elpa_impl.F90 84.7 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56
57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62

63
   !> \brief methods available with the elpa_impl_t type
64
   contains
65
     !> \brief the puplic methods
66
     ! con-/destructor
67
68
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
69

70
     ! KV store
71
72
73
74
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
75

76
77
78
79

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
80
81
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
82
83


84
     !> \brief the private methods
85

86
     procedure, private :: elpa_eigenvectors_d                  !< private methods to implement the solve step for real/complex
87
                                                                !< double/single matrices
88
89
90
     procedure, private :: elpa_eigenvectors_f
     procedure, private :: elpa_eigenvectors_dc
     procedure, private :: elpa_eigenvectors_fc
91

Andreas Marek's avatar
Andreas Marek committed
92
93
94
95
96
97
     procedure, private :: elpa_eigenvalues_d                   !< private methods to implement the solve step for real/complex
                                                                !< double/single matrices; only the eigenvalues are computed
     procedure, private :: elpa_eigenvalues_f
     procedure, private :: elpa_eigenvalues_dc
     procedure, private :: elpa_eigenvalues_fc

98
99
     procedure, private :: elpa_hermitian_multiply_d            !< private methods to implement a "hermitian" multiplication of matrices a and b
     procedure, private :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
Andreas Marek's avatar
Andreas Marek committed
100
     procedure, private :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
101
     procedure, private :: elpa_hermitian_multiply_fc
102

Andreas Marek's avatar
Andreas Marek committed
103
     procedure, private :: elpa_cholesky_d                      !< private methods to implement the cholesky factorisation of
104
                                                                !< real/complex double/single matrices
105
106
107
     procedure, private :: elpa_cholesky_f
     procedure, private :: elpa_cholesky_dc
     procedure, private :: elpa_cholesky_fc
108

Andreas Marek's avatar
Andreas Marek committed
109
     procedure, private :: elpa_invert_trm_d                    !< private methods to implement the inversion of a triangular
110
                                                                !< real/complex double/single matrix
111
112
113
     procedure, private :: elpa_invert_trm_f
     procedure, private :: elpa_invert_trm_dc
     procedure, private :: elpa_invert_trm_fc
114

Andreas Marek's avatar
Andreas Marek committed
115
116
     procedure, private :: elpa_solve_tridi_d                   !< private methods to implement the solve step for a real valued
     procedure, private :: elpa_solve_tridi_f                   !< double/single tridiagonal matrix
117

118
     procedure, private :: associate_int => elpa_associate_int  !< private method to set some pointers
119

120
  end type elpa_impl_t
121

122
  !> \brief the implementation of the private methods
123
  contains
124
125
126
127
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
128
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
129
130
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
131
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
132

133
134
135
136
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
137

Andreas Marek's avatar
Andreas Marek committed
138
      ! check whether init has ever been called
139
      if ( elpa_initialized() .ne. ELPA_OK) then
140
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
141
142
        if(present(error)) then
          error = ELPA_ERROR
143
        endif
Andreas Marek's avatar
Andreas Marek committed
144
145
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
146

147
      obj%index = elpa_index_instance_c()
148
149

      ! Associate some important integer pointers for convenience
150
151
152
153
154
155
156
157
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
158
159
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
160

161
162
163
164
165
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
166
    !c> elpa_t elpa_allocate();
167
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
168
169
170
171
172
173
174
175
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

176
177
178
179
180
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
181
    !c> void elpa_deallocate(elpa_t handle);
182
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
183
184
185
186
187
188
189
190
191
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


192
193
194
195
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
196
    function elpa_setup(self) result(error)
197
      use elpa1_impl, only : elpa_get_communicators_impl
198
      class(elpa_impl_t), intent(inout) :: self
199
200
201
      integer                           :: error
      integer                           :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                           mpierr, process_row, process_col, timings
202

203
#ifdef WITH_MPI
204
205
206
207
      error = ELPA_ERROR
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
208

209
210
211
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
212
        mpierr = elpa_get_communicators_impl(&
213
214
215
                        mpi_comm_parent, &
                        process_row, &
                        process_col, &
216
217
                        mpi_comm_rows, &
                        mpi_comm_cols)
218

219
220
221
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

222
        error = ELPA_OK
223
      endif
224

225
226
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
        error = ELPA_OK
227
      endif
228
229
230
#else
      error = ELPA_OK
#endif
231

232
#ifdef HAVE_DETAILED_TIMINGS
233
234
      call self%get("timings",timings)
      if (timings == 1) then
235
236
        call self%timer%enable()
      endif
237
#endif
238

239
    end function
240

241
242
243
244
245
246
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
247
    !c> int elpa_setup(elpa_t handle);
248
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
249
250
251
252
253
254
255
256
257
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


258
259
260
261
262
263
264
265
266
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
267
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
268
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
269
270
271
272
273
274
275
276
277
278
279
280
281
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


282
283
284
285
286
287
288
289
290
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
291
292
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
293
294
295
296
297
298
299
300
301
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
302
303
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
304
305


306
307
308
309
310
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
311
    function elpa_is_set(self, name) result(state)
312
313
      use iso_c_binding
      use elpa_generated_fortran_interfaces
314
      class(elpa_impl_t)       :: self
315
      character(*), intent(in) :: name
316
      integer                  :: state
317

318
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
319
320
    end function

321
322
323
324
325
326
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
327
328
329
330
331
332
333
334
335
336
337
338
339
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
340
341
342
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
343
344
345
346
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
347

348
349
      nullify(string)

350
      call self%get(option_name, val, actual_error)
351
352
353
354
355
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
356
357
      endif

358
359
360
361
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
362

363
364
365
366
      if (present(error)) then
        error = actual_error
      endif
    end function
367

Andreas Marek's avatar
Andreas Marek committed
368

369
370
371
372
373
374
375
376
377
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
378
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
379
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
380
381
382
383
384
385
386
387
388
389
390
391
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

392

393
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
394
395
396
397
398
399
400
401
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
402
403
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
404
405
406
407
408
409
410
411
412
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
413
414
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
415
416


417
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
418
      use iso_c_binding
419
      use elpa_generated_fortran_interfaces
420
421
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
422
423
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
424

425
426
      type(c_ptr)                    :: value_p

427
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
428
429
430
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
431
432
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
433

434

435
436
437
438
439
440
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

441
#ifdef HAVE_DETAILED_TIMINGS
442
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
443
444
445
#else
      s = -1.0
#endif
446
447
448
    end function


449
    subroutine elpa_print_times(self, name1, name2, name3, name4)
450
      class(elpa_impl_t), intent(in) :: self
451
      character(len=*), intent(in), optional :: name1, name2, name3, name4
452
#ifdef HAVE_DETAILED_TIMINGS
453
      call self%timer%print(name1, name2, name3, name4)
454
#endif
455
456
    end subroutine

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


476
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
477
    !>
478
479
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
501
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
502
503
      use elpa2_impl
      use elpa1_impl
504
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
505
      use iso_c_binding
506
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
507

508
509
510
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
511
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
512
#endif
513
      real(kind=c_double) :: ev(self%na)
514

515
      integer, optional   :: error
516
      integer(kind=c_int) :: solver
517
      logical             :: success_l
518

519

520
521
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
522
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
523

524
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
525
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
526
527
528
529
      else
        print *,"unknown solver"
        stop
      endif
530

531
      if (present(error)) then
532
        if (success_l) then
533
          error = ELPA_OK
534
        else
535
          error = ELPA_ERROR
536
537
538
539
540
541
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

542
543
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
544
545
546
547
548
549
550
551
552
553
554
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

555
      call elpa_eigenvectors_d(self, a, ev, q, error)
556
557
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
558

559
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
560
    !>
561
562
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
584
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
585
586
      use elpa2_impl
      use elpa1_impl
587
588
      use elpa_utilities, only : error_unit
      use iso_c_binding
589
      class(elpa_impl_t)  :: self
590
591
592
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
593
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
594
#endif
595
      real(kind=c_float)  :: ev(self%na)
596

597
      integer, optional   :: error
598
      integer(kind=c_int) :: solver
599
#ifdef WANT_SINGLE_PRECISION_REAL
600
      logical             :: success_l
601

602
603
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
604
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
605

606
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
607
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
608
609
610
611
      else
        print *,"unknown solver"
        stop
      endif
612

613
      if (present(error)) then
614
        if (success_l) then
615
          error = ELPA_OK
616
        else
617
          error = ELPA_ERROR
618
619
620
621
622
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
623
      print *,"This installation of the ELPA library has not been build with single-precision support"
624
      error = ELPA_ERROR
625
626
627
#endif
    end subroutine

628

629
630
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
631
632
633
634
635
636
637
638
639
640
641
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

642
      call elpa_eigenvectors_f(self, a, ev, q, error)
643
644
645
    end subroutine


646
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
647
    !>
648
649
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
671
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
672
673
      use elpa2_impl
      use elpa1_impl
674
675
      use elpa_utilities, only : error_unit
      use iso_c_binding
676
      class(elpa_impl_t)             :: self
677

678
679
680
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
681
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
682
#endif
683
      real(kind=c_double)            :: ev(self%na)
684

685
      integer, optional              :: error
686
      integer(kind=c_int)            :: solver
687
      logical                        :: success_l
688

689
690
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
691
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
692

693
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
694
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
695
696
697
698
      else
        print *,"unknown solver"
        stop
      endif
699

700
      if (present(error)) then
701
        if (success_l) then
702
          error = ELPA_OK
703
        else
704
          error = ELPA_ERROR
705
706
707
708
709
710
711
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


712
713
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
714
715
716
717
718
719
720
721
722
723
724
725
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

726
      call elpa_eigenvectors_dc(self, a, ev, q, error)
727
728
729
    end subroutine


730
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
731
    !>
732
733
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
755
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
756
757
      use elpa2_impl
      use elpa1_impl
758
759
760
      use elpa_utilities, only : error_unit

      use iso_c_binding
761
      class(elpa_impl_t)            :: self
762
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
763
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
764
#else
Andreas Marek's avatar
Andreas Marek committed
765
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
766
#endif
Andreas Marek's avatar
Andreas Marek committed
767
      real(kind=c_float)            :: ev(self%na)
768

769
      integer, optional             :: error
770
      integer(kind=c_int)           :: solver
771
#ifdef WANT_SINGLE_PRECISION_COMPLEX
772
      logical                       :: success_l
773

774
775
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
776
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
777

778
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
779
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
780
781
782
783
      else
        print *,"unknown solver"
        stop
      endif
784

785
      if (present(error)) then
786
        if (success_l) then
787
          error = ELPA_OK
788
        else
789
          error = ELPA_ERROR
790
791
792
793
794
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
795
      print *,"This installation of the ELPA library has not been build with single-precision support"
796
      error = ELPA_ERROR
797
798
799
#endif
    end subroutine

800

801
802
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
803
804
805
806
807
808
809
810
811
812
813
814
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

815
      call elpa_eigenvectors_fc(self, a, ev, q, error)
816
817
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self

#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
934
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_f(elpa_t handle, float *a, float *ev, int *error);
    subroutine elpa_eigenvalues_f_c(handle, a_p, ev_p,  error) bind(C, name="elpa_eigenvalues_f")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_f(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_dc: class method to solve the eigenvalue problem for double complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_dc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)             :: self

#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

      integer, optional              :: error
      integer(kind=c_int)            :: solver
      logical                        :: success_l

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


    !c> void elpa_eigenvalues_dc(elpa_t handle, double complex *a, double *ev, int *error);
    subroutine elpa_eigenvalues_dc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_dc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_dc(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_fc: class method to solve the eigenvalue problem for float complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_fc(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit

      use iso_c_binding
      class(elpa_impl_t)            :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)            :: ev(self%na)

      integer, optional             :: error
      integer(kind=c_int)           :: solver
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1094
      logical                       :: success_l
Andreas Marek's avatar
Andreas Marek committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_fc(elpa_t handle, float complex *a, float *ev, int *error);
    subroutine elpa_eigenvalues_fc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_fc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_fc(self, a, ev, error)
    end subroutine



Andreas Marek's avatar
Andreas Marek committed
1141
    !> \brief  elpa_hermitian_multiply_d: class method to perform C : = A**T * B for double real matrices
1142
1143
1144
    !>         where   A is a square matrix (self%na,self%na) which is optionally upper or lower triangular
    !>                 B is a (self%na,ncb) matrix
    !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar
Andreas Marek committed
1145
1146
1147
1148
1149
1150
1151
    !>                   triangle may be computed
    !>
    !> the MPI commicators and the block-cyclic distribution block size are already known to the type.
    !> Thus the class method "setup" must be called BEFORE this method is used
    !>
    !> \details
    !>
1152
    !> \param  self                 class(elpa_t), the ELPA object
Andreas Marek's avatar
Andreas Marek committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
    !> \param  uplo_a               'U' if A is upper triangular
    !>                              'L' if A is lower triangular
    !>                              anything else if A is a full matrix
    !>                              Please note: This pertains to the original A (as set in the calling program)
    !>                                           whereas the transpose of A is used for calculations
    !>                              If uplo_a is 'U' or 'L', the other triangle is not used at all,
    !>                              i.e. it may contain arbitrary numbers
    !> \param uplo_c                'U' if only the upper diagonal part of C is needed
    !>                              'L' if only the upper diagonal part of C is needed
    !>                              anything else if the full matrix C is needed
    !>                              Please note: Even when uplo_c is 'U' or 'L', the other triangle may be
    !>                                            written to a certain extent, i.e. one shouldn't rely on the content there!
    !> \param ncb                   Number of columns  of global matrices B and C
    !> \param a                     matrix a
1167
1168
    !> \param local_nrows           number of rows of local (sub) matrix a, set with class method set("local_nrows",value)
    !> \param local_ncols           number of columns of local (sub) matrix a, set with class method set("local_ncols",value)
Andreas Marek's avatar
Andreas Marek committed
1169
1170
1171
1172
1173
1174
1175
    !> \param b                     matrix b
    !> \param nrows_b               number of rows of local (sub) matrix b
    !> \param ncols_b               number of columns of local (sub) matrix b
    !> \param c                     matrix c
    !> \param nrows_c               number of rows of local (sub) matrix c
    !> \param ncols_c               number of columns of local (sub) matrix c
    !> \param error                 optional argument, error code which can be queried with elpa_strerr
1176
    subroutine elpa_hermitian_multiply_d (self,uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
1177
                                          c, nrows_c, ncols_c, error)
1178
      use iso_c_binding
1179
      use elpa1_auxiliary_impl
1180
      class(elpa_impl_t)              :: self
1181
      character*1                     :: uplo_a, uplo_c
1182
      integer(kind=c_int), intent(in) :: nrows_b, ncols_b, nrows_c, ncols_c, ncb
1183
#ifdef USE_ASSUMED_SIZE
1184
      real(kind=c_double)             :: a(self%local_nrows,*), b(nrows_b,*), c(nrows_c,*)
1185
#else
1186
      real(kind=c_double)             :: a(self%local_nrows,self%local_ncols), b(nrows_b,ncols_b), c(nrows_c,ncols_c)
1187
#endif
1188
      integer, optional               :: error
1189
1190
      logical                         :: success_l

1191
      success_l = elpa_mult_at_b_real_double_impl(self, uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
Andreas Marek's avatar
Andreas Marek committed
1192