elpa2.F90 20.1 KB
Newer Older
1
2
3
4
5
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
6
7
!    - Max Planck Computing and Data Facility (MPCDF), fomerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
8
9
10
11
12
13
14
15
16
17
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaftrn,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
18
!    This particular source code file contains additions, changes and
Andreas Marek's avatar
Andreas Marek committed
19
!    enhancements authored by Intel Corporation which is not part of
20
!    the ELPA consortium.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
!
!    More information can be found here:
!    http://elpa.rzg.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
!
! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".



! ELPA2 -- 2-stage solver for ELPA
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".


#include "config-f90.h"
64
!> \brief Fortran module which provides the routines to use the two-stage ELPA solver
65
66
67
68
module ELPA2

! Version 1.1.2, 2011-02-21

69
  use elpa_utilities
70
  use elpa1_compute
71
  use elpa1, only : elpa_print_times, time_evp_back, time_evp_fwd, time_evp_solve
72
  use elpa2_utilities
73
  use elpa2_compute
74
75
  use elpa_pdgeqrf

76
77
78
79
80
81
82
83
84
85
86
87
88
  implicit none

  PRIVATE ! By default, all routines contained are private

  ! The following routines are public:

  public :: solve_evp_real_2stage
  public :: solve_evp_complex_2stage

  include 'mpif.h'

!******
contains
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
!-------------------------------------------------------------------------------
!>  \brief solve_evp_real_2stage: Fortran function to solve the real eigenvalue problem with a 2 stage approach
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \param use_qr (optional)                    use QR decomposition
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
128

129
function solve_evp_real_2stage(na, nev, a, lda, ev, q, ldq, nblk,        &
130
                               matrixCols,                               &
131
132
133
                                 mpi_comm_rows, mpi_comm_cols,           &
                                 mpi_comm_all, THIS_REAL_ELPA_KERNEL_API,&
                                 useQR) result(success)
134

135
136
137
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
138
   implicit none
139
140
   logical, intent(in), optional :: useQR
   logical                       :: useQRActual, useQREnvironment
Andreas Marek's avatar
Andreas Marek committed
141
   integer, intent(in), optional :: THIS_REAL_ELPA_KERNEL_API
142
   integer                       :: THIS_REAL_ELPA_KERNEL
143

144
   integer, intent(in)           :: na, nev, lda, ldq, matrixCols, mpi_comm_rows, &
145
                                    mpi_comm_cols, mpi_comm_all
146
   integer, intent(in)           :: nblk
147
   real*8, intent(inout)         :: a(lda,matrixCols), ev(na), q(ldq,matrixCols)
148
   real*8, allocatable           :: hh_trans_real(:,:)
149

150
151
152
153
154
155
   integer                       :: my_pe, n_pes, my_prow, my_pcol, np_rows, np_cols, mpierr
   integer                       :: nbw, num_blocks
   real*8, allocatable           :: tmat(:,:,:), e(:)
   real*8                        :: ttt0, ttt1, ttts
   integer                       :: i
   logical                       :: success
156
157
   logical, save                 :: firstCall = .true.
   logical                       :: wantDebug
158

159
160
161
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_real_2stage")
#endif
162
163
164
165
166
167
168
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
169

170
171
172
173
174
175
176
177

   wantDebug = .false.
   if (firstCall) then
     ! are debug messages desired?
     wantDebug = debug_messages_via_environment_variable()
     firstCall = .false.
   endif

178
179
   success = .true.

180
181
182
183
184
185
186
187
188
189
190
191
192
   useQRActual = .false.

   ! set usage of qr decomposition via API call
   if (present(useQR)) then
     if (useQR) useQRActual = .true.
     if (.not.(useQR)) useQRACtual = .false.
   endif

   ! overwrite this with environment variable settings
   if (qr_decomposition_via_environment_variable(useQREnvironment)) then
     useQRActual = useQREnvironment
   endif

193
   if (useQRActual) then
194
195
196
197
     if (mod(na,nblk) .ne. 0) then
       if (wantDebug) then
         write(error_unit,*) "solve_evp_real_2stage: QR-decomposition: blocksize does not fit with matrixsize"
       endif
Andreas Marek's avatar
Andreas Marek committed
198
     print *, "Do not use QR-decomposition for this matrix and blocksize."
Andreas Marek's avatar
Andreas Marek committed
199
200
     success = .false.
     return
201
     endif
202
203
   endif

204

205
206
207
   if (present(THIS_REAL_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_REAL_ELPA_KERNEL = THIS_REAL_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
208
   else
209

210
211
212
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_REAL_ELPA_KERNEL = get_actual_real_kernel()
Andreas Marek's avatar
Andreas Marek committed
213
214
215
216
   endif

   ! check whether choosen kernel is allowed
   if (check_allowed_real_kernels(THIS_REAL_ELPA_KERNEL)) then
217

218
219
220
221
222
223
224
225
226
227
228
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",REAL_ELPA_KERNEL_NAMES(THIS_REAL_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(REAL_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_REAL_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) REAL_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
229

230
231
232
233
       write(error_unit,*) " "
       write(error_unit,*) "The defaul kernel REAL_ELPA_KERNEL_GENERIC will be used !"
     endif
     THIS_REAL_ELPA_KERNEL = REAL_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
234
235

   endif
236
237

   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32
Andreas Marek's avatar
Andreas Marek committed
238
   ! On older systems (IBM Bluegene/P, Intel Nehalem) a value of 32 was optimal.
239
   ! For Intel(R) Xeon(R) E5 v2 and v3, better use 64 instead of 32!
Andreas Marek's avatar
Andreas Marek committed
240
241
   ! For IBM Bluegene/Q this is not clear at the moment. We have to keep an eye
   ! on this and maybe allow a run-time optimization here
242
   nbw = (63/nblk+1)*nblk
243
244
245
246
247
248
249
250
251

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
252
   call bandred_real(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
253
                     tmat, wantDebug, success, useQRActual)
254
   if (.not.(success)) return
255
   ttt1 = MPI_Wtime()
256
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
257
      write(error_unit,*) 'Time bandred_real               :',ttt1-ttt0
258
259
260
261
262
263

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
264
265
   call tridiag_band_real(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_real, &
                          mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
266
   ttt1 = MPI_Wtime()
267
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
268
      write(error_unit,*) 'Time tridiag_band_real          :',ttt1-ttt0
269
270
271
272
273
274
275
276
277
278

   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)

   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
279
   call solve_tridi(na, nev, ev, e, q, ldq, nblk, matrixCols, mpi_comm_rows,  &
280
                    mpi_comm_cols, wantDebug, success)
281
282
   if (.not.(success)) return

283
   ttt1 = MPI_Wtime()
284
285
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
     write(error_unit,*) 'Time solve_tridi                :',ttt1-ttt0
286
287
288
289
290
291
292
293
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   deallocate(e)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
294
295
296
   call trans_ev_tridi_to_band_real(na, nev, nblk, nbw, q, ldq, matrixCols, hh_trans_real, &
                                    mpi_comm_rows, mpi_comm_cols, wantDebug, success,      &
                                    THIS_REAL_ELPA_KERNEL)
297
   if (.not.(success)) return
298
   ttt1 = MPI_Wtime()
299
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
300
      write(error_unit,*) 'Time trans_ev_tridi_to_band_real:',ttt1-ttt0
301
302
303
304
305
306
307

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_real)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
308
   call trans_ev_band_to_full_real(na, nev, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, num_blocks, mpi_comm_rows, &
309
                                   mpi_comm_cols, useQRActual)
310
   ttt1 = MPI_Wtime()
311
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
312
      write(error_unit,*) 'Time trans_ev_band_to_full_real :',ttt1-ttt0
313
314
315
   time_evp_back = ttt1-ttts

   deallocate(tmat)
316
317
318
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_real_2stage")
#endif
319
320
1  format(a,f10.3)

321
end function solve_evp_real_2stage
322
323
324


!-------------------------------------------------------------------------------
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
!>  \brief solve_evp_complex_2stage: Fortran function to solve the complex eigenvalue problem with a 2 stage approach
!>
!>  Parameters
!>
!>  \param na                                   Order of matrix a
!>
!>  \param nev                                  Number of eigenvalues needed
!>
!>  \param a(lda,matrixCols)                    Distributed matrix for which eigenvalues are to be computed.
!>                                              Distribution is like in Scalapack.
!>                                              The full matrix must be set (not only one half like in scalapack).
!>                                              Destroyed on exit (upper and lower half).
!>
!>  \param lda                                  Leading dimension of a
!>
!>  \param ev(na)                               On output: eigenvalues of a, every processor gets the complete set
!>
!>  \param q(ldq,matrixCols)                    On output: Eigenvectors of a
!>                                              Distribution is like in Scalapack.
!>                                              Must be always dimensioned to the full size (corresponding to (na,na))
!>                                              even if only a part of the eigenvalues is needed.
!>
!>  \param ldq                                  Leading dimension of q
!>
!>  \param nblk                                 blocksize of cyclic distribution, must be the same in both directions!
!>
!>  \param matrixCols                           local columns of matrix a and q
!>
!>  \param mpi_comm_rows                        MPI communicator for rows
!>  \param mpi_comm_cols                        MPI communicator for columns
!>  \param mpi_comm_all                         MPI communicator for the total processor set
!>
!>  \param THIS_REAL_ELPA_KERNEL_API (optional) specify used ELPA2 kernel via API
!>
!>  \result success                             logical, false if error occured
!-------------------------------------------------------------------------------
361
function solve_evp_complex_2stage(na, nev, a, lda, ev, q, ldq, nblk, &
362
                                  matrixCols, mpi_comm_rows, mpi_comm_cols,      &
363
                                    mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL_API) result(success)
364

365
366
367
#ifdef HAVE_DETAILED_TIMINGS
 use timings
#endif
368
   implicit none
Andreas Marek's avatar
Andreas Marek committed
369
370
   integer, intent(in), optional :: THIS_COMPLEX_ELPA_KERNEL_API
   integer                       :: THIS_COMPLEX_ELPA_KERNEL
371
372
   integer, intent(in)           :: na, nev, lda, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all
   complex*16, intent(inout)     :: a(lda,matrixCols), q(ldq,matrixCols)
373
   real*8, intent(inout)         :: ev(na)
374
   complex*16, allocatable       :: hh_trans_complex(:,:)
375
376
377
378
379
380
381

   integer                       :: my_prow, my_pcol, np_rows, np_cols, mpierr, my_pe, n_pes
   integer                       :: l_cols, l_rows, l_cols_nev, nbw, num_blocks
   complex*16, allocatable       :: tmat(:,:,:)
   real*8, allocatable           :: q_real(:,:), e(:)
   real*8                        :: ttt0, ttt1, ttts
   integer                       :: i
382

383
384
385
   logical                       :: success, wantDebug
   logical, save                 :: firstCall = .true.

386
387
388
#ifdef HAVE_DETAILED_TIMINGS
   call timer%start("solve_evp_complex_2stage")
#endif
Andreas Marek's avatar
Andreas Marek committed
389
390
   call mpi_comm_rank(mpi_comm_all,my_pe,mpierr)
   call mpi_comm_size(mpi_comm_all,n_pes,mpierr)
391
392
393
394
395

   call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr)
   call mpi_comm_size(mpi_comm_rows,np_rows,mpierr)
   call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr)
   call mpi_comm_size(mpi_comm_cols,np_cols,mpierr)
396

397
398
399
400
401
402
403
404
   wantDebug = .false.
   if (firstCall) then
     ! are debug messages desired?
     wantDebug = debug_messages_via_environment_variable()
     firstCall = .false.
   endif


405
406
   success = .true.

407
408
409
   if (present(THIS_COMPLEX_ELPA_KERNEL_API)) then
     ! user defined kernel via the optional argument in the API call
     THIS_COMPLEX_ELPA_KERNEL = THIS_COMPLEX_ELPA_KERNEL_API
Andreas Marek's avatar
Andreas Marek committed
410
   else
411
412
413
     ! if kernel is not choosen via api
     ! check whether set by environment variable
     THIS_COMPLEX_ELPA_KERNEL = get_actual_complex_kernel()
Andreas Marek's avatar
Andreas Marek committed
414
   endif
415

Andreas Marek's avatar
Andreas Marek committed
416
417
   ! check whether choosen kernel is allowed
   if (check_allowed_complex_kernels(THIS_COMPLEX_ELPA_KERNEL)) then
418

419
420
421
422
423
424
425
426
427
428
429
     if (my_pe == 0) then
       write(error_unit,*) " "
       write(error_unit,*) "The choosen kernel ",COMPLEX_ELPA_KERNEL_NAMES(THIS_COMPLEX_ELPA_KERNEL)
       write(error_unit,*) "is not in the list of the allowed kernels!"
       write(error_unit,*) " "
       write(error_unit,*) "Allowed kernels are:"
       do i=1,size(COMPLEX_ELPA_KERNEL_NAMES(:))
         if (AVAILABLE_COMPLEX_ELPA_KERNELS(i) .ne. 0) then
           write(error_unit,*) COMPLEX_ELPA_KERNEL_NAMES(i)
         endif
       enddo
Andreas Marek's avatar
Andreas Marek committed
430

431
432
433
434
       write(error_unit,*) " "
       write(error_unit,*) "The defaul kernel COMPLEX_ELPA_KERNEL_GENERIC will be used !"
     endif
     THIS_COMPLEX_ELPA_KERNEL = COMPLEX_ELPA_KERNEL_GENERIC
Andreas Marek's avatar
Andreas Marek committed
435
   endif
436
437
438
439
440
441
442
443
444
445
446
447
   ! Choose bandwidth, must be a multiple of nblk, set to a value >= 32

   nbw = (31/nblk+1)*nblk

   num_blocks = (na-1)/nbw + 1

   allocate(tmat(nbw,nbw,num_blocks))

   ! Reduction full -> band

   ttt0 = MPI_Wtime()
   ttts = ttt0
448
   call bandred_complex(na, a, lda, nblk, nbw, matrixCols, num_blocks, mpi_comm_rows, mpi_comm_cols, &
449
                        tmat, wantDebug, success)
450
451
452
453
454
455
   if (.not.(success)) then
#ifdef HAVE_DETAILED_TIMINGS
     call timer%stop()
#endif
     return
   endif
456
   ttt1 = MPI_Wtime()
457
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
458
      write(error_unit,*) 'Time bandred_complex               :',ttt1-ttt0
459
460
461
462
463
464

   ! Reduction band -> tridiagonal

   allocate(e(na))

   ttt0 = MPI_Wtime()
465
466
   call tridiag_band_complex(na, nbw, nblk, a, lda, ev, e, matrixCols, hh_trans_complex, &
                             mpi_comm_rows, mpi_comm_cols, mpi_comm_all)
467
   ttt1 = MPI_Wtime()
468
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
469
      write(error_unit,*) 'Time tridiag_band_complex          :',ttt1-ttt0
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

   call mpi_bcast(ev,na,MPI_REAL8,0,mpi_comm_all,mpierr)
   call mpi_bcast(e,na,MPI_REAL8,0,mpi_comm_all,mpierr)

   ttt1 = MPI_Wtime()
   time_evp_fwd = ttt1-ttts

   l_rows = local_index(na, my_prow, np_rows, nblk, -1) ! Local rows of a and q
   l_cols = local_index(na, my_pcol, np_cols, nblk, -1) ! Local columns of q
   l_cols_nev = local_index(nev, my_pcol, np_cols, nblk, -1) ! Local columns corresponding to nev

   allocate(q_real(l_rows,l_cols))

   ! Solve tridiagonal system

   ttt0 = MPI_Wtime()
486
   call solve_tridi(na, nev, ev, e, q_real, ubound(q_real,dim=1), nblk, matrixCols, &
487
                    mpi_comm_rows, mpi_comm_cols, wantDebug, success)
488
489
   if (.not.(success)) return

490
   ttt1 = MPI_Wtime()
491
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times)  &
492
      write(error_unit,*) 'Time solve_tridi                   :',ttt1-ttt0
493
494
495
496
497
498
499
500
501
502
   time_evp_solve = ttt1-ttt0
   ttts = ttt1

   q(1:l_rows,1:l_cols_nev) = q_real(1:l_rows,1:l_cols_nev)

   deallocate(e, q_real)

   ! Backtransform stage 1

   ttt0 = MPI_Wtime()
503
504
505
   call trans_ev_tridi_to_band_complex(na, nev, nblk, nbw, q, ldq,   &
                                       matrixCols, hh_trans_complex, &
                                       mpi_comm_rows, mpi_comm_cols, &
506
                                       wantDebug, success,THIS_COMPLEX_ELPA_KERNEL)
507
   if (.not.(success)) return
508
   ttt1 = MPI_Wtime()
509
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
510
      write(error_unit,*) 'Time trans_ev_tridi_to_band_complex:',ttt1-ttt0
511
512
513
514
515
516
517

   ! We can now deallocate the stored householder vectors
   deallocate(hh_trans_complex)

   ! Backtransform stage 2

   ttt0 = MPI_Wtime()
Andreas Marek's avatar
Andreas Marek committed
518
519
   call trans_ev_band_to_full_complex(na, nev, nblk, nbw, a, lda, tmat, q, ldq, matrixCols, num_blocks, &
                                      mpi_comm_rows, mpi_comm_cols)
520
   ttt1 = MPI_Wtime()
521
   if (my_prow==0 .and. my_pcol==0 .and. elpa_print_times) &
522
      write(error_unit,*) 'Time trans_ev_band_to_full_complex :',ttt1-ttt0
523
524
525
   time_evp_back = ttt1-ttts

   deallocate(tmat)
526
527
528
#ifdef HAVE_DETAILED_TIMINGS
   call timer%stop("solve_evp_complex_2stage")
#endif
529
530
531

1  format(a,f10.3)

532
end function solve_evp_complex_2stage
533
534

end module ELPA2