elpa_impl.F90 110 KB
Newer Older
1 2 3
!
!    Copyright 2017, L. Hüdepohl and A. Marek, MPCDF
!
Andreas Marek's avatar
Andreas Marek committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
!    This file is part of ELPA.
!
!    The ELPA library was originally created by the ELPA consortium,
!    consisting of the following organizations:
!
!    - Max Planck Computing and Data Facility (MPCDF), formerly known as
!      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
!    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
!      Informatik,
!    - Technische Universität München, Lehrstuhl für Informatik mit
!      Schwerpunkt Wissenschaftliches Rechnen ,
!    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
!    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
!      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
!      and
!    - IBM Deutschland GmbH
!
!    This particular source code file contains additions, changes and
!    enhancements authored by Intel Corporation which is not part of
!    the ELPA consortium.
!
!    More information can be found here:
!    http://elpa.mpcdf.mpg.de/
!
!    ELPA is free software: you can redistribute it and/or modify
!    it under the terms of the version 3 of the license of the
!    GNU Lesser General Public License as published by the Free
!    Software Foundation.
!
!    ELPA is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!    GNU Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public License
!    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
!
!    ELPA reflects a substantial effort on the part of the original
!    ELPA consortium, and we ask you to respect the spirit of the
!    license that we chose: i.e., please contribute any changes you
!    may have back to the original ELPA library distribution, and keep
!    any derivatives of ELPA under the same license that we chose for
!    the original distribution, the GNU Lesser General Public License.
!
48
#include "config-f90.h"
49

50
!> \brief Fortran module which provides the actual implementation of the API. Do not use directly! Use the module "elpa"
51
module elpa_impl
52 53 54 55 56 57 58 59 60 61
  use precision
  use elpa2_impl
  use elpa1_impl
  use elpa1_auxiliary_impl
#ifdef WITH_MPI
  use elpa_mpi
#endif
  use elpa_generated_fortran_interfaces
  use elpa_utilities, only : error_unit

62
  use elpa_abstract_impl
63
  use elpa_autotune_impl
64
  use, intrinsic :: iso_c_binding
65
  implicit none
66

67 68
  private
  public :: elpa_impl_allocate
69

70
!> \brief Definition of the extended elpa_impl_t type
71
  type, extends(elpa_abstract_impl_t) :: elpa_impl_t
Andreas Marek's avatar
Andreas Marek committed
72
   private
73
   integer :: communicators_owned
74

75
   !> \brief methods available with the elpa_impl_t type
76
   contains
77
     !> \brief the puplic methods
78
     ! con-/destructor
79 80
     procedure, public :: setup => elpa_setup                   !< a setup method: implemented in elpa_setup
     procedure, public :: destroy => elpa_destroy               !< a destroy method: implemented in elpa_destroy
81

82
     ! KV store
83 84 85 86
     procedure, public :: is_set => elpa_is_set                 !< a method to check whether a key/value pair has been set : implemented
                                                                !< in elpa_is_set
     procedure, public :: can_set => elpa_can_set               !< a method to check whether a key/value pair can be set : implemented
                                                                !< in elpa_can_set
87

88 89 90 91

     ! timer
     procedure, public :: get_time => elpa_get_time
     procedure, public :: print_times => elpa_print_times
92 93
     procedure, public :: timer_start => elpa_timer_start
     procedure, public :: timer_stop => elpa_timer_stop
94 95


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
     !> \brief the implemenation methods

     procedure, public :: elpa_eigenvectors_d                  !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices
     procedure, public :: elpa_eigenvectors_f
     procedure, public :: elpa_eigenvectors_dc
     procedure, public :: elpa_eigenvectors_fc

     procedure, public :: elpa_eigenvalues_d                   !< public methods to implement the solve step for real/complex
                                                               !< double/single matrices; only the eigenvalues are computed
     procedure, public :: elpa_eigenvalues_f
     procedure, public :: elpa_eigenvalues_dc
     procedure, public :: elpa_eigenvalues_fc

     procedure, public :: elpa_hermitian_multiply_d            !< public methods to implement a "hermitian" multiplication of matrices a and b
     procedure, public :: elpa_hermitian_multiply_f            !< for real valued matrices:   a**T * b
     procedure, public :: elpa_hermitian_multiply_dc           !< for complex valued matrices:   a**H * b
     procedure, public :: elpa_hermitian_multiply_fc

     procedure, public :: elpa_cholesky_d                      !< public methods to implement the cholesky factorisation of
                                                               !< real/complex double/single matrices
     procedure, public :: elpa_cholesky_f
     procedure, public :: elpa_cholesky_dc
     procedure, public :: elpa_cholesky_fc

     procedure, public :: elpa_invert_trm_d                    !< public methods to implement the inversion of a triangular
                                                               !< real/complex double/single matrix
     procedure, public :: elpa_invert_trm_f
     procedure, public :: elpa_invert_trm_dc
     procedure, public :: elpa_invert_trm_fc

     procedure, public :: elpa_solve_tridiagonal_d             !< public methods to implement the solve step for a real valued
     procedure, public :: elpa_solve_tridiagonal_f             !< double/single tridiagonal matrix

     procedure, public :: associate_int => elpa_associate_int  !< public method to set some pointers
131

Andreas Marek's avatar
Andreas Marek committed
132
     procedure, public :: autotune_setup => elpa_autotune_impl_setup
133 134
     procedure, public :: autotune_step => elpa_autotune_step
     procedure, public :: autotune_set_best => elpa_autotune_set_best
135

136
  end type elpa_impl_t
137 138

  !> \brief the implementation of the generic methods
139
  contains
140 141


142 143 144 145
    !> \brief function to allocate an ELPA object
    !> Parameters
    !> \param   error      integer, optional to get an error code
    !> \result  obj        class(elpa_impl_t) allocated ELPA object
146 147 148 149 150
    function elpa_impl_allocate(error) result(obj)
      type(elpa_impl_t), pointer   :: obj
      integer, optional            :: error

      allocate(obj)
Andreas Marek's avatar
Andreas Marek committed
151

Andreas Marek's avatar
Andreas Marek committed
152
      ! check whether init has ever been called
153
      if ( elpa_initialized() .ne. ELPA_OK) then
154
        write(error_unit, *) "elpa_allocate(): you must call elpa_init() once before creating instances of ELPA"
155 156
        if(present(error)) then
          error = ELPA_ERROR
157
        endif
Andreas Marek's avatar
Andreas Marek committed
158 159
        return
      endif
Andreas Marek's avatar
Andreas Marek committed
160

161
      obj%index = elpa_index_instance_c()
162 163

      ! Associate some important integer pointers for convenience
164 165 166 167 168 169 170 171
      obj%na => obj%associate_int("na")
      obj%nev => obj%associate_int("nev")
      obj%local_nrows => obj%associate_int("local_nrows")
      obj%local_ncols => obj%associate_int("local_ncols")
      obj%nblk => obj%associate_int("nblk")

      if(present(error)) then
        error = ELPA_OK
172 173
      endif
    end function
Andreas Marek's avatar
Andreas Marek committed
174

175 176 177 178 179
    !c> /*! \brief C interface for the implementation of the elpa_allocate method
    !c> *
    !c> *  \param  none
    !c> *  \result elpa_t handle
    !c> */
180
    !c> elpa_t elpa_allocate();
181
    function elpa_impl_allocate_c(error) result(ptr) bind(C, name="elpa_allocate")
182 183 184 185 186 187 188 189
      integer(kind=c_int) :: error
      type(c_ptr) :: ptr
      type(elpa_impl_t), pointer :: obj

      obj => elpa_impl_allocate(error)
      ptr = c_loc(obj)
    end function

190 191 192 193 194
    !c> /*! \brief C interface for the implementation of the elpa_deallocate method
    !c> *
    !c> *  \param  elpa_t  handle of ELPA object to be deallocated
    !c> *  \result void
    !c> */
195
    !c> void elpa_deallocate(elpa_t handle);
196
    subroutine elpa_impl_deallocate_c(handle) bind(C, name="elpa_deallocate")
197 198 199 200 201 202 203 204 205
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    !c> /*! \brief C interface for the implementation of the elpa_autotune_deallocate method
    !c> *
    !c> *  \param  elpa_autotune_impl_t  handle of ELPA autotune object to be deallocated
    !c> *  \result void
    !c> */
    !c> void elpa_autotune_deallocate(elpa_t handle);
    subroutine elpa_autotune_impl_deallocate_c(handle) bind(C, name="elpa_autotune_deallocate")
      type(c_ptr), value :: handle
      type(elpa_impl_t), pointer :: self

      call c_f_pointer(handle, self)
      call self%destroy()
      deallocate(self)
    end subroutine


222 223 224 225
    !> \brief function to setup an ELPA object and to store the MPI communicators internally
    !> Parameters
    !> \param   self       class(elpa_impl_t), the allocated ELPA object
    !> \result  error      integer, the error code
226
    function elpa_setup(self) result(error)
227 228
      class(elpa_impl_t), intent(inout)   :: self
      integer                             :: error, timings
229

230
#ifdef WITH_MPI
231 232 233
      integer                             :: mpi_comm_parent, mpi_comm_rows, mpi_comm_cols, &
                                             mpierr, mpierr2, process_row, process_col, mpi_string_length
      character(len=MPI_MAX_ERROR_STRING) :: mpierr_string
234
#endif
235

236
#ifdef HAVE_DETAILED_TIMINGS
Andreas Marek's avatar
Andreas Marek committed
237
      call self%get("timings",timings, error)
238 239 240 241 242 243
      if (timings == 1) then
        call self%timer%enable()
      endif
#endif

      error = ELPA_OK
244

245 246
#ifdef WITH_MPI
      ! Create communicators ourselves
247 248 249
      if (self%is_set("mpi_comm_parent") == 1 .and. &
          self%is_set("process_row") == 1 .and. &
          self%is_set("process_col") == 1) then
250

Andreas Marek's avatar
Andreas Marek committed
251 252 253
        call self%get("mpi_comm_parent", mpi_comm_parent, error)
        call self%get("process_row", process_row, error)
        call self%get("process_col", process_col, error)
254 255 256 257 258 259 260

        ! mpi_comm_rows is used for communicating WITHIN rows, i.e. all processes
        ! having the same column coordinate share one mpi_comm_rows.
        ! So the "color" for splitting is process_col and the "key" is my row coordinate.
        ! Analogous for mpi_comm_cols

        call mpi_comm_split(mpi_comm_parent,process_col,process_row,mpi_comm_rows,mpierr)
261

262 263 264 265 266 267 268 269 270 271 272 273
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for row communicator: ", trim(mpierr_string)
          return
        endif

        call mpi_comm_split(mpi_comm_parent,process_row,process_col,mpi_comm_cols, mpierr)
        if (mpierr .ne. MPI_SUCCESS) then
          call MPI_ERROR_STRING(mpierr,mpierr_string, mpi_string_length, mpierr2)
          write(error_unit,*) "MPI ERROR occured during mpi_comm_split for col communicator: ", trim(mpierr_string)
          return
        endif
274

Andreas Marek's avatar
Andreas Marek committed
275 276 277 278 279 280 281 282 283 284
        call self%set("mpi_comm_rows", mpi_comm_rows,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
        call self%set("mpi_comm_cols", mpi_comm_cols,error)
        if (error .ne. ELPA_OK) then
          print *,"Problem setting option. Aborting..."
          stop
        endif
285

286 287 288
        ! remember that we created those communicators and we need to free them later
        self%communicators_owned = 1

289
        error = ELPA_OK
290
        return
291
      endif
292

293
      ! Externally supplied communicators
294
      if (self%is_set("mpi_comm_rows") == 1 .and. self%is_set("mpi_comm_cols") == 1) then
295
        self%communicators_owned = 0
296
        error = ELPA_OK
297
        return
298
      endif
299

300 301
      ! Otherwise parameters are missing
      error = ELPA_ERROR
302
#endif
303

304
    end function
305

306 307 308 309 310 311
    !c> /*! \brief C interface for the implementation of the elpa_setup method
    !c> *
    !c> *  \param  elpa_t  handle of the ELPA object which describes the problem to
    !c> *                  be set up
    !c> *  \result int     error code, which can be queried with elpa_strerr
    !c> */
312
    !c> int elpa_setup(elpa_t handle);
313
    function elpa_setup_c(handle) result(error) bind(C, name="elpa_setup")
314 315 316 317 318 319 320 321 322
      type(c_ptr), intent(in), value :: handle
      type(elpa_impl_t), pointer :: self
      integer(kind=c_int) :: error

      call c_f_pointer(handle, self)
      error = self%setup()
    end function


323 324 325 326 327 328 329 330 331
    !c> /*! \brief C interface for the implementation of the elpa_set_integer method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
332
    !c> void elpa_set_integer(elpa_t handle, const char *name, int value, int *error);
333
    subroutine elpa_set_integer_c(handle, name_p, value, error) bind(C, name="elpa_set_integer")
Andreas Marek's avatar
Andreas Marek committed
334 335 336
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
337
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
338 339 340 341 342 343 344
      integer(kind=c_int), intent(in), value        :: value

#ifdef USE_FORTRAN2008
      integer(kind=c_int) , intent(in), optional    :: error
#else
      integer(kind=c_int) , intent(in)              :: error
#endif
345 346 347 348 349 350 351

      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_integer(self, name, value, error)
    end subroutine


352 353 354 355 356 357 358 359 360
    !c> /*! \brief C interface for the implementation of the elpa_get_integer method
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
361 362
    !c> void elpa_get_integer(elpa_t handle, const char *name, int *value, int *error);
    subroutine elpa_get_integer_c(handle, name_p, value, error) bind(C, name="elpa_get_integer")
Andreas Marek's avatar
Andreas Marek committed
363 364 365
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
366
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
367 368 369 370 371 372
      integer(kind=c_int)                           :: value
#ifdef ISE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
373 374
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
375 376
      call elpa_get_integer(self, name, value, error)
    end subroutine
Andreas Marek's avatar
Andreas Marek committed
377 378


379 380 381 382 383
    !> \brief function to check whether a key/value pair is set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \result  state      integer, the state of the key/value pair
384 385
    function elpa_is_set(self, name) result(state)
      class(elpa_impl_t)       :: self
386
      character(*), intent(in) :: name
387
      integer                  :: state
388

389
      state = elpa_index_value_is_set_c(self%index, name // c_null_char)
390 391
    end function

392 393 394 395 396 397
    !> \brief function to check whether a key/value pair can be set
    !> Parameters
    !> \param   self       class(elpa_impl_t) the allocated ELPA object
    !> \param   name       string, the key
    !> \param   value      integer, value
    !> \result  error      integer, error code
398 399 400 401 402 403 404 405 406 407
    function elpa_can_set(self, name, value) result(error)
      class(elpa_impl_t)       :: self
      character(*), intent(in) :: name
      integer(kind=c_int), intent(in) :: value
      integer                  :: error

      error = elpa_index_int_is_valid_c(self%index, name // c_null_char, value)
    end function


408 409 410 411 412 413
    !> \brief function to convert a value to an human readable string
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   option_name string: the name of the options, whose value should be converted
    !> \param   error       integer: errpr code
    !> \result  string      string: the humanreadable string   
414
    function elpa_value_to_string(self, option_name, error) result(string)
415 416
      class(elpa_impl_t), intent(in) :: self
      character(kind=c_char, len=*), intent(in) :: option_name
417 418 419 420
      type(c_ptr) :: ptr
      integer, intent(out), optional :: error
      integer :: val, actual_error
      character(kind=c_char, len=elpa_index_int_value_to_strlen_c(self%index, option_name // C_NULL_CHAR)), pointer :: string
421

422 423
      nullify(string)

424
      call self%get(option_name, val, actual_error)
425 426 427 428 429
      if (actual_error /= ELPA_OK) then
        if (present(error)) then
          error = actual_error
        endif
        return
430 431
      endif

432 433 434 435
      actual_error = elpa_int_value_to_string_c(option_name // C_NULL_CHAR, val, ptr)
      if (c_associated(ptr)) then
        call c_f_pointer(ptr, string)
      endif
436

437 438 439 440
      if (present(error)) then
        error = actual_error
      endif
    end function
441

Andreas Marek's avatar
Andreas Marek committed
442

443 444 445 446 447 448 449 450 451
    !c> /*! \brief C interface for the implementation of the elpa_set_double method
    !c> *  This method is available to the user as C generic elpa_set method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be set
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be set for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
452
    !c> void elpa_set_double(elpa_t handle, const char *name, double value, int *error);
453
    subroutine elpa_set_double_c(handle, name_p, value, error) bind(C, name="elpa_set_double")
Andreas Marek's avatar
Andreas Marek committed
454 455 456
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
457
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
458 459 460 461 462 463
      real(kind=c_double), intent(in), value        :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(in), optional     :: error
#else
      integer(kind=c_int), intent(in)               :: error
#endif
464 465 466 467 468
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
      call elpa_set_double(self, name, value, error)
    end subroutine

469

470
    !c> /*! \brief C interface for the implementation of the elpa_get_double method
471 472 473 474 475 476 477 478
    !c> *  This method is available to the user as C generic elpa_get method
    !c> *
    !c> *  \param  handle  handle of the ELPA object for which a key/value pair should be queried
    !c> *  \param  name    the name of the key
    !c> *  \param  value   the value to be obtain for the key
    !c> *  \param  error   on return the error code, which can be queried with elpa_strerr()
    !c> *  \result void
    !c> */
479 480
    !c> void elpa_get_double(elpa_t handle, const char *name, double *value, int *error);
    subroutine elpa_get_double_c(handle, name_p, value, error) bind(C, name="elpa_get_double")
Andreas Marek's avatar
Andreas Marek committed
481 482 483
      type(c_ptr), intent(in), value                :: handle
      type(elpa_impl_t), pointer                    :: self
      type(c_ptr), intent(in), value                :: name_p
Andreas Marek's avatar
Andreas Marek committed
484
      character(len=elpa_strlen_c(name_p)), pointer :: name
Andreas Marek's avatar
Andreas Marek committed
485 486 487 488 489 490
      real(kind=c_double)                           :: value
#ifdef USE_FORTRAN2008
      integer(kind=c_int), intent(inout), optional  :: error
#else
      integer(kind=c_int), intent(inout)            :: error
#endif
Andreas Marek's avatar
Andreas Marek committed
491 492
      call c_f_pointer(handle, self)
      call c_f_pointer(name_p, name)
493 494
      call elpa_get_double(self, name, value, error)
    end subroutine
495
 
Andreas Marek's avatar
Andreas Marek committed
496

497 498 499 500 501
    !> \brief function to associate a pointer with an integer value
    !> Parameters
    !> \param   self        class(elpa_impl_t) the allocated ELPA object
    !> \param   name        string: the name of the entry
    !> \result  value       integer, pointer: the value for the entry
502
    function elpa_associate_int(self, name) result(value)
503
      class(elpa_impl_t)             :: self
504 505
      character(*), intent(in)       :: name
      integer(kind=c_int), pointer   :: value
Andreas Marek's avatar
Andreas Marek committed
506

507 508
      type(c_ptr)                    :: value_p

509
      value_p = elpa_index_get_int_loc_c(self%index, name // c_null_char)
510 511 512
      if (.not. c_associated(value_p)) then
        write(error_unit, '(a,a,a)') "ELPA: Warning, received NULL pointer for entry '", name, "'"
      endif
513 514
      call c_f_pointer(value_p, value)
    end function
Andreas Marek's avatar
Andreas Marek committed
515

516

517 518 519 520 521 522 523
    !> \brief function to querry the timing information at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 6 nested levels can be queried
    !> \result  s               double: the timer metric for the region. Might be seconds,
    !>                                  or any other supported metric
524 525 526 527 528 529
    function elpa_get_time(self, name1, name2, name3, name4, name5, name6) result(s)
      class(elpa_impl_t), intent(in) :: self
      ! this is clunky, but what can you do..
      character(len=*), intent(in), optional :: name1, name2, name3, name4, name5, name6
      real(kind=c_double) :: s

530
#ifdef HAVE_DETAILED_TIMINGS
531
      s = self%timer%get(name1, name2, name3, name4, name5, name6)
532 533 534
#else
      s = -1.0
#endif
535 536 537
    end function


538 539 540 541 542
    !> \brief function to print the timing tree below at a certain level
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name1 .. name6  string: the string identifier for the timer region.
    !>                                  at the moment 4 nested levels can be specified
543
    subroutine elpa_print_times(self, name1, name2, name3, name4)
544
      class(elpa_impl_t), intent(in) :: self
545
      character(len=*), intent(in), optional :: name1, name2, name3, name4
546
#ifdef HAVE_DETAILED_TIMINGS
547
      call self%timer%print(name1, name2, name3, name4)
548
#endif
549 550
    end subroutine

551

552 553 554 555
    !> \brief function to start the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: a chosen identifier name for the code region
556 557 558 559 560 561 562 563 564
    subroutine elpa_timer_start(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%start(name)
#endif
    end subroutine


565 566 567 568
    !> \brief function to stop the timing of a code region
    !> Parameters
    !> \param   self            class(elpa_impl_t) the allocated ELPA object
    !> \param   name            string: identifier name for the code region to stop
569 570 571 572 573 574 575 576 577
    subroutine elpa_timer_stop(self, name)
      class(elpa_impl_t), intent(inout) :: self
      character(len=*), intent(in) :: name
#ifdef HAVE_DETAILED_TIMINGS
      call self%timer%stop(name)
#endif
    end subroutine


578
    !>  \brief elpa_eigenvectors_d: class method to solve the eigenvalue problem for double real matrices
Andreas Marek's avatar
Andreas Marek committed
579
    !>
580 581
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
603
    subroutine elpa_eigenvectors_d(self, a, ev, q, error)
604
      class(elpa_impl_t)  :: self
Andreas Marek's avatar
Andreas Marek committed
605

606 607 608
#ifdef USE_ASSUMED_SIZE
      real(kind=c_double) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
609
      real(kind=c_double) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
610
#endif
611
      real(kind=c_double) :: ev(self%na)
612

Andreas Marek's avatar
Andreas Marek committed
613
#ifdef USE_FORTRAN2008
614
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
615 616 617 618
#else
      integer             :: error
#endif
      integer             :: error2
619
      integer(kind=c_int) :: solver
620
      logical             :: success_l
621

622

Andreas Marek's avatar
Andreas Marek committed
623 624 625 626 627 628 629 630 631 632 633 634
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
        print *,"Problem setting option. Aborting..."
        stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif
635
      if (solver .eq. ELPA_SOLVER_1STAGE) then
636
        call self%autotune_timer%start("accumulator")
637
        success_l = elpa_solve_evp_real_1stage_double_impl(self, a, ev, q)
638
        call self%autotune_timer%stop("accumulator")
639

640
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
641
        call self%autotune_timer%start("accumulator")
642
        success_l = elpa_solve_evp_real_2stage_double_impl(self, a, ev, q)
643 644
        call self%autotune_timer%stop("accumulator")

645 646 647 648
      else
        print *,"unknown solver"
        stop
      endif
649

Andreas Marek's avatar
Andreas Marek committed
650
#ifdef USE_FORTRAN2008
651
      if (present(error)) then
652
        if (success_l) then
653
          error = ELPA_OK
654
        else
655
          error = ELPA_ERROR
656 657 658 659
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
660 661 662 663 664 665 666
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
667 668
    end subroutine

669 670
    !c> void elpa_eigenvectors_d(elpa_t handle, double *a, double *ev, double *q, int *error);
    subroutine elpa_eigenvectors_d_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_d")
Andreas Marek's avatar
Andreas Marek committed
671 672
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
673
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
674 675 676
#else
      integer(kind=c_int), intent(in)           :: error
#endif
677

Andreas Marek's avatar
Andreas Marek committed
678 679
      real(kind=c_double), pointer              :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
680 681 682 683 684 685

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

686
      call elpa_eigenvectors_d(self, a, ev, q, error)
687 688
    end subroutine

Andreas Marek's avatar
Andreas Marek committed
689

690
    !>  \brief elpa_eigenvectors_f: class method to solve the eigenvalue problem for float real matrices
Andreas Marek's avatar
Andreas Marek committed
691
    !>
692 693
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
715
    subroutine elpa_eigenvectors_f(self, a, ev, q, error)
716
      class(elpa_impl_t)  :: self
717 718 719
#ifdef USE_ASSUMED_SIZE
      real(kind=c_float)  :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
720
      real(kind=c_float)  :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
721
#endif
722
      real(kind=c_float)  :: ev(self%na)
723

Andreas Marek's avatar
Andreas Marek committed
724
#ifdef USE_FORTRAN2008
725
      integer, optional   :: error
Andreas Marek's avatar
Andreas Marek committed
726 727 728 729
#else
      integer             :: error
#endif
      integer             :: error2
730
      integer(kind=c_int) :: solver
731
#ifdef WANT_SINGLE_PRECISION_REAL
732
      logical             :: success_l
733

Andreas Marek's avatar
Andreas Marek committed
734 735 736 737 738 739 740 741 742 743 744 745
      call self%get("solver",solver, error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#if USE_FORTRAN2008                   
      if (present(error)) then        
        error  = error2               
      endif
#else
      error  = error2
#endif
746
      if (solver .eq. ELPA_SOLVER_1STAGE) then
747
        call self%autotune_timer%start("accumulator")
748
        success_l = elpa_solve_evp_real_1stage_single_impl(self, a, ev, q)
749
        call self%autotune_timer%stop("accumulator")
750

751
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
752
        call self%autotune_timer%start("accumulator")
753
        success_l = elpa_solve_evp_real_2stage_single_impl(self, a, ev, q)
754 755
        call self%autotune_timer%stop("accumulator")

756 757 758 759
      else
        print *,"unknown solver"
        stop
      endif
760

Andreas Marek's avatar
Andreas Marek committed
761
#ifdef USE_FORTRAN2008
762
      if (present(error)) then
763
        if (success_l) then
764
          error = ELPA_OK
765
        else
766
          error = ELPA_ERROR
767 768 769 770
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
771 772 773 774 775 776 777 778
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif

779
#else
780
      print *,"This installation of the ELPA library has not been build with single-precision support"
781
      error = ELPA_ERROR
782 783 784
#endif
    end subroutine

785

786 787
    !c> void elpa_eigenvectors_f(elpa_t handle, float *a, float *ev, float *q, int *error);
    subroutine elpa_eigenvectors_f_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_f")
Andreas Marek's avatar
Andreas Marek committed
788 789
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
790
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
791 792 793
#else
      integer(kind=c_int), intent(in)           :: error
#endif
794

Andreas Marek's avatar
Andreas Marek committed
795 796
      real(kind=c_float), pointer               :: a(:, :), q(:, :), ev(:)
      type(elpa_impl_t), pointer                :: self
797 798 799 800 801 802

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

803
      call elpa_eigenvectors_f(self, a, ev, q, error)
804 805 806
    end subroutine


807
    !>  \brief elpa_eigenvectors_dc: class method to solve the eigenvalue problem for double complex matrices
Andreas Marek's avatar
Andreas Marek committed
808
    !>
809 810
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
    !>  to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
    !>  with the class method "setup"
    !>
    !>  It is possible to change the behaviour of the method by setting tunable parameters with the
    !>  class method "set"
    !>
    !>  Parameters
    !>
    !>  \param a                                    Distributed matrix for which eigenvalues are to be computed.
    !>                                              Distribution is like in Scalapack.
    !>                                              The full matrix must be set (not only one half like in scalapack).
    !>                                              Destroyed on exit (upper and lower half).
    !>
    !>  \param ev                                   On output: eigenvalues of a, every processor gets the complete set
    !>
    !>  \param q                                    On output: Eigenvectors of a
    !>                                              Distribution is like in Scalapack.
    !>                                              Must be always dimensioned to the full size (corresponding to (na,na))
    !>                                              even if only a part of the eigenvalues is needed.
    !>
    !>  \param error                                integer, optional: returns an error code, which can be queried with elpa_strerr
832
    subroutine elpa_eigenvectors_dc(self, a, ev, q, error)
833
      class(elpa_impl_t)             :: self
834

835 836 837
#ifdef USE_ASSUMED_SIZE
      complex(kind=c_double_complex) :: a(self%local_nrows, *), q(self%local_nrows, *)
#else
838
      complex(kind=c_double_complex) :: a(self%local_nrows, self%local_ncols), q(self%local_nrows, self%local_ncols)
839
#endif
840
      real(kind=c_double)            :: ev(self%na)
Andreas Marek's avatar
Andreas Marek committed
841
#ifdef USE_FORTRAN2008
842
      integer, optional              :: error
Andreas Marek's avatar
Andreas Marek committed
843 844 845 846
#else
      integer                        :: error
#endif
      integer                        :: error2
847
      integer(kind=c_int)            :: solver
848
      logical                        :: success_l
849

Andreas Marek's avatar
Andreas Marek committed
850 851 852 853 854 855 856 857 858 859 860 861 862
      call self%get("solver", solver,error2)
      if (error2 .ne. ELPA_OK) then
         print *,"Problem getting option. Aborting..."
         stop
      endif
#ifdef USE_FORTRAN2008
      if (present(error)) then
        error = error2
      endif
#else
      error = error2
#endif

863
      if (solver .eq. ELPA_SOLVER_1STAGE) then
864
        call self%autotune_timer%start("accumulator")
865
        success_l = elpa_solve_evp_complex_1stage_double_impl(self, a, ev, q)
866
        call self%autotune_timer%stop("accumulator")
867

868
      else if (solver .eq. ELPA_SOLVER_2STAGE) then
869
        call self%autotune_timer%start("accumulator")
870
        success_l = elpa_solve_evp_complex_2stage_double_impl(self,  a, ev, q)
871 872
        call self%autotune_timer%stop("accumulator")

873 874 875 876
      else
        print *,"unknown solver"
        stop
      endif
877

Andreas Marek's avatar
Andreas Marek committed
878
#ifdef USE_FORTRAN2008
879
      if (present(error)) then
880
        if (success_l) then
881
          error = ELPA_OK
882
        else
883
          error = ELPA_ERROR
884 885 886 887
        endif
      else if (.not. success_l) then
        write(error_unit,'(a)') "ELPA: Error in solve() and you did not check for errors!"
      endif
Andreas Marek's avatar
Andreas Marek committed
888 889 890 891 892 893 894
#else
      if (success_l) then
        error = ELPA_OK
      else
        error = ELPA_ERROR
      endif
#endif
895 896 897
    end subroutine


898 899
    !c> void elpa_eigenvectors_dc(elpa_t handle, double complex *a, double *ev, double complex *q, int *error);
    subroutine elpa_eigenvectors_dc_c(handle, a_p, ev_p, q_p, error) bind(C, name="elpa_eigenvectors_dc")
Andreas Marek's avatar
Andreas Marek committed
900 901
      type(c_ptr), intent(in), value            :: handle, a_p, ev_p, q_p
#ifdef USE_FORTRAN2008
902
      integer(kind=c_int), optional, intent(in) :: error
Andreas Marek's avatar
Andreas Marek committed
903 904 905
#else
      integer(kind=c_int), intent(in)           :: error
#endif
906

Andreas Marek's avatar
Andreas Marek committed
907 908 909
      complex(kind=c_double_complex), pointer   :: a(:, :), q(:, :)
      real(kind=c_double), pointer              :: ev(:)
      type(elpa_impl_t), pointer                :: self
910 911 912 913 914 915

      call c_f_pointer(handle, self)
      call c_f_pointer(a_p, a, [self%local_nrows, self%local_ncols])
      call c_f_pointer(ev_p, ev, [self%na])
      call c_f_pointer(q_p, q, [self%local_nrows, self%local_ncols])

916
      call elpa_eigenvectors_dc(self, a, ev, q, error)
917 918 919
    end subroutine


920
    !>  \brief elpa_eigenvectors_fc: class method to solve the eigenvalue problem for float complex matrices
Andreas Marek's avatar
Andreas Marek committed
921
    !>
922 923
    !>  The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
    !>  blocksize, the number of eigenvectors
Andreas Marek's avatar
Andreas Marek committed
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941