elpa_impl.F90 62.2 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56
57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62
   type(c_ptr)         :: index = C_NULL_PTR
63

64
   !> \brief methods available with the elpa_impl_t type
65
   contains
66
     !> \brief the puplic methods
67
     ! con-/destructor
68
69
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
70

71
     ! KV store
72
73
74
75
76
77
     procedure, public :: get => elpa_get_integer               !< a get method for integer key/values: implemented in elpa_get_integer
     procedure, public :: get_double => elpa_get_double         !< a get method for double key/values: implemented in elpa_get_double
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
78

79
80
81
82
83
84

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times


85
     !> \brief the private methods
86

87
     procedure, private :: elpa_set_integer                     !< private methods to implement the setting of an integer/double key/value pair
88
     procedure, private :: elpa_set_double
89

Andreas Marek's avatar
Andreas Marek committed
90
     procedure, private :: elpa_solve_d                         !< private methods to implement the solve step for real/complex
91
                                                                !< double/single matrices
92
93
94
     procedure, private :: elpa_solve_f
     procedure, private :: elpa_solve_dc
     procedure, private :: elpa_solve_fc
95

96
97
     procedure, private :: elpa_hermitian_multiply_d            !< private methods to implement a "hermitian" multiplication of matrices a and b
     procedure, private :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
Andreas Marek's avatar
Andreas Marek committed
98
     procedure, private :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
99
     procedure, private :: elpa_hermitian_multiply_fc
100

Andreas Marek's avatar
Andreas Marek committed
101
     procedure, private :: elpa_cholesky_d                      !< private methods to implement the cholesky factorisation of
102
                                                                !< real/complex double/single matrices
103
104
105
     procedure, private :: elpa_cholesky_f
     procedure, private :: elpa_cholesky_dc
     procedure, private :: elpa_cholesky_fc
106

Andreas Marek's avatar
Andreas Marek committed
107
     procedure, private :: elpa_invert_trm_d                    !< private methods to implement the inversion of a triangular
108
                                                                !< real/complex double/single matrix
109
110
111
     procedure, private :: elpa_invert_trm_f
     procedure, private :: elpa_invert_trm_dc
     procedure, private :: elpa_invert_trm_fc
112

Andreas Marek's avatar
Andreas Marek committed
113
114
     procedure, private :: elpa_solve_tridi_d                   !< private methods to implement the solve step for a real valued
     procedure, private :: elpa_solve_tridi_f                   !< double/single tridiagonal matrix
115

116
     procedure, private :: associate_int => elpa_associate_int  !< private method to set some pointers
117

118
  end type elpa_impl_t
119

120
  !> \brief the implementation of the private methods
121
  contains
122
123
124
125
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
126
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
127
128
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
129
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
130

131
132
133
134
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
135

Andreas Marek's avatar
Andreas Marek committed
136
      ! check whether init has ever been called
137
      if ( elpa_initialized() .ne. ELPA_OK) then
138
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
139
140
        if(present(error)) then
          error = ELPA_ERROR
141
        endif
Andreas Marek's avatar
Andreas Marek committed
142
143
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
144

145
      obj%index = elpa_index_instance_c()
146
147

      ! Associate some important integer pointers for convenience
148
149
150
151
152
153
154
155
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
156
157
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
158

159
160

    !c> elpa_t elpa_allocate();
161
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
162
163
164
165
166
167
168
169
170
171
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function


    !c> void elpa_deallocate(elpa_t handle);
172
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
173
174
175
176
177
178
179
180
181
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


182
183
184
185
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
186
    function elpa_setup(self) result(error)
187
      use elpa1_impl, only : elpa_get_communicators_impl
188
      class(elpa_impl_t), intent(inout) :: self
189
      integer :: error, error2
190
      integer :: mpi_comm_rows, mpi_comm_cols, mpierr
191

192
#ifdef WITH_MPI
193
194
195
196
      error = ELPA_ERROR
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
197

198
199
200
201
202
203
        mpierr = elpa_get_communicators_impl(&
                        self%get("mpi_comm_parent"), &
                        self%get("process_row"), &
                        self%get("process_col"), &
                        mpi_comm_rows, &
                        mpi_comm_cols)
204

205
206
207
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

208
        error = ELPA_OK
209
      endif
210

211
212
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
        error = ELPA_OK
213
      endif
214
215
216
#else
      error = ELPA_OK
#endif
217

218
219
220
221
      if (self%get("timings") == 1) then
        call self%timer%enable()
      endif

222
    end function
223

224
225

    !c> int elpa_setup(elpa_t handle);
226
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
227
228
229
230
231
232
233
234
235
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


236
237
238
239
240
241
    !> \brief subroutine to set an integer key/value pair
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, the value to be set
    !> \result  error      integer, the error code
242
    subroutine elpa_set_integer(self, name, value, error)
243
      use iso_c_binding
244
245
      use elpa_generated_fortran_interfaces
      use elpa_utilities, only : error_unit
246
      class(elpa_impl_t)              :: self
247
248
      character(*), intent(in)        :: name
      integer(kind=c_int), intent(in) :: value
249
250
      integer, optional               :: error
      integer                         :: actual_error
251

252
      actual_error = elpa_index_set_int_value_c(self%index, name // c_null_char, value, 0)
253

254
255
      if (present(error)) then
        error = actual_error
256

257
      else if (actual_error /= ELPA_OK) then
258
259
        write(error_unit,'(a,i0,a)') "ELPA: Error setting option '" // name // "' to value ", value, &
                " (got: " // elpa_strerr(actual_error) // ") and you did not check for errors!"
260
      end if
261
262
    end subroutine

263
264

    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
265
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
266
267
268
269
270
271
272
273
274
275
276
277
278
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


279
280
281
282
283
284
    !> \brief function to get an integer key/value pair
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   error      integer, optional, to store an error code
    !> \result  value      integer, the value of the key/vaue pair
285
    function elpa_get_integer(self, name, error) result(value)
286
      use iso_c_binding
287
      use elpa_generated_fortran_interfaces
288
      use elpa_utilities, only : error_unit
289
      class(elpa_impl_t)             :: self
290
291
      character(*), intent(in)       :: name
      integer(kind=c_int)            :: value
292
      integer, intent(out), optional :: error
293
      integer                        :: actual_error
294

295
296
297
298
299
300
301
      value = elpa_index_get_int_value_c(self%index, name // c_null_char, actual_error)
      if (present(error)) then
        error = actual_error
      else if (actual_error /= ELPA_OK) then
        write(error_unit,'(a)') "ELPA: Error getting option '" // name // "'" // &
                " (got: " // elpa_strerr(actual_error) // ") and you did not check for errors!"
      end if
302
    end function
Andreas Marek's avatar
Andreas Marek committed
303

Andreas Marek's avatar
Andreas Marek committed
304
305

    !c> int elpa_get_integer(elpa_t handle, const char *name, int *error);
306
    function elpa_get_integer_c(handle, name_p, error) result(value) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
307
308
309
310
311
312
313
314
315
316
317
318
319
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      value = elpa_get_integer(self, name, error)
    end function


320
321
322
323
324
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
325
    function elpa_is_set(self, name) result(state)
326
327
      use iso_c_binding
      use elpa_generated_fortran_interfaces
328
      class(elpa_impl_t)       :: self
329
      character(*), intent(in) :: name
330
      integer                  :: state
331

332
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
333
334
    end function

335
336
337
338
339
340
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
341
342
343
344
345
346
347
348
349
350
351
352
353
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
354
355
356
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
357
358
359
360
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
361

362
363
364
365
366
367
368
369
      nullify(string)

      val = self%get(option_name, actual_error)
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
370
371
      endif

372
373
374
375
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
376

377
378
379
380
      if (present(error)) then
        error = actual_error
      endif
    end function
381

382
383

    subroutine elpa_set_double(self, name, value, error)
Andreas Marek's avatar
Andreas Marek committed
384
      use iso_c_binding
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
385
      use elpa_generated_fortran_interfaces
386
      use elpa_utilities, only : error_unit
387
      class(elpa_impl_t)              :: self
388
      character(*), intent(in)        :: name
389
      real(kind=c_double), intent(in) :: value
390
391
      integer, optional               :: error
      integer                         :: actual_error
Andreas Marek's avatar
Andreas Marek committed
392

393
      actual_error = elpa_index_set_double_value_c(self%index, name // c_null_char, value, 0)
Andreas Marek's avatar
Andreas Marek committed
394

395
396
397
      if (present(error)) then
        error = actual_error
      else if (actual_error /= ELPA_OK) then
398
399
        write(error_unit,'(a,es12.5,a)') "ELPA: Error setting option '" // name // "' to value ", value, &
                " (got: " // elpa_strerr(actual_error) // ") and you did not check for errors!"
400
401
      end if
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
402
403


404
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
405
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
406
407
408
409
410
411
412
413
414
415
416
417
418
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine


419
    function elpa_get_double(self, name, error) result(value)
Andreas Marek's avatar
Andreas Marek committed
420
      use iso_c_binding
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
421
      use elpa_generated_fortran_interfaces
422
      use elpa_utilities, only : error_unit
423
      class(elpa_impl_t)             :: self
424
      character(*), intent(in)       :: name
425
      real(kind=c_double)            :: value
426
      integer, intent(out), optional :: error
427
      integer                        :: actual_error
428

429
430
431
432
433
434
435
      value = elpa_index_get_double_value_c(self%index, name // c_null_char, actual_error)
      if (present(error)) then
        error = actual_error
      else if (actual_error /= ELPA_OK) then
        write(error_unit,'(a)') "ELPA: Error getting option '" // name // "'" // &
                " (got: " // elpa_strerr(actual_error) // ") and you did not check for errors!"
      end if
436
    end function
Andreas Marek's avatar
Andreas Marek committed
437

Andreas Marek's avatar
Andreas Marek committed
438
    !c> int elpa_get_double(elpa_t handle, const char *name, int *error);
439
    function elpa_get_double_c(handle, name_p, error) result(value) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
440
441
442
443
444
445
446
447
448
449
450
451
452
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      value = elpa_get_double(self, name, error)
    end function


453
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
454
      use iso_c_binding
455
      use elpa_generated_fortran_interfaces
456
457
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
458
459
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
460

461
462
      type(c_ptr)                    :: value_p

463
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
464
465
466
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
467
468
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
469

470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

      s = self%timer%get(name1, name2, name3, name4, name5, name6)
    end function


    subroutine elpa_print_times(self)
      class(elpa_impl_t), intent(in) :: self
      call self%timer%print()
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    !>  \brief elpa_solve_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
510
    subroutine elpa_solve_d(self, a, ev, q, error)
511
512
      use elpa2_impl
      use elpa1_impl
513
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
514
      use iso_c_binding
515
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
516

517
518
519
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
520
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
521
#endif
522
      real(kind=c_double) :: ev(self%na)
523

524
525
      integer, optional   :: error
      integer(kind=c_int) :: error_actual
526
      logical             :: success_l
527

528

529
      if (self%get("solver") .eq. ELPA_SOLVER_1STAGE) then
530
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
531

532
      else if (self%get("solver") .eq. ELPA_SOLVER_2STAGE) then
533
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
534
535
536
537
      else
        print *,"unknown solver"
        stop
      endif
538

539
      if (present(error)) then
540
        if (success_l) then
541
          error = ELPA_OK
542
        else
543
          error = ELPA_ERROR
544
545
546
547
548
549
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

550
551
    !c> void elpa_solve_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_solve_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_solve_d")
552
553
554
555
556
557
558
559
560
561
562
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

563
      call elpa_solve_d(self, a, ev, q, error)
564
565
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

    !>  \brief elpa_solve_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
591
    subroutine elpa_solve_f(self, a, ev, q, error)
592
593
      use elpa2_impl
      use elpa1_impl
594
595
      use elpa_utilities, only : error_unit
      use iso_c_binding
596
      class(elpa_impl_t)  :: self
597
598
599
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
600
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
601
#endif
602
      real(kind=c_float)  :: ev(self%na)
603

604
605
      integer, optional   :: error
      integer(kind=c_int) :: error_actual
606
      logical             :: success_l
607

608
#ifdef WANT_SINGLE_PRECISION_REAL
609

610
      if (self%get("solver") .eq. ELPA_SOLVER_1STAGE) then
611
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
612

613
      else if (self%get("solver") .eq. ELPA_SOLVER_2STAGE) then
614
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
615
616
617
618
      else
        print *,"unknown solver"
        stop
      endif
619

620
      if (present(error)) then
621
        if (success_l) then
622
          error = ELPA_OK
623
        else
624
          error = ELPA_ERROR
625
626
627
628
629
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
630
      print *,"This installation of the ELPA library has not been build with single-precision support"
631
      error = ELPA_ERROR
632
633
634
#endif
    end subroutine

635

636
637
    !c> void elpa_solve_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_solve_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_solve_f")
638
639
640
641
642
643
644
645
646
647
648
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

649
      call elpa_solve_f(self, a, ev, q, error)
650
651
652
    end subroutine


Andreas Marek's avatar
Andreas Marek committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    !>  \brief elpa_solve_dc: class method to solve the eigenvalue problem for double complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
677
    subroutine elpa_solve_dc(self, a, ev, q, error)
678
679
      use elpa2_impl
      use elpa1_impl
680
681
      use elpa_utilities, only : error_unit
      use iso_c_binding
682
      class(elpa_impl_t)             :: self
683

684
685
686
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
687
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
688
#endif
689
      real(kind=c_double)            :: ev(self%na)
690

691
692
      integer, optional              :: error
      integer(kind=c_int)            :: error_actual
693
      logical                        :: success_l
694

695
      if (self%get("solver") .eq. ELPA_SOLVER_1STAGE) then
696
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
697

698
      else if (self%get("solver") .eq. ELPA_SOLVER_2STAGE) then
699
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
700
701
702
703
      else
        print *,"unknown solver"
        stop
      endif
704

705
      if (present(error)) then
706
        if (success_l) then
707
          error = ELPA_OK
708
        else
709
          error = ELPA_ERROR
710
711
712
713
714
715
716
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


717
718
    !c> void elpa_solve_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_solve_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_solve_dc")
719
720
721
722
723
724
725
726
727
728
729
730
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

731
      call elpa_solve_dc(self, a, ev, q, error)
732
733
734
    end subroutine


Andreas Marek's avatar
Andreas Marek committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    !>  \brief elpa_solve_fc: class method to solve the eigenvalue problem for float complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
759
    subroutine elpa_solve_fc(self, a, ev, q, error)
760
761
      use elpa2_impl
      use elpa1_impl
762
763
764
      use elpa_utilities, only : error_unit

      use iso_c_binding
765
      class(elpa_impl_t)            :: self
766
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
767
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
768
#else
Andreas Marek's avatar
Andreas Marek committed
769
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
770
#endif
Andreas Marek's avatar
Andreas Marek committed
771
      real(kind=c_float)            :: ev(self%na)
772

773
774
      integer, optional             :: error
      integer(kind=c_int)           :: error_actual
775
      logical                       :: success_l
776
777

#ifdef WANT_SINGLE_PRECISION_COMPLEX
778

779
      if (self%get("solver") .eq. ELPA_SOLVER_1STAGE) then
780
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
781

782
      else if (self%get("solver") .eq. ELPA_SOLVER_2STAGE) then
783
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
784
785
786
787
      else
        print *,"unknown solver"
        stop
      endif
788

789
      if (present(error)) then
790
        if (success_l) then
791
          error = ELPA_OK
792
        else
793
          error = ELPA_ERROR
794
795
796
797
798
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
799
      print *,"This installation of the ELPA library has not been build with single-precision support"
800
      error = ELPA_ERROR
801
802
803
#endif
    end subroutine

804

805
806
    !c> void elpa_solve_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_solve_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_solve_fc")
807
808
809
810
811
812
813
814
815
816
817
818
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

819
      call elpa_solve_fc(self, a, ev, q, error)
820
821
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
    !> \brief  elpa_hermitian_multiply_d: class method to perform C : = A**T * B for double real matrices
    !>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
    !>                 B is a (na,ncb) matrix
    !>                 C is a (na,ncb) matrix where optionally only the upper or lower
    !>                   triangle may be computed
    !>
    !> the MPI commicators and the block-cyclic distribution block size are already known to the type.
    !> Thus the class method "setup" must be called BEFORE this method is used
    !>
    !> \details
    !>
    !> \param  uplo_a               'U' if A is upper triangular
    !>                              'L' if A is lower triangular
    !>                              anything else if A is a full matrix
    !>                              Please note: This pertains to the original A (as set in the calling program)
    !>                                           whereas the transpose of A is used for calculations
    !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
    !>                              i.e. it may contain arbitrary numbers
    !> \param uplo_c                'U' if only the upper diagonal part of C is needed
    !>                              'L' if only the upper diagonal part of C is needed
    !>                              anything else if the full matrix C is needed
    !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
    !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
    !> \param na                    Number of rows/columns of global matrix A, number of rows of global matrices B and C
    !> \param ncb                   Number of columns  of global matrices B and C
    !> \param a                     matrix a
    !> \param nrows_a               number of rows of local (sub) matrix a
    !> \param ncols_a               number of columns of local (sub) matrix a
    !> \param b                     matrix b
    !> \param nrows_b               number of rows of local (sub) matrix b
    !> \param ncols_b               number of columns of local (sub) matrix b
    !> \param c                     matrix c
    !> \param nrows_c               number of rows of local (sub) matrix c
    !> \param ncols_c               number of columns of local (sub) matrix c
    !> \param error                 optional argument, error code which can be queried with elpa_strerr
    subroutine elpa_hermitian_multiply_d (self,uplo_a, uplo_c, na, ncb, a, nrows_a, ncols_a, b, nrows_b, ncols_b, &
                                          c, nrows_c, ncols_c, error)
859
      use iso_c_binding
860
      use elpa1_auxiliary_impl
861
      class(elpa_impl_t)              :: self
862
      character*1                     :: uplo_a, uplo_c
Andreas Marek's avatar
Andreas Marek committed
863
      integer(kind=c_int), intent(in) :: na, nrows_a, ncols_a, nrows_b, ncols_b, nrows_c, ncols_c, ncb
864
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
865
      real(kind=c_double)             :: a(nrows_a,*), b(nrows_b,*), c(nrows_c,*)
866
#else
Andreas Marek's avatar
Andreas Marek committed
867
      real(kind=c_double)             :: a(nrows_a,ncols_a), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
868
#endif
869
      integer, optional               :: error
870
871
      logical                         :: success_l

Andreas Marek's avatar
Andreas Marek committed
872
873
      success_l = elpa_mult_at_b_real_double_impl(self, uplo_a, uplo_c, na, ncb, a, nrows_a, ncols_a, b, nrows_b, ncols_b, &
                                                  c, nrows_c, ncols_c)
874
      if (present(error)) then
875
        if (success_l) then
876
          error = ELPA_OK
877
        else
878
          error = ELPA_ERROR
879
880
        endif
      else if (.not. success_l) then
881
        write(error_unit,'(a)') "ELPA: Error in hermitian_multiply() and you did not check for errors!"
882
883
884
      endif
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
    !> \brief  elpa_hermitian_multiply_f: class method to perform C : = A**T * B for float real matrices
    !>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
    !>                 B is a (na,ncb) matrix
    !>                 C is a (na,ncb) matrix where optionally only the upper or lower
    !>                   triangle may be computed
    !>
    !> the MPI commicators and the block-cyclic distribution block size are already known to the type.
    !> Thus the class method "setup" must be called BEFORE this method is used
    !>
    !> \details
    !>
    !> \param  uplo_a               'U' if A is upper triangular
    !>                              'L' if A is lower triangular
    !>                              anything else if A is a full matrix
    !>                              Please note: This pertains to the original A (as set in the calling program)
    !>                                           whereas the transpose of A is used for calculations
    !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
    !>                              i.e. it may contain arbitrary numbers
    !> \param uplo_c                'U' if only the upper diagonal part of C is needed
    !>                              'L' if only the upper diagonal part of C is needed
    !>                              anything else if the full matrix C is needed
    !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
    !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
    !> \param na                    Number of rows/columns of global matrix A, number of rows of global matrices B and C
    !> \param ncb                   Number of columns  of global matrices B and C
    !> \param a                     matrix a
    !> \param nrows_a               number of rows of local (sub) matrix a
    !> \param ncols_a               number of columns of local (sub) matrix a
    !> \param b                     matrix b
    !> \param nrows_b               number of rows of local (sub) matrix b
    !> \param ncols_b               number of columns of local (sub) matrix b
    !> \param c                     matrix c
    !> \param nrows_c               number of rows of local (sub) matrix c
    !> \param ncols_c               number of columns of local (sub) matrix c
    !> \param error                 optional argument, returns an error code
    subroutine elpa_hermitian_multiply_f (self,uplo_a, uplo_c, na, ncb, a, nrows_a, ncols_a, b, nrows_b, ncols_b, &
                                          c, nrows_c, ncols_c, error)
922
      use iso_c_binding
923
      use elpa1_auxiliary_impl
924
      class(elpa_impl_t)              :: self
925
      character*1                     :: uplo_a, uplo_c
Andreas Marek's avatar
Andreas Marek committed
926
      integer(kind=c_int), intent(in) :: na, nrows_a, ncols_a, nrows_b, ncols_b, nrows_c, ncols_c, ncb
927
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
928
      real(kind=c_float)              :: a(nrows_a,*), b(nrows_b,*), c(nrows_c,*)
929
#else
Andreas Marek's avatar
Andreas Marek committed
930
      real(kind=c_float)              :: a(nrows_a,ncols_a), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
931
#endif
932
      integer, optional               :: error
933
934
      logical                         :: success_l
#ifdef WANT_SINGLE_PRECISION_REAL
Andreas Marek's avatar
Andreas Marek committed
935
936
      success_l = elpa_mult_at_b_real_single_impl(self, uplo_a, uplo_c, na, ncb, a, nrows_a, ncols_a, b, nrows_a, ncols_b, &
                                                  c, nrows_c, ncols_c)
937
      if (present(error)) then
938
        if (success_l) then
939
          error = ELPA_OK
940
        else
941
          error = ELPA_ERROR
942
943
        endif
      else if (.not. success_l) then
944
        write(error_unit,'(a)') "ELPA: Error in hermitian_multiply() and you did not check for errors!"
945
      endif
946
947
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
948
      error = ELPA_ERROR
949
950
951
#endif
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
    !> \brief  elpa_hermitian_multiply_dc: class method to perform C : = A**H * B for double complex matrices
    !>         where   A is a square matrix (na,na) which is optionally upper or lower triangular
    !>                 B is a (na,ncb) matrix
    !>                 C is a (na,ncb) matrix where optionally only the upper or lower
    !>                   triangle may be computed
    !>
    !> the MPI commicators and the block-cyclic distribution block size are already known to the type.
    !> Thus the class method "setup" must be called BEFORE this method is used
    !>
    !> \details
    !>
    !> \param  uplo_a               'U' if A is upper triangular
    !>                              'L' if A is lower triangular
    !>                              anything else if A is a full matrix
    !>                              Please note: This pertains to the original A (as set in the calling program)
    !>                                           whereas the transpose of A is used for calculations
    !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
    !>                              i.e. it may contain arbitrary numbers
    !> \param uplo_c                'U' if only the upper diagonal part of C is needed
    !>                              'L' if only the upper diagonal part of C is needed
    !>                              anything else if the full matrix C is needed
    !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
    !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
    !> \param na                    Number of rows/columns of global matrix A, number of rows of global matrices B and C
    !> \param ncb                   Number of columns  of global matrices B and C
    !> \param a                     matrix a
    !> \param nrows_a               number of rows of local (sub) matrix a
    !> \param ncols_a               number of columns of local (sub) matrix a
    !> \param b                     matrix b
    !> \param nrows_b               number of rows of local (sub) matrix b
    !> \param ncols_b               number of columns of local (sub) matrix b
    !> \param c                     matrix c
    !> \param nrows_c               number of rows of local (sub) matrix c
    !> \param ncols_c               number of columns of local (sub) matrix c
    !> \param error                 optional argument, returns an error code
    subroutine elpa_hermitian_multiply_dc (self,uplo_a, uplo_c, na, ncb, a, nrows_a, ncols_a, b, nrows_b, ncols_b, &
                                          c, nrows_c, ncols_c, error)
989
      use iso_c_binding
990
      use elpa1_auxiliary_impl
991
      class(elpa_impl_t)              :: self