legacy_complex_driver_c_version.c 8.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*     This file is part of ELPA. */
/*  */
/*     The ELPA library was originally created by the ELPA consortium, */
/*     consisting of the following organizations: */
/*  */
/*     - Max Planck Computing and Data Facility (MPCDF), formerly known as */
/*       Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG), */
/*     - Bergische Universität Wuppertal, Lehrstuhl für angewandte */
/*       Informatik, */
/*     - Technische Universität München, Lehrstuhl für Informatik mit */
/*       Schwerpunkt Wissenschaftliches Rechnen , */
/*     - Fritz-Haber-Institut, Berlin, Abt. Theorie, */
/*     - Max-Plack-Institut für Mathematik in den Naturwissenschaften, */
/*       Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition, */
/*       and */
/*     - IBM Deutschland GmbH */
/*  */
/*  */
/*     More information can be found here: */
/*     http://elpa.mpcdf.mpg.de/ */
/*  */
/*     ELPA is free software: you can redistribute it and/or modify */
/*     it under the terms of the version 3 of the license of the */
/*     GNU Lesser General Public License as published by the Free */
/*     Software Foundation. */
/*  */
/*     ELPA is distributed in the hope that it will be useful, */
/*     but WITHOUT ANY WARRANTY; without even the implied warranty of */
/*     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the */
/*     GNU Lesser General Public License for more details. */
/*  */
/*     You should have received a copy of the GNU Lesser General Public License */
/*     along with ELPA.  If not, see <http://www.gnu.org/licenses/> */
/*  */
/*     ELPA reflects a substantial effort on the part of the original */
/*     ELPA consortium, and we ask you to respect the spirit of the */
/*     license that we chose: i.e., please contribute any changes you */
/*     may have back to the original ELPA library distribution, and keep */
/*     any derivatives of ELPA under the same license that we chose for */
/*     the original distribution, the GNU Lesser General Public License. */
/*  */
/*  */

#include "config-f90.h"

#include <stdio.h>
#include <stdlib.h>
#ifdef WITH_MPI
#include <mpi.h>
#endif
#include <math.h>

53
#include <elpa/elpa_legacy.h>
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include <test/shared/generated.h>
#include <complex.h>

int main(int argc, char** argv) {
   int myid;
   int nprocs;
#ifndef WITH_MPI
   int MPI_COMM_WORLD;
#endif
   int na, nev, nblk;

   int status;

   int np_cols, np_rows, np_colsStart;

   int my_blacs_ctxt, nprow, npcol, my_prow, my_pcol;

   int mpierr;

   int my_mpi_comm_world;
   int mpi_comm_rows, mpi_comm_cols;

   int info, *sc_desc;

   int na_rows, na_cols;
   double startVal;

81
   complex double *a, *z, *as;
82

83
   double *ev;
84
85
86
87

   int success;
   int i;

88
   int useGPU, THIS_COMPLEX_ELPA_KERNEL_API;
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#ifdef WITH_MPI
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);
#else
   nprocs = 1;
   myid =0;
   MPI_COMM_WORLD=1;
#endif
   na = 1000;
   nev = 500;
   nblk = 16;

   if (myid == 0) {
     printf("This is the c version of an ELPA test-programm\n");
     printf("\n");
     printf("It will call the ELPA complex solver for a matrix\n");
     printf("of matrix size %d. It will compute %d eigenvalues\n",na,nev);
     printf("and uses a blocksize of %d\n",nblk);
     printf("\n");
     printf("This is an example program with much less functionality\n");
     printf("as it's Fortran counterpart. It's only purpose is to show how \n");
     printf("to evoke ELPA1 from a c programm\n");

     printf("\n");

   }

   status = 0;

   startVal = sqrt((double) nprocs);
   np_colsStart = (int) round(startVal);
   for (np_cols=np_colsStart;np_cols>1;np_cols--){
     if (nprocs %np_cols ==0){
     break;
     }
   }

   np_rows = nprocs/np_cols;

   if (myid == 0) {
     printf("\n");
     printf("Number of processor rows %d, cols %d, total %d \n",np_rows,np_cols,nprocs);
   }

   /* set up blacs */
   /* convert communicators before */
#ifdef WITH_MPI
   my_mpi_comm_world = MPI_Comm_c2f(MPI_COMM_WORLD);
#else
   my_mpi_comm_world = 1;
#endif
141
   set_up_blacsgrid_f(my_mpi_comm_world, &my_blacs_ctxt, &np_rows, &np_cols, &nprow, &npcol, &my_prow, &my_pcol);
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

   if (myid == 0) {
     printf("\n");
     printf("Past BLACS_Gridinfo...\n");
     printf("\n");
   }

   /* get the ELPA row and col communicators. */
   /* These are NOT usable in C without calling the MPI_Comm_f2c function on them !! */
#ifdef WITH_MPI
   my_mpi_comm_world = MPI_Comm_c2f(MPI_COMM_WORLD);
#endif
   mpierr = elpa_get_communicators(my_mpi_comm_world, my_prow, my_pcol, &mpi_comm_rows, &mpi_comm_cols);

   if (myid == 0) {
     printf("\n");
     printf("Past split communicator setup for rows and columns...\n");
     printf("\n");
   }

   sc_desc = malloc(9*sizeof(int));

164
   set_up_blacs_descriptor_f(na, nblk, my_prow, my_pcol, np_rows, np_cols, &na_rows, &na_cols, sc_desc, my_blacs_ctxt, &info);
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

   if (myid == 0) {
     printf("\n");
     printf("Past scalapack descriptor setup...\n");
     printf("\n");
   }

   /* allocate the matrices needed for elpa */
   if (myid == 0) {
     printf("\n");
     printf("Allocating matrices with na_rows=%d and na_cols=%d\n",na_rows, na_cols);
     printf("\n");
   }

   a  = malloc(na_rows*na_cols*sizeof(complex double));
   z  = malloc(na_rows*na_cols*sizeof(complex double));
   as = malloc(na_rows*na_cols*sizeof(complex double));
   ev = malloc(na*sizeof(double));

184
   prepare_matrix_complex_double_f(na, myid, na_rows, na_cols, sc_desc, a, z, as);
185
186
187
188
189
190
191
192
193

   if (myid == 0) {
     printf("\n");
     printf("Entering ELPA 1stage complex solver\n");
     printf("\n");
   }
#ifdef WITH_MPI
   mpierr = MPI_Barrier(MPI_COMM_WORLD);
#endif
194
   useGPU = 0;
195
   THIS_COMPLEX_ELPA_KERNEL_API = ELPA_2STAGE_COMPLEX_DEFAULT;
196
   success = elpa_solve_evp_complex_double(na, nev, a, na_rows, ev, z, na_rows, nblk, na_cols, mpi_comm_rows, mpi_comm_cols, my_mpi_comm_world, THIS_COMPLEX_ELPA_KERNEL_API, useGPU, "1stage");
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

   if (success != 1) {
     printf("error in ELPA solve \n");
#ifdef WITH_MPI
     mpierr = MPI_Abort(MPI_COMM_WORLD, 99);
#endif
   }


   if (myid == 0) {
     printf("\n");
     printf("1stage ELPA complex solver complete\n");
     printf("\n");
   }

   for (i=0;i<na_rows*na_cols;i++){
      a[i] = as[i];
      z[i] = as[i];
   }
   if (myid == 0) {
     printf("\n");
     printf("Entering ELPA 2stage complex solver\n");
     printf("\n");
   }
#ifdef WITH_MPI
   mpierr = MPI_Barrier(MPI_COMM_WORLD);
#endif
224
   useGPU =0;
225
   THIS_COMPLEX_ELPA_KERNEL_API = ELPA_2STAGE_COMPLEX_DEFAULT;
226
   success = elpa_solve_evp_complex_double(na, nev, a, na_rows, ev, z, na_rows, nblk, na_cols, mpi_comm_rows, mpi_comm_cols, my_mpi_comm_world, THIS_COMPLEX_ELPA_KERNEL_API, useGPU, "2stage");
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

   if (success != 1) {
     printf("error in ELPA solve \n");
#ifdef WITH_MPI
     mpierr = MPI_Abort(MPI_COMM_WORLD, 99);
#endif
   }

   if (myid == 0) {
     printf("\n");
     printf("2stage ELPA complex solver complete\n");
     printf("\n");
   }

   for (i=0;i<na_rows*na_cols;i++){
      a[i] = as[i];
      z[i] = as[i];
   }
   if (myid == 0) {
     printf("\n");
     printf("Entering auto-chosen ELPA complex solver\n");
     printf("\n");
   }
#ifdef WITH_MPI
   mpierr = MPI_Barrier(MPI_COMM_WORLD);
#endif
253
   useGPU = 0;
254
   THIS_COMPLEX_ELPA_KERNEL_API = ELPA_2STAGE_COMPLEX_DEFAULT;
255
   success = elpa_solve_evp_complex_double(na, nev, a, na_rows, ev, z, na_rows, nblk, na_cols, mpi_comm_rows, mpi_comm_cols, my_mpi_comm_world, THIS_COMPLEX_ELPA_KERNEL_API, useGPU, "auto");
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

   if (success != 1) {
     printf("error in ELPA solve \n");
#ifdef WITH_MPI
     mpierr = MPI_Abort(MPI_COMM_WORLD, 99);
#endif
   }

   if (myid == 0) {
     printf("\n");
     printf("Auto-chosen ELPA complex solver complete\n");
     printf("\n");
   }

   /* check the results */
271
   status = check_correctness_complex_double_f(na, nev, na_rows, na_cols, as, z, ev, sc_desc, myid);
272
273
274
275
276
277
278
279
280
281
282
283
284
285

   if (status !=0){
     printf("The computed EVs are not correct !\n");
   }
   if (status ==0){
     if (myid == 0) {
       printf("All ok!\n");
     }
   }

   free(sc_desc);
   free(a);
   free(z);
   free(as);
286
   free(ev);
287

288
289
290
291
292
#ifdef WITH_MPI
   MPI_Finalize();
#endif
   return 0;
}