elpa_impl.F90 93.9 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
53
54
55
56
57
58
59
60
61
  use precision
  use elpa2_impl
  use elpa1_impl
  use elpa1_auxiliary_impl
#ifdef WITH_MPI
  use elpa_mpi
#endif
  use elpa_generated_fortran_interfaces
  use elpa_utilities, only : error_unit

62
  use elpa_abstract_impl
63
  use elpa_autotune_impl
64
  use, intrinsic :: iso_c_binding
65
  implicit none
66

67
68
  private
  public :: elpa_impl_allocate
69

70
!> \brief Definition of the extended elpa_impl_t type
71
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
72
   private
73
   integer :: communicators_owned
74

75
   !> \brief methods available with the elpa_impl_t type
76
   contains
77
     !> \brief the puplic methods
78
     ! con-/destructor
79
80
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
81

82
     ! KV store
83
84
85
86
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
87

88
89
90
91

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
92
93
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
94
95


96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
131

132
133
134
     procedure, public :: autotune_setup => elpa_autotune_setup
     procedure, public :: autotune_step => elpa_autotune_step
     procedure, public :: autotune_set_best => elpa_autotune_set_best
135

136
  end type elpa_impl_t
137
138

  !> \brief the implementation of the generic methods
139
  contains
140
141


142
143
144
145
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
146
147
148
149
150
    function elpa_impl_allocate(error) result(obj)
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
151

Andreas Marek's avatar
Andreas Marek committed
152
      ! check whether init has ever been called
153
      if ( elpa_initialized() .ne. ELPA_OK) then
154
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
155
156
        if(present(error)) then
          error = ELPA_ERROR
157
        endif
Andreas Marek's avatar
Andreas Marek committed
158
159
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
160

161
      obj%index = elpa_index_instance_c()
162
163

      ! Associate some important integer pointers for convenience
164
165
166
167
168
169
170
171
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
172
173
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
174

175
176
177
178
179
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
180
    !c> elpa_t elpa_allocate();
181
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
182
183
184
185
186
187
188
189
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

190
191
192
193
194
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
195
    !c> void elpa_deallocate(elpa_t handle);
196
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
197
198
199
200
201
202
203
204
205
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


206
207
208
209
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
210
    function elpa_setup(self) result(error)
211
212
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
213

214
#ifdef WITH_MPI
215
216
217
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
218
#endif
219

220
221
222
223
224
225
226
227
#ifdef HAVE_DETAILED_TIMINGS
      call self%get("timings",timings)
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
228

229
230
#ifdef WITH_MPI
      ! Create communicators ourselves
231
232
233
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
234

235
236
237
        call self%get("mpi_comm_parent", mpi_comm_parent)
        call self%get("process_row", process_row)
        call self%get("process_col", process_col)
238
239
240
241
242
243
244

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
245

246
247
248
249
250
251
252
253
254
255
256
257
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
258

259
260
261
        call self%set("mpi_comm_rows", mpi_comm_rows)
        call self%set("mpi_comm_cols", mpi_comm_cols)

262
263
264
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

265
        error = ELPA_OK
266
        return
267
      endif
268

269
      ! Externally supplied communicators
270
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
271
        self%communicators_owned = 0
272
        error = ELPA_OK
273
        return
274
      endif
275

276
277
      ! Otherwise parameters are missing
      error = ELPA_ERROR
278
#endif
279

280
    end function
281

282
283
284
285
286
287
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
288
    !c> int elpa_setup(elpa_t handle);
289
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
290
291
292
293
294
295
296
297
298
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


299
300
301
302
303
304
305
306
307
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
308
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
309
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
310
311
312
313
314
315
316
317
318
319
320
321
322
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


323
324
325
326
327
328
329
330
331
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
332
333
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
334
335
336
337
338
339
340
341
342
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      integer(kind=c_int)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
343
344
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
345
346


347
348
349
350
351
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
352
353
    function elpa_is_set(self, name) result(state)
      class(elpa_impl_t)       :: self
354
      character(*), intent(in) :: name
355
      integer                  :: state
356

357
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
358
359
    end function

360
361
362
363
364
365
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
366
367
368
369
370
371
372
373
374
375
376
    function elpa_can_set(self, name, value) result(error)
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


    function elpa_value_to_string(self, option_name, error) result(string)
377
378
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
379
380
381
382
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
383

384
385
      nullify(string)

386
      call self%get(option_name, val, actual_error)
387
388
389
390
391
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
392
393
      endif

394
395
396
397
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
398

399
400
401
402
      if (present(error)) then
        error = actual_error
      endif
    end function
403

Andreas Marek's avatar
Andreas Marek committed
404

405
406
407
408
409
410
411
412
413
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
414
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
415
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
416
417
418
419
420
421
422
423
424
425
426
427
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double), intent(in), value :: value
      integer(kind=c_int), optional, intent(in) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

428

429
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
430
431
432
433
434
435
436
437
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
438
439
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
440
441
442
443
444
445
446
447
448
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      type(c_ptr), intent(in), value :: name_p
      character(len=elpa_strlen_c(name_p)), pointer :: name
      real(kind=c_double)  :: value
      integer(kind=c_int), optional, intent(inout) :: error

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
449
450
      call elpa_get_double(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
451
452


453
    function elpa_associate_int(self, name) result(value)
454
      class(elpa_impl_t)             :: self
455
456
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
457

458
459
      type(c_ptr)                    :: value_p

460
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
461
462
463
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
464
465
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
466

467

468
469
470
471
472
473
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

474
#ifdef HAVE_DETAILED_TIMINGS
475
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
476
477
478
#else
      s = -1.0
#endif
479
480
481
    end function


482
    subroutine elpa_print_times(self, name1, name2, name3, name4)
483
      class(elpa_impl_t), intent(in) :: self
484
      character(len=*), intent(in), optional :: name1, name2, name3, name4
485
#ifdef HAVE_DETAILED_TIMINGS
486
      call self%timer%print(name1, name2, name3, name4)
487
#endif
488
489
    end subroutine

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


509
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
510
    !>
511
512
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
534
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
535
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
536

537
538
539
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
540
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
541
#endif
542
      real(kind=c_double) :: ev(self%na)
543

544
      integer, optional   :: error
545
      integer(kind=c_int) :: solver
546
      logical             :: success_l
547

548

549
550
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
551
        call self%autotune_timer%start("accumulator")
552
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
553
        call self%autotune_timer%stop("accumulator")
554

555
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
556
        call self%autotune_timer%start("accumulator")
557
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
558
559
        call self%autotune_timer%stop("accumulator")

560
561
562
563
      else
        print *,"unknown solver"
        stop
      endif
564

565
      if (present(error)) then
566
        if (success_l) then
567
          error = ELPA_OK
568
        else
569
          error = ELPA_ERROR
570
571
572
573
574
575
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

576
577
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
578
579
580
581
582
583
584
585
586
587
588
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

589
      call elpa_eigenvectors_d(self, a, ev, q, error)
590
591
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
592

593
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
594
    !>
595
596
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
618
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
619
      class(elpa_impl_t)  :: self
620
621
622
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
623
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
624
#endif
625
      real(kind=c_float)  :: ev(self%na)
626

627
      integer, optional   :: error
628
      integer(kind=c_int) :: solver
629
#ifdef WANT_SINGLE_PRECISION_REAL
630
      logical             :: success_l
631

632
633
      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
634
        call self%autotune_timer%start("accumulator")
635
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
636
        call self%autotune_timer%stop("accumulator")
637

638
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
639
        call self%autotune_timer%start("accumulator")
640
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
641
642
        call self%autotune_timer%stop("accumulator")

643
644
645
646
      else
        print *,"unknown solver"
        stop
      endif
647

648
      if (present(error)) then
649
        if (success_l) then
650
          error = ELPA_OK
651
        else
652
          error = ELPA_ERROR
653
654
655
656
657
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
658
      print *,"This installation of the ELPA library has not been build with single-precision support"
659
      error = ELPA_ERROR
660
661
662
#endif
    end subroutine

663

664
665
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
666
667
668
669
670
671
672
673
674
675
676
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

677
      call elpa_eigenvectors_f(self, a, ev, q, error)
678
679
680
    end subroutine


681
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
682
    !>
683
684
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
706
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
707
      class(elpa_impl_t)             :: self
708

709
710
711
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
712
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
713
#endif
714
      real(kind=c_double)            :: ev(self%na)
715

716
      integer, optional              :: error
717
      integer(kind=c_int)            :: solver
718
      logical                        :: success_l
719

720
721
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
722
        call self%autotune_timer%start("accumulator")
723
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
724
        call self%autotune_timer%stop("accumulator")
725

726
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
727
        call self%autotune_timer%start("accumulator")
728
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
729
730
        call self%autotune_timer%stop("accumulator")

731
732
733
734
      else
        print *,"unknown solver"
        stop
      endif
735

736
      if (present(error)) then
737
        if (success_l) then
738
          error = ELPA_OK
739
        else
740
          error = ELPA_ERROR
741
742
743
744
745
746
747
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


748
749
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
750
751
752
753
754
755
756
757
758
759
760
761
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

762
      call elpa_eigenvectors_dc(self, a, ev, q, error)
763
764
765
    end subroutine


766
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
767
    !>
768
769
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
791
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
792
      class(elpa_impl_t)            :: self
793
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
794
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
795
#else
Andreas Marek's avatar
Andreas Marek committed
796
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
797
#endif
Andreas Marek's avatar
Andreas Marek committed
798
      real(kind=c_float)            :: ev(self%na)
799

800
      integer, optional             :: error
801
      integer(kind=c_int)           :: solver
802
#ifdef WANT_SINGLE_PRECISION_COMPLEX
803
      logical                       :: success_l
804

805
806
      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
807
        call self%autotune_timer%start("accumulator")
808
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
809
        call self%autotune_timer%stop("accumulator")
810

811
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
812
        call self%autotune_timer%start("accumulator")
813
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
814
815
        call self%autotune_timer%stop("accumulator")

816
817
818
819
      else
        print *,"unknown solver"
        stop
      endif
820

821
      if (present(error)) then
822
        if (success_l) then
823
          error = ELPA_OK
824
        else
825
          error = ELPA_ERROR
826
827
828
829
830
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
831
      print *,"This installation of the ELPA library has not been build with single-precision support"
832
      error = ELPA_ERROR
833
834
835
#endif
    end subroutine

836

837
838
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
839
840
841
842
843
844
845
846
847
848
849
850
      type(c_ptr), intent(in), value :: handle, a_p, ev_p, q_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :), q(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

851
      call elpa_eigenvectors_fc(self, a, ev, q, error)
852
853
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892



    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
      logical             :: success_l


      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
893
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
894
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)
895
        call self%autotune_timer%stop("accumulator")
Andreas Marek's avatar
Andreas Marek committed
896
897

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
898
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
899
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev)
900
901
        call self%autotune_timer%stop("accumulator")

Andreas Marek's avatar
Andreas Marek committed
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine

    !c> void elpa_eigenvalues_d(elpa_t handle, double *a, double *ev, int *error);
    subroutine elpa_eigenvalues_d_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_d")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_double), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_d(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_f(self, a, ev, error)
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *)
#else
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)  :: ev(self%na)

      integer, optional   :: error
      integer(kind=c_int) :: solver
#ifdef WANT_SINGLE_PRECISION_REAL
966
      logical             :: success_l
Andreas Marek's avatar
Andreas Marek committed
967
968
969

      call self%get("solver",solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
970
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
971
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev)
972
        call self%autotune_timer%stop("accumulator")
Andreas Marek's avatar
Andreas Marek committed
973
974

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
975
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
976
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev)
977
978
        call self%autotune_timer%stop("accumulator")

Andreas Marek's avatar
Andreas Marek committed
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_f(elpa_t handle, float *a, float *ev, int *error);
    subroutine elpa_eigenvalues_f_c(handle, a_p, ev_p,  error) bind(C, name="elpa_eigenvalues_f")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      real(kind=c_float), pointer :: a(:, :), ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_f(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_dc: class method to solve the eigenvalue problem for double complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_dc(self, a, ev, error)
      class(elpa_impl_t)             :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double)            :: ev(self%na)

      integer, optional              :: error
      integer(kind=c_int)            :: solver
      logical                        :: success_l

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
1051
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1052
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev)
1053
        call self%autotune_timer%stop("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1054
1055

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
1056
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1057
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev)
1058
1059
        call self%autotune_timer%stop("accumulator")

Andreas Marek's avatar
Andreas Marek committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
    end subroutine


    !c> void elpa_eigenvalues_dc(elpa_t handle, double complex *a, double *ev, int *error);
    subroutine elpa_eigenvalues_dc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_dc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_double_complex), pointer :: a(:, :)
      real(kind=c_double), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_dc(self, a, ev, error)
    end subroutine


    !>  \brief elpa_eigenvalues_fc: class method to solve the eigenvalue problem for float complex matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_fc(self, a, ev, error)
      class(elpa_impl_t)            :: self
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_float_complex) :: a(self%local_nrows, *)
#else
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_float)            :: ev(self%na)

      integer, optional             :: error
      integer(kind=c_int)           :: solver
#ifdef WANT_SINGLE_PRECISION_COMPLEX
1126
      logical                       :: success_l
Andreas Marek's avatar
Andreas Marek committed
1127
1128
1129

      call self%get("solver", solver)
      if (solver .eq. ELPA_SOLVER_1STAGE) then
1130
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1131
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev)
1132
        call self%autotune_timer%stop("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1133
1134

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
1135
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1136
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev)
1137
1138
        call self%autotune_timer%stop("accumulator")

Andreas Marek's avatar
Andreas Marek committed
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
      else
        print *,"unknown solver"
        stop
      endif

      if (present(error)) then
        if (success_l) then
          error = ELPA_OK
        else
          error = ELPA_ERROR
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
#else
      print *,"This installation of the ELPA library has not been build with single-precision support"
      error = ELPA_ERROR
#endif
    end subroutine


    !c> void elpa_eigenvalues_fc(elpa_t handle, float complex *a, float *ev, int *error);
    subroutine elpa_eigenvalues_fc_c(handle, a_p, ev_p, error) bind(C, name="elpa_eigenvalues_fc")
      type(c_ptr), intent(in), value :: handle, a_p, ev_p
      integer(kind=c_int), optional, intent(in) :: error

      complex(kind=c_float_complex), pointer :: a(:, :)
      real(kind=c_float), pointer :: ev(:)
      type(elpa_impl_t), pointer  :: self

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])

      call elpa_eigenvalues_fc(self, a, ev, error)
    end subroutine



Andreas Marek's avatar
Andreas Marek committed
1178
    !> \brief  elpa_hermitian_multiply_d: class method to perform C : = A**T * B for double real matrices
1179
1180
1181
    !>         where   A is a square matrix (self%na,self%na) which is optionally upper or lower triangular
    !>                 B is a (self%na,ncb) matrix
    !>                 C is a (self%na,ncb) matrix where optionally only the upper or lower
Andreas Marek's avatar