U' if A is upper triangular
  !>                              'L' if A is lower triangular
  !>                              anything else if A is a full matrix
  !>                              Please note: This pertains to the original A (as set in the calling program)
  !>                                           whereas the transpose of A is used for calculations
  !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
  !>                              i.e. it may contain arbitrary numbers
  !> \param uplo_c                'U' if only the upper diagonal part of C is needed
  !>                              'L' if only the upper diagonal part of C is needed
  !>                              anything else if the full matrix C is needed
  !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
  !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
  !> \param ncb                   Number of columns  of global matrices B and C
  !> \param a                     matrix a
815
816
  !> \param self%local_nrows      number of rows of local (sub) matrix a, set with class method set("local_nrows",value)
  !> \param self%local_ncols      number of columns of local (sub) matrix a, set with class method set("local_ncols",value)
Andreas Marek's avatar
Andreas Marek committed
817
818
819
820
821
822
823
824
  !> \param b                     matrix b
  !> \param nrows_b               number of rows of local (sub) matrix b
  !> \param ncols_b               number of columns of local (sub) matrix b
  !> \param nblk                  blocksize of cyclic distribution, must be the same in both directions!
  !> \param c                     matrix c
  !> \param nrows_c               number of rows of local (sub) matrix c
  !> \param ncols_c               number of columns of local (sub) matrix c
  !> \param error                 optional argument, error code which can be queried with elpa_strerr
825
  abstract interface
826
    subroutine elpa_hermitian_multiply_fc_i (self, uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
827
                                          c, nrows_c, ncols_c, error)
828
829
      use iso_c_binding
      import elpa_t
830
      implicit none
831
832
      class(elpa_t)                   :: self
      character*1                     :: uplo_a, uplo_c
833
      integer(kind=c_int), intent(in) :: nrows_b, ncols_b, nrows_c, ncols_c, ncb
834
#ifdef USE_ASSUMED_SIZE
835
      complex(kind=c_float_complex)   :: a(self%local_nrows,*), b(nrows_b,*), c(nrows_c,*)
836
#else
837
      complex(kind=c_float_complex)   :: a(self%local_nrows,self%local_ncols), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
838
#endif
839
      integer, optional               :: error
840
841
842
    end subroutine
  end interface

843
  !> \brief abstract definition of interface to do a cholesky decomposition of a double real matrix
844
845
846
847
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
848
  !>
849
850
851
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           double real matrix: the matrix to be decomposed
852
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
853
  abstract interface
854
    subroutine elpa_cholesky_d_i (self, a, error)
855
856
      use iso_c_binding
      import elpa_t
857
      implicit none
858
859
860
861
862
863
      class(elpa_t)                   :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double)             :: a(self%local_nrows,*)
#else
      real(kind=c_double)             :: a(self%local_nrows,self%local_ncols)
#endif
864
      integer, optional               :: error
865
866
867
    end subroutine
  end interface

868
  !> \brief abstract definition of interface to do a cholesky decomposition of a single real matrix
869
870
871
872
873
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !> 
874
875
876
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           single real matrix: the matrix to be decomposed
877
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
878
  abstract interface
879
    subroutine elpa_cholesky_f_i(self, a, error)
880
881
      use iso_c_binding
      import elpa_t
882
      implicit none
883
884
885
886
887
888
      class(elpa_t)                   :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)              :: a(self%local_nrows,*)
#else
      real(kind=c_float)              :: a(self%local_nrows,self%local_ncols)
#endif
889
      integer, optional               :: error
890
891
892
    end subroutine
  end interface

893
  !> \brief abstract definition of interface to do a cholesky decomposition of a double complex matrix
894
895
896
897
898
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !> 
899
900
901
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           double complex matrix: the matrix to be decomposed
902
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
903
  abstract interface
904
    subroutine elpa_cholesky_dc_i (self, a, error)
905
906
      use iso_c_binding
      import elpa_t
907
      implicit none
908
909
910
911
912
913
      class(elpa_t)                   :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex)  :: a(self%local_nrows,*)
#else
      complex(kind=c_double_complex)  :: a(self%local_nrows,self%local_ncols)
#endif
914
      integer, optional               :: error
915
916
917
    end subroutine
  end interface

918
  !> \brief abstract definition of interface to do a cholesky decomposition of a single complex matrix
919
920
921
922
923
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !> 
924
925
926
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           single complex matrix: the matrix to be decomposed
927
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
928
  abstract interface
929
    subroutine elpa_cholesky_fc_i (self, a, error)
930
931
      use iso_c_binding
      import elpa_t
932
      implicit none
933
934
935
936
937
938
      class(elpa_t)                   :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex)   :: a(self%local_nrows,*)
#else
      complex(kind=c_float_complex)   :: a(self%local_nrows,self%local_ncols)
#endif
939
      integer, optional               :: error
940
941
942
    end subroutine
  end interface

943
  !> \brief abstract definition of interface to invert a triangular double real matrix
944
945
946
947
948
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
949
950
951
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           double real matrix: the matrix to be inverted
952
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
953
  abstract interface
954
    subroutine elpa_invert_trm_d_i (self, a, error)
955
956
      use iso_c_binding
      import elpa_t
957
      implicit none
958
959
960
961
962
963
      class(elpa_t)                   :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double)             :: a(self%local_nrows,*)
#else
      real(kind=c_double)             :: a(self%local_nrows,self%local_ncols)
#endif
964
      integer, optional               :: error
965
966
967
    end subroutine
  end interface

968
  !> \brief abstract definition of interface to invert a triangular single real matrix
969
  !> Parameters
970
971
972
973
974
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
975
976
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           single real matrix: the matrix to be inverted
977
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
978
  abstract interface
979
    subroutine elpa_invert_trm_f_i (self, a, error)
980
981
      use iso_c_binding
      import elpa_t
982
      implicit none
983
984
985
986
987
988
      class(elpa_t)                   :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)              :: a(self%local_nrows,*)
#else
      real(kind=c_float)              :: a(self%local_nrows,self%local_ncols)
#endif
989
      integer, optional               :: error
990
991
992
    end subroutine
  end interface

993
  !> \brief abstract definition of interface to invert a triangular double complex matrix
994
995
996
997
998
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
999
1000
1001
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           double complex matrix: the matrix to be inverted
1002
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
1003
  abstract interface
1004
    subroutine elpa_invert_trm_dc_i (self, a, error)
1005
1006
      use iso_c_binding
      import elpa_t
1007
      implicit none
1008
1009
1010
1011
1012
1013
      class(elpa_t)                   :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex)  :: a(self%local_nrows,*)
#else
      complex(kind=c_double_complex)  :: a(self%local_nrows,self%local_ncols)
#endif
1014
      integer, optional               :: error
1015
1016
1017
    end subroutine
  end interface

1018
  !> \brief abstract definition of interface to invert a triangular single complex matrix
1019
1020
1021
1022
1023
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
1024
1025
1026
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
  !> \param   a           single complex matrix: the matrix to be inverted
1027
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
1028
  abstract interface
1029
    subroutine elpa_invert_trm_fc_i (self, a, error)
1030
1031
      use iso_c_binding
      import elpa_t
1032
      implicit none
1033
1034
1035
1036
1037
1038
      class(elpa_t)                   :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex)   :: a(self%local_nrows,*)
#else
      complex(kind=c_float_complex)   :: a(self%local_nrows,self%local_ncols)
#endif
1039
      integer, optional               :: error
1040
1041
1042
    end subroutine
  end interface

1043
  !> \brief abstract definition of interface to solve the eigenvalue problem for a double-precision real valued tridiangular matrix
1044
1045
1046
1047
1048
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
1049
1050
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
1051
1052
  !> \param   d           double real 1d array: the diagonal elements of a matrix defined in setup, on output the eigenvalues
  !>                      in ascending order
1053
1054
  !> \param   e           double real 1d array: the subdiagonal elements of a matrix defined in setup
  !> \param   q           double real matrix: on output contains the eigenvectors
1055
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
1056
  abstract interface
1057
    subroutine elpa_solve_tridi_d_i (self, d, e, q, error)
1058
1059
      use iso_c_binding
      import elpa_t
1060
      implicit none
1061
1062
1063
1064
1065
1066
1067
      class(elpa_t)                   :: self
      real(kind=c_double)             :: d(self%na), e(self%na)
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double)             :: q(self%local_nrows,*)
#else
      real(kind=c_double)             :: q(self%local_nrows,self%local_ncols)
#endif
1068
      integer, optional               :: error
1069
1070
1071
    end subroutine
  end interface

1072
  !> \brief abstract definition of interface to solve the eigenvalue problem for a single-precision real valued tridiangular matrix
1073
1074
1075
1076
1077
  !>
  !>  The dimensions of the matrix a (locally ditributed and global), the block-cylic-distribution
  !>  block size, and the MPI communicators are already known to the object and MUST be set BEFORE
  !>  with the class method "setup"
  !>
1078
1079
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
1080
1081
  !> \param   d           single real 1d array: the diagonal elements of a matrix defined in setup, on output the eigenvalues
  !>                      in ascending order
1082
1083
  !> \param   e           single real 1d array: the subdiagonal elements of a matrix defined in setup
  !> \param   q           single real matrix: on output contains the eigenvectors
1084
  !> \param   error       integer, optional : error code, which can be queried with elpa_strerr
1085
  abstract interface
1086
    subroutine elpa_solve_tridi_f_i (self, d, e, q, error)
1087
1088
      use iso_c_binding
      import elpa_t
1089
      implicit none
1090
1091
1092
1093
1094
1095
1096
      class(elpa_t)                   :: self
      real(kind=c_float)              :: d(self%na), e(self%na)
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)              :: q(self%local_nrows,*)
#else
      real(kind=c_float)              :: q(self%local_nrows,self%local_ncols)
#endif
1097
      integer, optional               :: error
1098
1099
1100
    end subroutine
  end interface

1101
  !> \brief abstract definition of interface to destroy an ELPA object
1102
1103
  !> Parameters
  !> \param   self        class(elpa_t), the ELPA object
1104
1105
1106
  abstract interface
    subroutine elpa_destroy_i(self)
      import elpa_t
1107
      implicit none
1108
1109
1110
1111
1112
1113
      class(elpa_t) :: self
    end subroutine
  end interface

  contains

1114
1115
    !> \brief function to intialise the ELPA library
    !> Parameters
1116
1117
    !> \param   api_version integer: api_version that ELPA should use
    !> \result  error       integer: error code, which can be queried with elpa_strerr
1118
1119
1120
    !
    !c> int elpa_init(int api_version);
    function elpa_init(api_version) result(error) bind(C, name="elpa_init")
1121
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
1122
1123
1124
      use iso_c_binding
      integer(kind=c_int), intent(in), value :: api_version
      integer(kind=c_int)                    :: error
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

      if (earliest_api_version <= api_version .and. api_version <= current_api_version) then
        initDone = .true.
        error = ELPA_OK
      else
        write(error_unit, "(a,i0,a)") "ELPA: Error API version ", api_version," is not supported by this library"
        error = ELPA_ERROR
      endif
    end function

1135
1136
    !> \brief function to check whether the ELPA library has been correctly initialised
    !> Parameters
1137
    !> \result  state      logical: state is either ELPA_OK or ELPA_ERROR, which can be queried with elpa_strerr
1138
    function elpa_initialized() result(state)
1139
1140
1141
1142
1143
1144
      integer :: state
      if (initDone) then
        state = ELPA_OK
      else
        state = ELPA_ERROR
      endif