elpa_impl.F90 113 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56
57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62
   integer :: communicators_owned
63

64
   !> \brief methods available with the elpa_impl_t type
65
   contains
66
     !> \brief the puplic methods
67
     ! con-/destructor
68
69
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
70

71
     ! KV store
72
73
74
75
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
76

77
78
79
80

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
81
82
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
83
84


85
86
87
88
89
90
91
92
93
94
95
96
97
98
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

Pavel Kus's avatar
Pavel Kus committed
99
100
101
102
103
104
     procedure, public :: elpa_generalized_eigenvectors_d      !< public methods to implement the solve step for generalized 
                                                               !< eigenproblem and real/complex double/single matrices
     procedure, public :: elpa_generalized_eigenvectors_f
     procedure, public :: elpa_generalized_eigenvectors_dc
     procedure, public :: elpa_generalized_eigenvectors_fc

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
126

Pavel Kus's avatar
Pavel Kus committed
127
     procedure, private :: elpa_transform_generalized_d
128
     procedure, private :: elpa_transform_back_generalized_d
Pavel Kus's avatar
Pavel Kus committed
129
     procedure, private :: elpa_transform_generalized_dc
130
     procedure, private :: elpa_transform_back_generalized_dc
Pavel Kus's avatar
Pavel Kus committed
131
132
#ifdef WANT_SINGLE_PRECISION_REAL
     procedure, private :: elpa_transform_generalized_f
133
     procedure, private :: elpa_transform_back_generalized_f
Pavel Kus's avatar
Pavel Kus committed
134
135
136
#endif
#ifdef WANT_SINGLE_PRECISION_COMPLEX
     procedure, private :: elpa_transform_generalized_fc
137
     procedure, private :: elpa_transform_back_generalized_fc
Pavel Kus's avatar
Pavel Kus committed
138
#endif
139
  end type elpa_impl_t
140

141
142

  !> \brief the implementation of the generic methods
143
  contains
144
145


146
147
148
149
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
150
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
151
152
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
153
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
154

155
156
157
158
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
159

Andreas Marek's avatar
Andreas Marek committed
160
      ! check whether init has ever been called
161
      if ( elpa_initialized() .ne. ELPA_OK) then
162
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
163
164
        if(present(error)) then
          error = ELPA_ERROR
165
        endif
Andreas Marek's avatar
Andreas Marek committed
166
167
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
168

169
      obj%index = elpa_index_instance_c()
170
171

      ! Associate some important integer pointers for convenience
172
173
174
175
176
177
178
179
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
180
181
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
182

183
184
185
186
187
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
188
    !c> elpa_t elpa_allocate();
189
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
190
191
192
193
194
195
196
197
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

198
199
200
201
202
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
203
    !c> void elpa_deallocate(elpa_t handle);
204
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
205
206
207
208
209
210
211
212
213
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


214
215
216
217
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
218
    function elpa_setup(self) result(error)
219
220
221
222
223
224
      use elpa_utilities, only : error_unit
#ifdef WITH_MPI
      use elpa_mpi
#endif
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
225

226
#ifdef WITH_MPI
227
228
229
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
230
#endif
231

232
233
234
235
236
237
238
239
#ifdef HAVE_DETAILED_TIMINGS
      call self%get("timings",timings)
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
240

241
242
#ifdef WITH_MPI
      ! Create communicators ourselves
243
244
245
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
246

247
248
249
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
250
251
252
253
254
255
256

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
257

258
259
260
261
262
263
264
265
266
267
268
269
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
270

271
272
273
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

274
275
276
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

277
        error = ELPA_OK
278
        return
279
      endif
280

281
      ! Externally supplied communicators
282
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
283
        self%communicators_owned = 0
284
        error = ELPA_OK
285
        return
286
      endif
287

288
289
      ! Otherwise parameters are missing
      error = ELPA_ERROR
290
#endif
291

292
    end function
293

294
295
296
297
298
299
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
300
    !c> int elpa_setup(elpa_t handle);
301
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
302
303
304
305
306
307
308
309
310
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


311
312
313
314
315
316
317
318
319
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
320
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
321
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
322
323
324
325
326
327
328
329
330
331
332
333
334
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


335
336
337
338
339
340
341
342
343
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
344
345
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
346
347
348
349
350
351
352
353
354
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
355
356
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
357
358


359
360
361
362
363
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
364
    function elpa_is_set(self, name) result(state)
365
366
      use iso_c_binding
      use elpa_generated_fortran_interfaces
367
      class(elpa_impl_t)       :: self
368
      character(*), intent(in) :: name
369
      integer                  :: state
370

371
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
372
373
    end function

374
375
376
377
378
379
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
380
381
382
383
384
385
386
387
388
389
390
391
392
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
393
394
395
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
396
397
398
399
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
400

401
402
      nullify(string)

403
      call self%get(option_name, val, actual_error)
404
405
406
407
408
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
409
410
      endif

411
412
413
414
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
415

416
417
418
419
      if (present(error)) then
        error = actual_error
      endif
    end function
420

Andreas Marek's avatar
Andreas Marek committed
421

422
423
424
425
426
427
428
429
430
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
431
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
432
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
433
434
435
436
437
438
439
440
441
442
443
444
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

445

446
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
447
448
449
450
451
452
453
454
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
455
456
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
457
458
459
460
461
462
463
464
465
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
466
467
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
468
469


470
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
471
      use iso_c_binding
472
      use elpa_generated_fortran_interfaces
473
474
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
475
476
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
477

478
479
      type(c_ptr)                    :: value_p

480
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
481
482
483
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
484
485
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
486

487

488
489
490
491
492
493
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

494
#ifdef HAVE_DETAILED_TIMINGS
495
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
496
497
498
#else
      s = -1.0
#endif
499
500
501
    end function


502
    subroutine elpa_print_times(self, name1, name2, name3, name4)
503
      class(elpa_impl_t), intent(in) :: self
504
      character(len=*), intent(in), optional :: name1, name2, name3, name4
505
#ifdef HAVE_DETAILED_TIMINGS
506
      call self%timer%print(name1, name2, name3, name4)
507
#endif
508
509
    end subroutine

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


529
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
530
    !>
531
532
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
554
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
555
556
      use elpa2_impl
      use elpa1_impl
557
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
558
      use iso_c_binding
559
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
560

561
562
563
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
564
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
565
#endif
566
      real(kind=c_double) :: ev(self%na)
567

568
      integer, optional   :: error
569
      integer(kind=c_int) :: solver
570
      logical             :: success_l
571

572

573
574
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
575
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
576

577
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
578
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
579
580
581
582
      else
        print *,"unknown solver"
        stop
      endif
583

584
      if (present(error)) then
585
        if (success_l) then
586
          error = ELPA_OK
587
        else
588
          error = ELPA_ERROR
589
590
591
592
593
594
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

595
596
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
597
598
599
600
601
602
603
604
605
606
607
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

608
      call elpa_eigenvectors_d(self, a, ev, q, error)
609
610
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
611

612
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
613
    !>
614
615
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
637
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
638
639
      use elpa2_impl
      use elpa1_impl
640
641
      use elpa_utilities, only : error_unit
      use iso_c_binding
642
      class(elpa_impl_t)  :: self
643
644
645
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
646
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
647
#endif
648
      real(kind=c_float)  :: ev(self%na)
649

650
      integer, optional   :: error
651
      integer(kind=c_int) :: solver
652
#ifdef WANT_SINGLE_PRECISION_REAL
653
      logical             :: success_l
654

655
656
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
657
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
658

659
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
660
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
661
662
663
664
      else
        print *,"unknown solver"
        stop
      endif
665

666
      if (present(error)) then
667
        if (success_l) then
668
          error = ELPA_OK
669
        else
670
          error = ELPA_ERROR
671
672
673
674
675
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
676
      print *,"This installation of the ELPA library has not been build with single-precision support"
677
      error = ELPA_ERROR
678
679
680
#endif
    end subroutine

681

682
683
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
684
685
686
687
688
689
690
691
692
693
694
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

695
      call elpa_eigenvectors_f(self, a, ev, q, error)
696
697
698
    end subroutine


699
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
700
    !>
701
702
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
724
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
725
726
      use elpa2_impl
      use elpa1_impl
727
728
      use elpa_utilities, only : error_unit
      use iso_c_binding
729
      class(elpa_impl_t)             :: self
730

731
732
733
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
734
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
735
#endif
736
      real(kind=c_double)            :: ev(self%na)
737

738
      integer, optional              :: error
739
      integer(kind=c_int)            :: solver
740
      logical                        :: success_l
741

742
743
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
744
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
745

746
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
747
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
748
749
750
751
      else
        print *,"unknown solver"
        stop
      endif
752

753
      if (present(error)) then
754
        if (success_l) then
755
          error = ELPA_OK
756
        else
757
          error = ELPA_ERROR
758
759
760
761
762
763
764
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


765
766
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
767
768
769
770
771
772
773
774
775
776
777
778
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

779
      call elpa_eigenvectors_dc(self, a, ev, q, error)
780
781
782
    end subroutine


783
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
784
    !>
785
786
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
808
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
809
810
      use elpa2_impl
      use elpa1_impl
811
812
813
      use elpa_utilities, only : error_unit

      use iso_c_binding
814
      class(elpa_impl_t)            :: self
815
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
816
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
817
#else
Andreas Marek's avatar
Andreas Marek committed
818
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
819
#endif
Andreas Marek's avatar
Andreas Marek committed
820
      real(kind=c_float)            :: ev(self%na)
821

822
      integer, optional             :: error
823
      integer(kind=c_int)           :: solver
824
#ifdef WANT_SINGLE_PRECISION_COMPLEX
825
      logical                       :: success_l
826

827
828
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
829
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
830

831
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
832
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
833
834
835
836
      else
        print *,"unknown solver"
        stop
      endif
837

838
      if (present(error)) then
839
        if (success_l) then
840
          error = ELPA_OK
841
        else
842
          error = ELPA_ERROR
843
844
845
846
847
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
848
      print *,"This installation of the ELPA library has not been build with single-precision support"
849
      error = ELPA_ERROR
850
851
852
#endif
    end subroutine

853

854
855
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
856
857
858
859
860
861
862
863
864
865
866
867
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

868
      call elpa_eigenvectors_fc(self, a, ev, q, error)
869
870
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self

#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
987
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_f(elpa_t handle, float *a, float *ev, int *error);
    subroutine elpa_eigenvalues_f_c(handle, a_p, ev_p,  error) bind(C, name="elpa_eigenvalues_f")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_f(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_dc: class method to solve the eigenvalue problem for double complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_dc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)             :: self

#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

      integer, optional              :: error
      integer(kind=c_int)            :: solver
      logical                        :: success_l

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


    !c> void elpa_eigenvalues_dc(elpa_t handle, double complex *a, double *ev, int *error);
    subroutine elpa_eigenvalues_dc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_dc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_dc(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_fc: class method to solve the eigenvalue problem for float complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_fc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit

      use iso_c_binding
      class(elpa_impl_t)            :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)            :: ev(self%na)

      integer, optional             :: error
      integer(kind=c_int)           :: solver
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1147
      logical                       :: success_l
Andreas Marek's avatar
Andreas Marek committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_fc(elpa_t handle, float complex *a, float *ev, int *error);
    subroutine elpa_eigenvalues_fc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_fc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_fc(self, a, ev, error)
    end subroutine

Pavel Kus's avatar
Pavel Kus committed
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
!********************************************************************************************************
!             GENERALIZED EIGENVECTOR PROBLEM
!********************************************************************************************************

    !>  \brief elpa_generalized_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>