elpa_impl.F90 84.7 KB
Newer Older
1 2 3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
  use elpa_abstract_impl
53
  use, intrinsic :: iso_c_binding
54
  implicit none
55

56 57
  private
  public :: elpa_impl_allocate
58

59
!> \brief Definition of the extended elpa_impl_t type
60
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
61
   private
62

63
   !> \brief methods available with the elpa_impl_t type
64
   contains
65
     !> \brief the puplic methods
66
     ! con-/destructor
67 68
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
69

70
     ! KV store
71 72 73 74
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
75

76 77 78 79

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
80 81
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
82 83


84
     !> \brief the private methods
85

86
     procedure, private :: elpa_eigenvectors_d                  !< private methods to implement the solve step for real/complex
87
                                                                !< double/single matrices
88 89 90
     procedure, private :: elpa_eigenvectors_f
     procedure, private :: elpa_eigenvectors_dc
     procedure, private :: elpa_eigenvectors_fc
91

Andreas Marek's avatar
Andreas Marek committed
92 93 94 95 96 97
     procedure, private :: elpa_eigenvalues_d                   !< private methods to implement the solve step for real/complex
                                                                !< double/single matrices; only the eigenvalues are computed
     procedure, private :: elpa_eigenvalues_f
     procedure, private :: elpa_eigenvalues_dc
     procedure, private :: elpa_eigenvalues_fc

98 99
     procedure, private :: elpa_hermitian_multiply_d            !< private methods to implement a "hermitian" multiplication of matrices a and b
     procedure, private :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
Andreas Marek's avatar
Andreas Marek committed
100
     procedure, private :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
101
     procedure, private :: elpa_hermitian_multiply_fc
102

Andreas Marek's avatar
Andreas Marek committed
103
     procedure, private :: elpa_cholesky_d                      !< private methods to implement the cholesky factorisation of
104
                                                                !< real/complex double/single matrices
105 106 107
     procedure, private :: elpa_cholesky_f
     procedure, private :: elpa_cholesky_dc
     procedure, private :: elpa_cholesky_fc
108

Andreas Marek's avatar
Andreas Marek committed
109
     procedure, private :: elpa_invert_trm_d                    !< private methods to implement the inversion of a triangular
110
                                                                !< real/complex double/single matrix
111 112 113
     procedure, private :: elpa_invert_trm_f
     procedure, private :: elpa_invert_trm_dc
     procedure, private :: elpa_invert_trm_fc
114

Andreas Marek's avatar
Andreas Marek committed
115 116
     procedure, private :: elpa_solve_tridi_d                   !< private methods to implement the solve step for a real valued
     procedure, private :: elpa_solve_tridi_f                   !< double/single tridiagonal matrix
117

118
     procedure, private :: associate_int => elpa_associate_int  !< private method to set some pointers
119

120
  end type elpa_impl_t
121

122
  !> \brief the implementation of the private methods
123
  contains
124 125 126 127
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
128
    function elpa_impl_allocate(error) result(obj)
Andreas Marek's avatar
Andreas Marek committed
129 130
      use precision
      use elpa_utilities, only : error_unit
Lorenz Huedepohl's avatar
Lorenz Huedepohl committed
131
      use elpa_generated_fortran_interfaces
Andreas Marek's avatar
Andreas Marek committed
132

133 134 135 136
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
137

Andreas Marek's avatar
Andreas Marek committed
138
      ! check whether init has ever been called
139
      if ( elpa_initialized() .ne. ELPA_OK) then
140
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
141 142
        if(present(error)) then
          error = ELPA_ERROR
143
        endif
Andreas Marek's avatar
Andreas Marek committed
144 145
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
146

147
      obj%index = elpa_index_instance_c()
148 149

      ! Associate some important integer pointers for convenience
150 151 152 153 154 155 156 157
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
158 159
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
160

161 162 163 164 165
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
166
    !c> elpa_t elpa_allocate();
167
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
168 169 170 171 172 173 174 175
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

176 177 178 179 180
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
181
    !c> void elpa_deallocate(elpa_t handle);
182
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
183 184 185 186 187 188 189 190 191
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


192 193 194 195
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
196
    function elpa_setup(self) result(error)
197
      use elpa1_impl, only : elpa_get_communicators_impl
198
      class(elpa_impl_t), intent(inout) :: self
199 200 201
      integer                           :: error
      integer                           :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                           mpierr, process_row, process_col, timings
202

203
#ifdef WITH_MPI
204 205 206 207
      error = ELPA_ERROR
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
208

209 210 211
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
212
        mpierr = elpa_get_communicators_impl(&
213 214 215
                        mpi_comm_parent, &
                        process_row, &
                        process_col, &
216 217
                        mpi_comm_rows, &
                        mpi_comm_cols)
218

219 220 221
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

222
        error = ELPA_OK
223
      endif
224

225 226
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
        error = ELPA_OK
227
      endif
228 229 230
#else
      error = ELPA_OK
#endif
231

232
#ifdef HAVE_DETAILED_TIMINGS
233 234
      call self%get("timings",timings)
      if (timings == 1) then
235 236
        call self%timer%enable()
      endif
237
#endif
238

239
    end function
240

241 242 243 244 245 246
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
247
    !c> int elpa_setup(elpa_t handle);
248
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
249 250 251 252 253 254 255 256 257
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


258 259 260 261 262 263 264 265 266
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
267
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
268
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
269 270 271 272 273 274 275 276 277 278 279 280 281
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


282 283 284 285 286 287 288 289 290
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
291 292
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
293 294 295 296 297 298 299 300 301
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
302 303
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
304 305


306 307 308 309 310
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
311
    function elpa_is_set(self, name) result(state)
312 313
      use iso_c_binding
      use elpa_generated_fortran_interfaces
314
      class(elpa_impl_t)       :: self
315
      character(*), intent(in) :: name
316
      integer                  :: state
317

318
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
319 320
    end function

321 322 323 324 325 326
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
327 328 329 330 331 332 333 334 335 336 337 338 339
    function elpa_can_set(self, name, value) result(error)
      use iso_c_binding
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
340 341 342
      use elpa_generated_fortran_interfaces
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
343 344 345 346
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
347

348 349
      nullify(string)

350
      call self%get(option_name, val, actual_error)
351 352 353 354 355
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
356 357
      endif

358 359 360 361
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
362

363 364 365 366
      if (present(error)) then
        error = actual_error
      endif
    end function
367

Andreas Marek's avatar
Andreas Marek committed
368

369 370 371 372 373 374 375 376 377
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
378
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
379
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
380 381 382 383 384 385 386 387 388 389 390 391
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

392

393
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
394 395 396 397 398 399 400 401
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
402 403
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
404 405 406 407 408 409 410 411 412
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
413 414
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
415 416


417
    function elpa_associate_int(self, name) result(value)
Andreas Marek's avatar
Andreas Marek committed
418
      use iso_c_binding
419
      use elpa_generated_fortran_interfaces
420 421
      use elpa_utilities, only : error_unit
      class(elpa_impl_t)             :: self
422 423
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
424

425 426
      type(c_ptr)                    :: value_p

427
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
428 429 430
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
431 432
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
433

434

435 436 437 438 439 440
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

441
#ifdef HAVE_DETAILED_TIMINGS
442
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
443 444 445
#else
      s = -1.0
#endif
446 447 448
    end function


449
    subroutine elpa_print_times(self, name1, name2, name3, name4)
450
      class(elpa_impl_t), intent(in) :: self
451
      character(len=*), intent(in), optional :: name1, name2, name3, name4
452
#ifdef HAVE_DETAILED_TIMINGS
453
      call self%timer%print(name1, name2, name3, name4)
454
#endif
455 456
    end subroutine

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


476
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
477
    !>
478 479
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
501
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
502 503
      use elpa2_impl
      use elpa1_impl
504
      use elpa_utilities, only : error_unit
Andreas Marek's avatar
Andreas Marek committed
505
      use iso_c_binding
506
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
507

508 509 510
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
511
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
512
#endif
513
      real(kind=c_double) :: ev(self%na)
514

515
      integer, optional   :: error
516
      integer(kind=c_int) :: solver
517
      logical             :: success_l
518

519

520 521
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
522
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
523

524
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
525
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
526 527 528 529
      else
        print *,"unknown solver"
        stop
      endif
530

531
      if (present(error)) then
532
        if (success_l) then
533
          error = ELPA_OK
534
        else
535
          error = ELPA_ERROR
536 537 538 539 540 541
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

542 543
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
544 545 546 547 548 549 550 551 552 553 554
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

555
      call elpa_eigenvectors_d(self, a, ev, q, error)
556 557
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
558

559
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
560
    !>
561 562
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
584
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
585 586
      use elpa2_impl
      use elpa1_impl
587 588
      use elpa_utilities, only : error_unit
      use iso_c_binding
589
      class(elpa_impl_t)  :: self
590 591 592
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
593
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
594
#endif
595
      real(kind=c_float)  :: ev(self%na)
596

597
      integer, optional   :: error
598
      integer(kind=c_int) :: solver
599
#ifdef WANT_SINGLE_PRECISION_REAL
600
      logical             :: success_l
601

602 603
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
604
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
605

606
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
607
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
608 609 610 611
      else
        print *,"unknown solver"
        stop
      endif
612

613
      if (present(error)) then
614
        if (success_l) then
615
          error = ELPA_OK
616
        else
617
          error = ELPA_ERROR
618 619 620 621 622
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
623
      print *,"This installation of the ELPA library has not been build with single-precision support"
624
      error = ELPA_ERROR
625 626 627
#endif
    end subroutine

628

629 630
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
631 632 633 634 635 636 637 638 639 640 641
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

642
      call elpa_eigenvectors_f(self, a, ev, q, error)
643 644 645
    end subroutine


646
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
647
    !>
648 649
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
671
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
672 673
      use elpa2_impl
      use elpa1_impl
674 675
      use elpa_utilities, only : error_unit
      use iso_c_binding
676
      class(elpa_impl_t)             :: self
677

678 679 680
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
681
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
682
#endif
683
      real(kind=c_double)            :: ev(self%na)
684

685
      integer, optional              :: error
686
      integer(kind=c_int)            :: solver
687
      logical                        :: success_l
688

689 690
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
691
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
692

693
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
694
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
695 696 697 698
      else
        print *,"unknown solver"
        stop
      endif
699

700
      if (present(error)) then
701
        if (success_l) then
702
          error = ELPA_OK
703
        else
704
          error = ELPA_ERROR
705 706 707 708 709 710 711
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


712 713
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
714 715 716 717 718 719 720 721 722 723 724 725
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

726
      call elpa_eigenvectors_dc(self, a, ev, q, error)
727 728 729
    end subroutine


730
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
731
    !>
732 733
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
755
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
756 757
      use elpa2_impl
      use elpa1_impl
758 759 760
      use elpa_utilities, only : error_unit

      use iso_c_binding
761
      class(elpa_impl_t)            :: self
762
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
763
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
764
#else
Andreas Marek's avatar
Andreas Marek committed
765
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
766
#endif
Andreas Marek's avatar
Andreas Marek committed
767
      real(kind=c_float)            :: ev(self%na)
768

769
      integer, optional             :: error
770
      integer(kind=c_int)           :: solver
771
#ifdef WANT_SINGLE_PRECISION_COMPLEX
772
      logical                       :: success_l
773

774 775
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
776
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
777

778
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
779
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
780 781 782 783
      else
        print *,"unknown solver"
        stop
      endif
784

785
      if (present(error)) then
786
        if (success_l) then
787
          error = ELPA_OK
788
        else
789
          error = ELPA_ERROR
790 791 792 793 794
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
795
      print *,"This installation of the ELPA library has not been build with single-precision support"
796
      error = ELPA_ERROR
797 798 799
#endif
    end subroutine

800

801 802
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
803 804 805 806 807 808 809 810 811 812 813 814
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

815
      call elpa_eigenvectors_fc(self, a, ev, q, error)
816 817
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self

#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      use elpa2_impl
      use elpa1_impl
      use elpa_utilities, only : error_unit
      use iso_c_binding
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
934
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
935 936 937