elpa_impl.F90 110 KB
Newer Older
1
2
3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52
53
54
55
56
57
58
59
60
61
  use precision
  use elpa2_impl
  use elpa1_impl
  use elpa1_auxiliary_impl
#ifdef WITH_MPI
  use elpa_mpi
#endif
  use elpa_generated_fortran_interfaces
  use elpa_utilities, only : error_unit

62
  use elpa_abstract_impl
63
  use elpa_autotune_impl
64
  use, intrinsic :: iso_c_binding
65
  implicit none
66

67
68
  private
  public :: elpa_impl_allocate
69

70
!> \brief Definition of the extended elpa_impl_t type
71
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
72
   private
73
   integer :: communicators_owned
74

75
   !> \brief methods available with the elpa_impl_t type
76
   contains
77
     !> \brief the puplic methods
78
     ! con-/destructor
79
80
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
81

82
     ! KV store
83
84
85
86
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
87

88
89
90
91

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
92
93
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
94
95


96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
131

Andreas Marek's avatar
Andreas Marek committed
132
     procedure, public :: autotune_setup => elpa_autotune_impl_setup
133
134
     procedure, public :: autotune_step => elpa_autotune_step
     procedure, public :: autotune_set_best => elpa_autotune_set_best
135

136
  end type elpa_impl_t
137
138

  !> \brief the implementation of the generic methods
139
  contains
140
141


142
143
144
145
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
146
147
148
149
150
    function elpa_impl_allocate(error) result(obj)
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
151

Andreas Marek's avatar
Andreas Marek committed
152
      ! check whether init has ever been called
153
      if ( elpa_initialized() .ne. ELPA_OK) then
154
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
155
156
        if(present(error)) then
          error = ELPA_ERROR
157
        endif
Andreas Marek's avatar
Andreas Marek committed
158
159
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
160

161
      obj%index = elpa_index_instance_c()
162
163

      ! Associate some important integer pointers for convenience
164
165
166
167
168
169
170
171
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
172
173
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
174

175
176
177
178
179
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
180
    !c> elpa_t elpa_allocate();
181
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
182
183
184
185
186
187
188
189
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

190
191
192
193
194
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
195
    !c> void elpa_deallocate(elpa_t handle);
196
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
197
198
199
200
201
202
203
204
205
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    !c> /*! \brief C interface for the implementation of the elpa_autotune_deallocate method
    !c> *
    !c> *  \param  elpa_autotune_impl_t  handle of ELPA autotune object to be deallocated
    !c> *  \result void
    !c> */
    !c> void elpa_autotune_deallocate(elpa_t handle);
    subroutine elpa_autotune_impl_deallocate_c(handle) bind(C, name="elpa_autotune_deallocate")
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


222
223
224
225
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
226
    function elpa_setup(self) result(error)
227
228
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
229

230
#ifdef WITH_MPI
231
232
233
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
234
#endif
235

236
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
237
      call self%get("timings",timings, error)
238
239
240
241
242
243
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
244

245
246
#ifdef WITH_MPI
      ! Create communicators ourselves
247
248
249
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
250

Andreas Marek's avatar
Andreas Marek committed
251
252
253
        call self%get("mpi_comm_parent", mpi_comm_parent, error)
        call self%get("process_row", process_row, error)
        call self%get("process_col", process_col, error)
254
255
256
257
258
259
260

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
261

262
263
264
265
266
267
268
269
270
271
272
273
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
274

Andreas Marek's avatar
Andreas Marek committed
275
276
277
278
279
280
281
282
283
284
        call self%set("mpi_comm_rows", mpi_comm_rows,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
        call self%set("mpi_comm_cols", mpi_comm_cols,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
285

286
287
288
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

289
        error = ELPA_OK
290
        return
291
      endif
292

293
      ! Externally supplied communicators
294
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
295
        self%communicators_owned = 0
296
        error = ELPA_OK
297
        return
298
      endif
299

300
301
      ! Otherwise parameters are missing
      error = ELPA_ERROR
302
#endif
303

304
    end function
305

306
307
308
309
310
311
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
312
    !c> int elpa_setup(elpa_t handle);
313
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
314
315
316
317
318
319
320
321
322
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


323
324
325
326
327
328
329
330
331
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
332
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
333
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
Andreas Marek's avatar
Andreas Marek committed
334
335
336
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
337
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
338
339
340
341
342
343
344
      integer(kind=c_int), intent(in), value        :: value

#ifdef USE_FORTRAN2008
      integer(kind=c_int) , intent(in), optional    :: error
#else
      integer(kind=c_int) , intent(in)              :: error
#endif
345
346
347
348
349
350
351

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


352
353
354
355
356
357
358
359
360
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
361
362
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
363
364
365
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
366
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
367
368
369
370
371
372
      integer(kind=c_int)                           :: value
#ifdef ISE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
373
374
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
375
376
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
377
378


379
380
381
382
383
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
384
385
    function elpa_is_set(self, name) result(state)
      class(elpa_impl_t)       :: self
386
      character(*), intent(in) :: name
387
      integer                  :: state
388

389
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
390
391
    end function

392
393
394
395
396
397
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
398
399
400
401
402
403
404
405
406
407
    function elpa_can_set(self, name, value) result(error)
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


408
409
410
411
412
413
    !> \brief function to convert a value to an human readable string
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   option_name string: the name of the options, whose value should be converted
    !> \param   error       integer: errpr code
    !> \result  string      string: the humanreadable string   
414
    function elpa_value_to_string(self, option_name, error) result(string)
415
416
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
417
418
419
420
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
421

422
423
      nullify(string)

424
      call self%get(option_name, val, actual_error)
425
426
427
428
429
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
430
431
      endif

432
433
434
435
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
436

437
438
439
440
      if (present(error)) then
        error = actual_error
      endif
    end function
441

Andreas Marek's avatar
Andreas Marek committed
442

443
444
445
446
447
448
449
450
451
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
452
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
453
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
Andreas Marek's avatar
Andreas Marek committed
454
455
456
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
457
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
458
459
460
461
462
463
      real(kind=c_double), intent(in), value        :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(in), optional     :: error
#else
      integer(kind=c_int), intent(in)               :: error
#endif
464
465
466
467
468
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

469

470
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
471
472
473
474
475
476
477
478
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
479
480
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
481
482
483
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
484
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
485
486
487
488
489
490
      real(kind=c_double)                           :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
491
492
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
493
494
      call elpa_get_double(self, name, value, error)
    end subroutine
495
 
Andreas Marek's avatar
Andreas Marek committed
496

497
498
499
500
501
    !> \brief function to associate a pointer with an integer value
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   name        string: the name of the entry
    !> \result  value       integer, pointer: the value for the entry
502
    function elpa_associate_int(self, name) result(value)
503
      class(elpa_impl_t)             :: self
504
505
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
506

507
508
      type(c_ptr)                    :: value_p

509
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
510
511
512
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
513
514
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
515

516

517
518
519
520
521
522
523
    !> \brief function to querry the timing information at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 6 nested levels can be queried
    !> \result  s               double: the timer metric for the region. Might be seconds,
    !>                                  or any other supported metric
524
525
526
527
528
529
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

530
#ifdef HAVE_DETAILED_TIMINGS
531
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
532
533
534
#else
      s = -1.0
#endif
535
536
537
    end function


538
539
540
541
542
    !> \brief function to print the timing tree below at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 4 nested levels can be specified
543
    subroutine elpa_print_times(self, name1, name2, name3, name4)
544
      class(elpa_impl_t), intent(in) :: self
545
      character(len=*), intent(in), optional :: name1, name2, name3, name4
546
#ifdef HAVE_DETAILED_TIMINGS
547
      call self%timer%print(name1, name2, name3, name4)
548
#endif
549
550
    end subroutine

551

552
553
554
555
    !> \brief function to start the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: a chosen identifier name for the code region
556
557
558
559
560
561
562
563
564
    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


565
566
567
568
    !> \brief function to stop the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: identifier name for the code region to stop
569
570
571
572
573
574
575
576
577
    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


578
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
579
    !>
580
581
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
603
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
604
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
605

606
607
608
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
609
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
610
#endif
611
      real(kind=c_double) :: ev(self%na)
612

Andreas Marek's avatar
Andreas Marek committed
613
#ifdef USE_FORTRAN2008
614
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
615
616
617
618
#else
      integer             :: error
#endif
      integer             :: error2
619
      integer(kind=c_int) :: solver
620
      logical             :: success_l
621

622

Andreas Marek's avatar
Andreas Marek committed
623
624
625
626
627
628
629
630
631
632
633
634
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
        print *,"Problem setting option. Aborting..."
        stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
635
      if (solver .eq. ELPA_SOLVER_1STAGE) then
636
        call self%autotune_timer%start("accumulator")
637
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
638
        call self%autotune_timer%stop("accumulator")
639

640
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
641
        call self%autotune_timer%start("accumulator")
642
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
643
644
        call self%autotune_timer%stop("accumulator")

645
646
647
648
      else
        print *,"unknown solver"
        stop
      endif
649

Andreas Marek's avatar
Andreas Marek committed
650
#ifdef USE_FORTRAN2008
651
      if (present(error)) then
652
        if (success_l) then
653
          error = ELPA_OK
654
        else
655
          error = ELPA_ERROR
656
657
658
659
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
660
661
662
663
664
665
666
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
667
668
    end subroutine

669
670
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
Andreas Marek's avatar
Andreas Marek committed
671
672
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
673
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
674
675
676
#else
      integer(kind=c_int), intent(in)           :: error
#endif
677

Andreas Marek's avatar
Andreas Marek committed
678
679
      real(kind=c_double), pointer              :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
680
681
682
683
684
685

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

686
      call elpa_eigenvectors_d(self, a, ev, q, error)
687
688
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
689

690
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
691
    !>
692
693
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
715
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
716
      class(elpa_impl_t)  :: self
717
718
719
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
720
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
721
#endif
722
      real(kind=c_float)  :: ev(self%na)
723

Andreas Marek's avatar
Andreas Marek committed
724
#ifdef USE_FORTRAN2008
725
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
726
727
728
729
#else
      integer             :: error
#endif
      integer             :: error2
730
      integer(kind=c_int) :: solver
731
#ifdef WANT_SINGLE_PRECISION_REAL
732
      logical             :: success_l
733

Andreas Marek's avatar
Andreas Marek committed
734
735
736
737
738
739
740
741
742
743
744
745
      call self%get("solver",solver, error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#if USE_FORTRAN2008                   
      if (present(error)) then        
        error  = error2               
      endif
#else
      error  = error2
#endif
746
      if (solver .eq. ELPA_SOLVER_1STAGE) then
747
        call self%autotune_timer%start("accumulator")
748
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
749
        call self%autotune_timer%stop("accumulator")
750

751
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
752
        call self%autotune_timer%start("accumulator")
753
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
754
755
        call self%autotune_timer%stop("accumulator")

756
757
758
759
      else
        print *,"unknown solver"
        stop
      endif
760

Andreas Marek's avatar
Andreas Marek committed
761
#ifdef USE_FORTRAN2008
762
      if (present(error)) then
763
        if (success_l) then
764
          error = ELPA_OK
765
        else
766
          error = ELPA_ERROR
767
768
769
770
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
771
772
773
774
775
776
777
778
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

779
#else
780
      print *,"This installation of the ELPA library has not been build with single-precision support"
781
      error = ELPA_ERROR
782
783
784
#endif
    end subroutine

785

786
787
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
Andreas Marek's avatar
Andreas Marek committed
788
789
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
790
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
791
792
793
#else
      integer(kind=c_int), intent(in)           :: error
#endif
794

Andreas Marek's avatar
Andreas Marek committed
795
796
      real(kind=c_float), pointer               :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
797
798
799
800
801
802

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

803
      call elpa_eigenvectors_f(self, a, ev, q, error)
804
805
806
    end subroutine


807
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
808
    !>
809
810
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
832
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
833
      class(elpa_impl_t)             :: self
834

835
836
837
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
838
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
839
#endif
840
      real(kind=c_double)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
841
#ifdef USE_FORTRAN2008
842
      integer, optional              :: error
Andreas Marek's avatar
Andreas Marek committed
843
844
845
846
#else
      integer                        :: error
#endif
      integer                        :: error2
847
      integer(kind=c_int)            :: solver
848
      logical                        :: success_l
849

Andreas Marek's avatar
Andreas Marek committed
850
851
852
853
854
855
856
857
858
859
860
861
862
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif

863
      if (solver .eq. ELPA_SOLVER_1STAGE) then
864
        call self%autotune_timer%start("accumulator")
865
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
866
        call self%autotune_timer%stop("accumulator")
867

868
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
869
        call self%autotune_timer%start("accumulator")
870
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
871
872
        call self%autotune_timer%stop("accumulator")

873
874
875
876
      else
        print *,"unknown solver"
        stop
      endif
877

Andreas Marek's avatar
Andreas Marek committed
878
#ifdef USE_FORTRAN2008
879
      if (present(error)) then
880
        if (success_l) then
881
          error = ELPA_OK
882
        else
883
          error = ELPA_ERROR
884
885
886
887
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
888
889
890
891
892
893
894
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
895
896
897
    end subroutine


898
899
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
Andreas Marek's avatar
Andreas Marek committed
900
901
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
902
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
903
904
905
#else
      integer(kind=c_int), intent(in)           :: error
#endif
906

Andreas Marek's avatar
Andreas Marek committed
907
908
909
      complex(kind=c_double_complex), pointer   :: a(:, :), q(:, :)
      real(kind=c_double), pointer              :: ev(:)
      type(elpa_impl_t), pointer                :: self
910
911
912
913
914
915

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

916
      call elpa_eigenvectors_dc(self, a, ev, q, error)
917
918
919
    end subroutine


920
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
921
    !>
922
923
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
945
    subroutine elpa_eigenvectors_fc(self, a, ev, q, error)
946
      class(elpa_impl_t)            :: self
947
#ifdef USE_ASSUMED_SIZE
Andreas Marek's avatar
Andreas Marek committed
948
      complex(kind=c_float_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
949
#else
Andreas Marek's avatar
Andreas Marek committed
950
      complex(kind=c_float_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
951
#endif
Andreas Marek's avatar
Andreas Marek committed
952
      real(kind=c_float)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
953
#ifdef USE_FORTRAN2008
954
      integer, optional             :: error
Andreas Marek's avatar
Andreas Marek committed
955
956
957
958
#else
      integer                       :: error
#endif
      integer                       :: error2
959
      integer(kind=c_int)           :: solver
960
#ifdef WANT_SINGLE_PRECISION_COMPLEX
961
      logical                       :: success_l
962

Andreas Marek's avatar
Andreas Marek committed
963
964
965
966
967
968
969
970
971
972
973
974
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
975
      if (solver .eq. ELPA_SOLVER_1STAGE) then
976
        call self%autotune_timer%start("accumulator")
977
        success_l = elpa_solve_evp_complex_1stage_single_impl(self, a, ev, q)
978
        call self%autotune_timer%stop("accumulator")
979

980
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
981
        call self%autotune_timer%start("accumulator")
982
        success_l = elpa_solve_evp_complex_2stage_single_impl(self,  a, ev, q)
983
984
        call self%autotune_timer%stop("accumulator")

985
986
987
988
      else
        print *,"unknown solver"
        stop
      endif
Andreas Marek's avatar
Andreas Marek committed
989
#ifdef USE_FORTRAN2008
990
      if (present(error)) then
Andreas Marek's avatar
Andreas Marek committed
991
992
993
994
995
       if (success_l) then
         error = ELPA_OK
       else
         error = ELPA_ERROR
       endif
996
997
998
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
999
1000
1001
1002
1003
1004
1005
1006
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

1007
#else
1008
      print *,"This installation of the ELPA library has not been build with single-precision support"
1009
      error = ELPA_ERROR
1010
1011
1012
#endif
    end subroutine

1013

1014
1015
    !c> void elpa_eigenvectors_fc(elpa_t handle, float complex *a, float *ev, float complex *q, int *error);
    subroutine elpa_eigenvectors_fc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_fc")
Andreas Marek's avatar
Andreas Marek committed
1016
1017
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
1018
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
1019
1020
1021
1022
1023
1024
#else
      integer(kind=c_int), intent(in)           :: error
#endif
      complex(kind=c_float_complex), pointer    :: a(:, :), q(:, :)
      real(kind=c_float), pointer               :: ev(:)
      type(elpa_impl_t), pointer                :: self
1025
1026
1027
1028
1029
1030

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

1031
      call elpa_eigenvectors_fc(self, a, ev, q, error)
1032
1033
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063


    !>  \brief elpa_eigenvalues_d: class method to solve the eigenvalue problem for double real matrices
    !>
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
    subroutine elpa_eigenvalues_d(self, a, ev, error)
      class(elpa_impl_t)  :: self
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *)
#else
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols)
#endif
      real(kind=c_double) :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
1064
#ifdef USE_FORTRAN2008
Andreas Marek's avatar
Andreas Marek committed
1065
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
1066
1067
1068
1069
#else
      integer             :: error
#endif
      integer             :: error2
Andreas Marek's avatar
Andreas Marek committed
1070
1071
1072
1073
      integer(kind=c_int) :: solver
      logical             :: success_l


Andreas Marek's avatar
Andreas Marek committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
Andreas Marek's avatar
Andreas Marek committed
1086
      if (solver .eq. ELPA_SOLVER_1STAGE) then
1087
        call self%autotune_timer%start("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1088
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev)
1089
        call self%autotune_timer%stop("accumulator")
Andreas Marek's avatar
Andreas Marek committed
1090
1091

      else if (solver .eq. ELPA_SOLVER_2STAGE) then
1092