mesh3D.py 39.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

part of tfields library
"""
import numpy as np
import sympy
import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
12
13

# obj imports
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
from tfields.lib.decorators import cached_property
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
15
16
import logging
import os
17
18


19
20
21
22
23
24
def _dist_from_plane(point, plane):
    return plane['normal'].dot(point) + plane['d']


def _segment_plane_intersection(p0, p1, plane):
    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
26
27
28
29
    Get the intersection between the ray spanned by p0 and p1 with the plane.
    Args:
        p0: array of length 3
        p1: array of length 3
        plane: 
30
31
    Returns:
        points, direction
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
32
            points (list of arrays of length 3): 3d points
33
34
35
    """
    distance0 = _dist_from_plane(p0, plane)
    distance1 = _dist_from_plane(p1, plane)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
36
37
    p0_on_plane = abs(distance0) < np.finfo(float).eps
    p1_on_plane = abs(distance1) < np.finfo(float).eps
38
    points = []
39
    direction = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
40
    if p0_on_plane:
41
        points.append(p0)
42

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
43
    if p1_on_plane:
44
        points.append(p1)
45
    # remove duplicate points
46
47
    if len(points) > 1:
        points = np.unique(points, axis=0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
48
    if p0_on_plane and p1_on_plane:
49
        return points, direction
50
51

    if distance0 * distance1 > np.finfo(float).eps:
52
        return points, direction
53
54
55

    direction = np.sign(distance0)
    if abs(distance0) < np.finfo(float).eps:
56
        return points, direction
57
    elif abs(distance1) < np.finfo(float).eps:
58
        return points, direction
59
60
61
    if abs(distance0 - distance1) > np.finfo(float).eps:
        t = distance0 / (distance0 - distance1)
    else:
62
        return points, direction
63

64
    points.append(p0 + t * (p1 - p0))
65
    # remove duplicate points
66
67
68
    if len(points) > 1:
        points = np.unique(points, axis=0)
    return points, direction
69
70
71
72
73
74
75


def _intersect(triangle, plane, vertices_rejected):
    """
    Intersect a triangle with a plane. Give the info, which side of the
    triangle is rejected by passing the mask vertices_rejected
    Returns:
76
77
78
79
80
81
82
83
84
        list of list. The inner list is of length 3 and refers to the points of
        new triangles. The reference is done with varying types:
            int: reference to triangle index
            complex: reference to duplicate point. This only happens in case
                two triangles are returned. Then only in the second triangle
            iterable: new vertex

    TODO:
        align norm vectors with previous face
85
    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
86
87
    n_true = vertices_rejected.count(True)
    lonely_bool = True if n_true == 1 else False
88
89
90
91
92
    index = vertices_rejected.index(lonely_bool)
    s0, d0 = _segment_plane_intersection(triangle[0], triangle[1], plane)
    s1, d1 = _segment_plane_intersection(triangle[1], triangle[2], plane)
    s2, d2 = _segment_plane_intersection(triangle[2], triangle[0], plane)

93
94
95
    single_index = index
    couple_indices = [j for j in range(3)
                      if not vertices_rejected[j] == lonely_bool]
96
97
98
99
100
101

    # TODO handle special cases. For now triangles with at least two points on plane are excluded
    new_points = None

    if len(s0) == 2:
        # both points on plane
102
        return new_points
103
104
    if len(s1) == 2:
        # both points on plane
105
        return new_points
106
107
    if len(s2) == 2:
        # both points on plane
108
        return new_points
109
    if lonely_bool:
110
        # two new triangles
111
        if len(s0) == 1 and len(s1) == 1:
112
113
            new_points = [[couple_indices[0], s0[0], couple_indices[1]],
                          [couple_indices[1], complex(1), s1[0]]]
114
        elif len(s1) == 1 and len(s2) == 1:
115
116
            new_points = [[couple_indices[0], couple_indices[1], s1[0]],
                          [couple_indices[0], complex(2), s2[0]]]
117
        elif len(s0) == 1 and len(s2) == 1:
118
119
            new_points = [[couple_indices[0], couple_indices[1], s0[0]],
                          [couple_indices[1], s2[0], complex(2)]]
120
    else:
121
        # one new triangle
122
        if len(s0) == 1 and len(s1) == 1:
123
            new_points = [[single_index, s1[0], s0[0]]]
124
        elif len(s1) == 1 and len(s2) == 1:
125
            new_points = [[single_index, s2[0], s1[0]]]
126
        elif len(s0) == 1 and len(s2) == 1:
127
128
            new_points = [[single_index, s0[0], s2[0]]]
    return new_points
129
130


131
132
133
134
135
136
def scalars_to_fields(scalars):
    scalars = np.array(scalars)
    if len(scalars.shape) == 1:
        return [tfields.Tensors(scalars)]
    return [tfields.Tensors(fs) for fs in scalars]

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
137

138
139
140
def fields_to_scalars(fields):
    return np.array(fields)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
141

142
def faces_to_maps(faces, *fields):
143
    return [tfields.TensorFields(faces, *fields, dtype=int, dim=3)]
144

145

146
def maps_to_faces(maps):
147
148
149
150
151
    if len(maps) == 0:
        return np.array([])
    elif len(maps) > 1:
        raise NotImplementedError("Multiple maps")
    return np.array(maps[0])
152
153


154
155
156
157
158
class Mesh3D(tfields.TensorMaps):
    # pylint: disable=R0904
    """
    Points3D child used as vertices combined with faces to build a geometrical mesh of triangles
    Examples:
159
160
        >>> import tfields
        >>> import numpy as np
161
        >>> m = tfields.Mesh3D([[1,2,3], [3,3,3], [0,0,0], [5,6,7]], faces=[[0, 1, 2], [1, 2, 3]])
162
163
164
165
166
        >>> m.equal([[1, 2, 3],
        ...          [3, 3, 3],
        ...          [0, 0, 0],
        ...          [5, 6, 7]])
        True
167
        >>> np.array_equal(m.faces, [[0, 1, 2], [1, 2, 3]])
168
        True
169
170

        conversion to points only
171
172
173
174
175
        >>> tfields.Points3D(m).equal([[1, 2, 3],
        ...                            [3, 3, 3],
        ...                            [0, 0, 0],
        ...                            [5, 6, 7]])
        True
176
177
178
179
180
181

        Empty instances
        >>> m = tfields.Mesh3D([]);

        going from Mesh3D to Triangles3D instance is easy and will be cached.
        >>> m = tfields.Mesh3D([[1,0,0], [0,1,0], [0,0,0]], faces=[[0, 1, 2]]);
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
182
        >>> assert m.triangles().equal(tfields.Triangles3D([[ 1.,  0.,  0.],
183
184
        ...                                               [ 0.,  1.,  0.],
        ...                                               [ 0.,  0.,  0.]]))
185
186

        a list of scalars is assigned to each face
187
188
189
        >>> mScalar = tfields.Mesh3D([[1,0,0], [0,1,0], [0,0,0]], faces=[[0, 1, 2]], faceScalars=[.5]);
        >>> np.array_equal(mScalar.faceScalars, [[ 0.5]])
        True
190
191

        adding together two meshes:
192
193
194
195
196
197
198
199
200
201
        >>> m2 = tfields.Mesh3D([[1,0,0],[2,0,0],[0,3,0]],
        ...                     faces=[[0,1,2]], faceScalars=[.7])
        >>> msum = tfields.Mesh3D.merged(mScalar, m2)
        >>> msum.equal([[ 1.,  0.,  0.],
        ...             [ 0.,  1.,  0.],
        ...             [ 0.,  0.,  0.],
        ...             [ 1.,  0.,  0.],
        ...             [ 2.,  0.,  0.],
        ...             [ 0.,  3.,  0.]])
        True
202
        >>> assert np.array_equal(msum.faces, [[0, 1, 2], [3, 4, 5]])
203
204
205
206

        Saving and reading
        >>> from tempfile import NamedTemporaryFile
        >>> outFile = NamedTemporaryFile(suffix='.npz')
207
        >>> m.save(outFile.name)
208
        >>> _ = outFile.seek(0)
209
        >>> m1 = tfields.Mesh3D.load(outFile.name)
210
211
        >>> bool(np.all(m == m1))
        True
212
        >>> assert np.array_equal(m1.faces, np.array([[0, 1, 2]]))
213
214

    """
215
    def __new__(cls, tensors, *fields, **kwargs):
216
217
        if not issubclass(type(tensors), Mesh3D):
            kwargs['dim'] = 3
218
219
220
        faces = kwargs.pop('faces', None)
        faceScalars = kwargs.pop('faceScalars', [])
        maps = kwargs.pop('maps', None)
221
        if maps is not None and faces is not None:
222
223
224
            raise ValueError("Conflicting options maps and faces")
        if maps is not None:
            kwargs['maps'] = maps
225
        if len(faceScalars) > 0:
226
227
228
229
230
231
232
233
234
235
236
237
238
            map_fields = scalars_to_fields(faceScalars)
        else:
            map_fields = []
        if faces is not None:
            kwargs['maps'] = faces_to_maps(faces,
                                           *map_fields)
        obj = super(Mesh3D, cls).__new__(cls, tensors, *fields, **kwargs)
        if len(obj.maps) > 1:
            raise ValueError("Mesh3D only allows one map")
        if obj.maps and obj.maps[0].dim != 3:
            raise ValueError("Face dimension should be 3")
        return obj

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    def _save_obj(self, path, **kwargs):
        """
        Save obj as wavefront/.obj file
        """
        obj = kwargs.pop('object', None)
        group = kwargs.pop('group', None)

        cmap = kwargs.pop('cmap', 'viridis')
        map_index = kwargs.pop('map_index', None)

        path = path.replace('.obj', '')
        directory, name = os.path.split(path)

        if not (self.faceScalars.size == 0 or map_index is None):
            scalars = self.maps[0].fields[map_index]
            min_scalar = scalars[~np.isnan(scalars)].min()
            max_scalar = scalars[~np.isnan(scalars)].max()
            vmin = kwargs.pop('vmin', min_scalar)
            vmax = kwargs.pop('vmax', max_scalar)
            if vmin == vmax:
                if vmin == 0.:
                    vmax = 1.
                else:
                    vmin = 0.
Daniel Boeckenhoff's avatar
dunno    
Daniel Boeckenhoff committed
263
264
            import matplotlib.colors as colors
            import matplotlib.pyplot as plt
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
265
266
267
268
269
270
            norm = colors.Normalize(vmin, vmax)
            color_map = plt.get_cmap(cmap)
        else:
            # switch for not coloring the triangles and thus not producing the materials
            norm = None

Daniel Boeckenhoff's avatar
dunno    
Daniel Boeckenhoff committed
271
272
273
        if len(kwargs) != 0:
            raise ValueError("Unused arguments.")

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        if norm is not None:
            mat_name = name + '_frame_{0}.mat'.format(map_index)
            scalars[np.isnan(scalars)] = min_scalar - 1
            sorted_scalars = scalars[scalars.argsort()]
            sorted_scalars[sorted_scalars == min_scalar - 1] = np.nan
            sorted_faces = self.faces[scalars.argsort()]
            scalar_set = np.unique(sorted_scalars)
            scalar_set[scalar_set == min_scalar - 1] = np.nan
            mat_path = os.path.join(directory, mat_name)
            with open(mat_path, 'w') as mf:
                for s in scalar_set:
                    if np.isnan(s):
                        mf.write("newmtl nan")
                        mf.write("Kd 0 0 0\n\n")
                    else:
                        mf.write("newmtl mtl_{0}\n".format(s))
                        mf.write("Kd {c[0]} {c[1]} {c[2]}\n\n".format(c=color_map(norm(s))))
        else:
            sorted_faces = self.faces

        # writing of the obj file
        with open(path + '.obj', 'w') as f:
            f.write("# File saved with tfields Mesh3D._save_obj method\n\n")
            if norm is not None:
                f.write("mtllib ./{0}\n\n".format(mat_name))
            if obj is not None:
                f.write("o {0}\n".format(obj))
            if group is not None:
                f.write("g {0}\n".format(group))
            for vertex in self:
                f.write("v {v[0]} {v[1]} {v[2]}\n".format(v=vertex))

            last_scalar = None
            for i, face in enumerate(sorted_faces + 1):
                if norm is not None:
                    if not last_scalar == sorted_scalars[i]:
                        last_scalar = sorted_scalars[i]
                        f.write("usemtl mtl_{0}\n".format(last_scalar))
                f.write("f {f[0]} {f[1]} {f[2]}\n".format(f=face))

    @classmethod
    def _load_obj(cls, path, *group_names):
        """
        Factory method
        Given a path to a obj/wavefront file, construct the object
        """
        import csv
        log = logging.getLogger()

        with open(path, mode='r') as f:
            reader = csv.reader(f, delimiter=' ')
            groups = []
            group = None
            vertex_no = 1
            for line in reader:
                if not line:
                    continue
                if line[0] == '#':
                    continue
                if line[0] == 'g':
                    if group:
                        groups.append(group)
                    group = dict(name=line[1], vertices={}, faces=[])
                elif line[0] == 'v':
                    if not group:
                        log.warning("No group specified. I invent one myself.")
                        group = dict(name='Group', vertices={}, faces=[])
                    vertex = list(map(float, line[1:4]))
                    group['vertices'][vertex_no] = vertex
                    vertex_no += 1
                elif line[0] == 'f':
                    face = []
                    for v in line[1:]:
                        w = v.split('/')
                        face.append(int(w[0]))
                    group['faces'].append(face)

        vertices = []
        for g in groups[:]:
            vertices.extend(g['vertices'].values())

        if len(group_names) != 0:
            groups = [g for g in groups if g['name'] in group_names]

        faces = []
        for g in groups:
            faces.extend(g['faces'])
        faces = np.add(np.array(faces), -1).tolist()

        """
        Building the class from retrieved vertices and faces
        """
        if len(vertices) == 0:
            return cls([])
        faceLenghts = [len(face) for face in faces]
        for i in reversed(range(len(faceLenghts))):
            length = faceLenghts[i]
            if length == 3:
                continue
            if length == 4:
                log.warning("Given a Rectangle. I will split it but "
                            "sometimes the order is different.")
                faces.insert(i + 1, faces[i][2:] + faces[i][:1])
                faces[i] = faces[i][:3]
            else:
                raise NotImplementedError()
        mesh = cls(vertices, faces=faces)
        if group_names:
            mesh = mesh.cleaned()
        return mesh

385
386
    @classmethod
    def plane(cls, *base_vectors, **kwargs):
387
388
389
390
391
392
393
        """
        Alternative constructor for creating a plane from
        Args:
            *base_vectors: see grid constructors in core. One base_vector has to
                be one-dimensional
            **kwargs: forwarded to __new__
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
394
        vertices = tfields.Tensors.grid(*base_vectors, **kwargs)
395
396
397

        base_vectors = tfields.grid.ensure_complex(*base_vectors)
        base_vectors = tfields.grid.to_base_vectors(*base_vectors)
398
399
400
401
402
403
404
        fix_coord = None
        for coord in range(3):
            if len(base_vectors[coord]) > 1:
                continue
            if len(base_vectors[coord]) == 0:
                continue
            fix_coord = coord
405
406
        if fix_coord is None:
            raise ValueError("Describe a plane with one variable fiexed")
407
408
409
410
411
412
413
414
415
416
417
418
419
420

        var_coords = list(range(3))
        var_coords.pop(var_coords.index(fix_coord))

        faces = []
        base0, base1 = base_vectors[var_coords[0]], base_vectors[var_coords[1]]
        for i1 in range(len(base1) - 1):
            for i0 in range(len(base0) - 1):
                idx_top_left = len(base1) * (i0 + 0) + (i1 + 0)
                idx_top_right = len(base1) * (i0 + 0) + (i1 + 1)
                idx_bot_left = len(base1) * (i0 + 1) + (i1 + 0)
                idx_bot_right = len(base1) * (i0 + 1) + (i1 + 1)
                faces.append([idx_top_left, idx_top_right, idx_bot_left])
                faces.append([idx_top_right, idx_bot_left, idx_bot_right])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
421
        inst = cls.__new__(cls, vertices, faces=faces)
422
423
424
425
        return inst

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
426
427
        """
        Construct 'cuboid' along base_vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
428
429
430
431
432
433
434
435
436
437
438
439
        Examples:
            Building symmetric geometries were never as easy:

            Approximated sphere with radius 1, translated in y by 2 units
            >>> sphere = tfields.Mesh3D.grid((1, 1, 1),
            ...                              (-np.pi, np.pi, 12),
            ...                              (-np.pi / 2, np.pi / 2, 12),
            ...                              coord_sys='spherical')
            >>> sphere.transform('cartesian')
            >>> sphere[:, 1] += 2

            Oktaeder
Daniel Boeckenhoff's avatar
dunno    
Daniel Boeckenhoff committed
440
441
442
443
            >>> oktaeder = tfields.Mesh3D.grid((1, 1, 1),
            ...                                (-np.pi, np.pi, 5),
            ...                                (-np.pi / 2, np.pi / 2, 3),
            ...                                coord_sys='spherical')
444
            >>> oktaeder.transform('cartesian')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
445
446
447
448
449
450
451
452
453
454
455

            Cube with edge length of 2 units
            >>> cube = tfields.Mesh3D.grid((-1, 1, 2),
            ...                            (-1, 1, 2),
            ...                            (-5, -3, 2))

            Cylinder 
            >>> cylinder = tfields.Mesh3D.grid((1, 1, 1),
            ...                                (-np.pi, np.pi, 12),
            ...                                (-5, 3, 12),
            ...                                coord_sys='cylinder')
456
            >>> cylinder.transform('cartesian')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
457

458
        """
459
460
461
        if not len(base_vectors) == 3:
            raise AttributeError("3 base_vectors vectors required")

462
463
464
        base_vectors = tfields.grid.ensure_complex(*base_vectors)
        base_vectors = tfields.grid.to_base_vectors(*base_vectors)

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        indices = [0, -1]
        coords = range(3)
        baseLengthsAbove1 = [len(b) > 1 for b in base_vectors]
        # if one plane is given: rearrange indices and coords
        if not all(baseLengthsAbove1):
            indices = [0]
            for i, b in enumerate(baseLengthsAbove1):
                if not b:
                    coords = [i]
                    break

        base_vectors = list(base_vectors)
        planes = []
        for ind in indices:
            for coord in coords:
                basePart = base_vectors[:]
                basePart[coord] = np.array([base_vectors[coord][ind]],
                                           dtype=float)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
483
                planes.append(cls.plane(*basePart, **kwargs))
484
485
486
        inst = cls.merged(*planes, **kwargs)
        return inst

487
488
489
490
491
492
493
494
495
496
497
498
499
    @property
    def faces(self):
        return maps_to_faces(self.maps)

    @faces.setter
    def faces(self, faces):
        self.maps = faces_to_maps(faces)

    @property
    def faceScalars(self):
        return fields_to_scalars(self.maps[0].fields)

    @faceScalars.setter
500
501
    def faceScalars(self, scalars):
        self.maps[0].fields = scalars_to_fields(scalars)
502

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
503
504
    @cached_property()
    def _triangles(self):
505
506
507
508
509
510
        """
        with the decorator, this should be handled like an attribute though it is a function

        """
        if self.faces.size == 0:
            return tfields.Triangles3D([])
511
512
513
514
        tris = tfields.Tensors.merged(*[self[mp.flatten()] for mp in self.maps])
        map_fields = [mp.fields for mp in self.maps]
        fields = [tfields.Tensors.merged(*fields) for fields in zip(*map_fields)]
        return tfields.Triangles3D(tris, *fields)
515

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
516
    def triangles(self):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
517
518
519
520
521
522
523
524
        """
        Cached method to retrieve the triangles, belonging to this mesh
        Examples:
            >>> import tfields
            >>> mesh = tfields.Mesh3D.grid((0, 1, 3), (1, 2, 3), (2, 3, 3))
            >>> assert mesh.triangles() is mesh.triangles()

        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
525
526
527
528
529
530
531
        return self._triangles

    def centroids(self):
        return self.triangles().centroids()

    @cached_property()
    def _planes(self):
532
533
        if self.faces.size == 0:
            return tfields.Planes3D([])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
534
535
536
537
        return tfields.Planes3D(self.centroids(), self.triangles().norms())

    def planes(self):
        return self._planes
538

539
    def nfaces(self):
540
541
        return self.faces.shape[0]

542
    def in_faces(self, points, delta, assign_multiple=False):
543
544
        """
        Check whether points lie within triangles with Barycentric Technique
545
        see Triangles3D.in_triangles
546
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
547
        masks = self.triangles().in_triangles(points, delta,
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
548
                                              assign_multiple=assign_multiple)
549
550
        return masks

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
551
    def removeFaces(self, face_delete_mask):
552
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
553
        Remove faces where face_delete_mask is True
554
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
555
556
557
        face_delete_mask = np.array(face_delete_mask, dtype=bool)
        self.faces = self.faces[~face_delete_mask]
        self.faceScalars = self.faceScalars[~face_delete_mask]
558

559
    def template(self, sub_mesh):
560
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
561
        'Manual' way to build a template that can be used with self.cut
562
        Returns:
563
564
            Mesh3D: template (see cut), can be used as template to retrieve
                sub_mesh from self instance
565
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
566
567
            >>> mp = tfields.TensorFields([[0,1,2],[2,3,0],[3,2,5],[5,4,3]],
            ...                           [1, 2, 3, 4])
568
            >>> m = tfields.Mesh3D([[0,0,0], [1,0,0], [1,1,0], [0,1,0], [0,2,0], [1,2,0]],
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
569
            ...                     maps=[mp])
570
            >>> from sympy.abc import y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
571
572
573
            >>> m_cut = m.cut(y < 1.5, at_intersection='split')
            >>> template = m.template(m_cut)
            >>> assert m_cut.equal(m.cut(template))
574

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
575
576
        TODO:
            fields template not yet implemented
577
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
578
579
        face_indices = np.arange(self.maps[0].shape[0])
        cents = tfields.Tensors(sub_mesh.centroids())
580
        mask = self.in_faces(cents, delta=None)
581
        inst = sub_mesh.copy()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
582
583
584
585
586
587
588
589
590
591
592
        if inst.maps:
            scalars = []
            for face_mask in mask:
                scalars.append(face_indices[face_mask][0])
            inst.maps[0].fields = [tfields.Tensors(scalars, dim=1)]
        else:
            inst.maps = [tfields.TensorFields([],
                                              tfields.Tensors([], dim=1),
                                              dim=3,
                                              dtype=int)
                        ]
593
594
        return inst

595
    def _cut_sympy(self, expression, at_intersection="remove", _in_recursion=False):
596
        """
597
        Partition the mesh with the cuts given and return the template
598
        """
599
600
601
602
603
        eps = 0.000000001
        # direct return if self is empty
        if len(self) == 0:
            return self.copy(), self.copy()

604
605
606
607
608
609
610
611
612
613
614
        inst = self.copy()

        '''
        add the indices of the vertices and maps to the fields. They will be
        removed afterwards
        '''
        if not _in_recursion:
            inst.fields.append(tfields.Tensors(np.arange(len(inst))))
            for mp in inst.maps:
                mp.fields.append(tfields.Tensors(np.arange(len(mp))))

615
        # mask for points that do not fulfill the cut expression
616
        mask = inst.evalf(expression)
617
        # remove the points
618

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
619
        if not any(~mask):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
620
621
622
623
            # no vertex is valid
            inst = inst[mask]
        elif all(~mask):
            # all vertices are valid
624
            inst = inst[mask]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
        elif at_intersection == 'keep':
            expression_parts = tfields.lib.symbolics.split_expression(expression)
            if len(expression_parts) > 1:
                new_mesh = inst.copy()
                for exprPart in expression_parts:
                    inst, _ = inst._cut_sympy(exprPart,
                                              at_intersection=at_intersection,
                                              _in_recursion=True)
            elif len(expression_parts) == 1:
                face_delete_indices = set([])
                for i, face in enumerate(inst.maps[0]):
                    """
                    vertices_rejected is a mask for each face that is True, where
                    a Point is on the rejected side of the plane
                    """
                    vertices_rejected = [~mask[f] for f in face]
                    if all(vertices_rejected):
                        # delete face
                        face_delete_indices.add(i)
                mask = np.full(len(inst.maps[0]), True, dtype=bool)
                for face_idx in range(len(inst.maps[0])):
                    if face_idx in face_delete_indices:
                        mask[face_idx] = False
                inst.maps[0] = inst.maps[0][mask]
            else:
                raise ValueError("Sympy expression is not splitable.")
            inst = inst.cleaned()
652
653
        elif at_intersection == 'split' or at_intersection == 'splitRough':
            '''
654
            add vertices and faces that are at the border of the cuts
655
            '''
656
            expression_parts = tfields.lib.symbolics.split_expression(expression)
657
            if len(expression_parts) > 1:
658
                new_mesh = inst.copy()
659
660
661
662
663
664
665
666
                if at_intersection == 'splitRough':
                    """
                    the following is, to speed up the process. Problem is, that
                    triangles can exist, where all points lie outside the cut,
                    but part of the area
                    still overlaps with the cut.
                    These are at the intersection line between two cuts.
                    """
667
668
                    faceIntersMask = np.full((inst.faces.shape[0]), False, dtype=bool)
                    for i, face in enumerate(inst.faces):
669
670
                        vertices_rejected = [-mask[f] for f in face]
                        face_on_edge = any(vertices_rejected) and not all(vertices_rejected)
671
                        if face_on_edge:
672
                            faceIntersMask[i] = True
673
                    new_mesh.removeFaces(-faceIntersMask)
674

675
                for exprPart in expression_parts:
676
677
678
                    inst, _ = inst._cut_sympy(exprPart,
                                              at_intersection='split',
                                              _in_recursion=True)
679
            elif len(expression_parts) == 1:
680
                # TODO maps[0] -> smthng like inst.get_map(dim=3)
681
682
683
                points = [sympy.symbols('x0, y0, z0'),
                          sympy.symbols('x1, y1, z1'),
                          sympy.symbols('x2, y2, z2')]
684
                plane_sympy = tfields.lib.symbolics.to_plane(expression)
685
686
687
                norm_sympy = np.array(plane_sympy.normal_vector).astype(float)
                d = -norm_sympy.dot(np.array(plane_sympy.p1).astype(float))
                plane = {'normal': norm_sympy, 'd': d}
688

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
689
                norm_vectors = inst.triangles().norms()
690
691
                new_points = np.empty((0, 3))
                new_faces = np.empty((0, 3))
692
                new_fields = [tfields.Tensors(np.empty((0,) + field.shape[1:]),
693
                                              coord_sys=field.coord_sys)
694
695
                              for field in inst.fields]
                new_map_fields = [[] for field in inst.maps[0].fields]
696
                new_norm_vectors = []
697
                newScalarMap = []
698
                n_new = 0
699

700
701
702
703
704
705
706
                vertices = np.array(inst)
                faces = np.array(inst.maps[0])
                fields = [np.array(field) for field in inst.fields]
                faces_fields = [np.array(field) for field in inst.maps[0].fields]

                face_delete_indices = set([])
                for i, face in enumerate(inst.maps[0]):
707
                    """
708
                    vertices_rejected is a mask for each face that is True, where
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
709
                    a point is on the rejected side of the plane
710
                    """
711
                    vertices_rejected = [~mask[f] for f in face]
712
713
714
715
716
                    if any(vertices_rejected):
                        # delete face
                        face_delete_indices.add(i)
                    if any(vertices_rejected) and not all(vertices_rejected):
                        # face on edge
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
717
718
                        n_true = vertices_rejected.count(True)
                        lonely_bool = True if n_true == 1 else False
719

Daniel Boeckenhoff's avatar
dunno    
Daniel Boeckenhoff committed
720
                        triangle_points = [vertices[f] for f in face]
721
                        """
722
                        Add the intersection points and faces
723
                        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
724
                        intersection = _intersect(triangle_points, plane, vertices_rejected)
725
                        last_idx = len(vertices) - 1
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
726
                        for tri_list in intersection:
727
                            new_face = []
728
729
730
                            for item in tri_list:
                                if isinstance(item, int):
                                    # reference to old vertex
731
                                    new_face.append(face[item])
732
733
734
                                elif isinstance(item, complex):
                                    # reference to new vertex that has been
                                    # concatenated already
735
                                    new_face.append(last_idx + int(item.imag))
736
737
                                else:
                                    # new vertex
738
                                    new_face.append(len(vertices))
739
                                    vertices = np.append(vertices,
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
740
                                                         [[float(x) for x in item]],
741
742
743
744
745
                                                         axis=0)
                                    fields = [np.append(field,
                                                        np.full((1,) + field.shape[1:], np.nan),
                                                        axis=0)
                                              for field in fields]
746
                            faces = np.append(faces, [new_face], axis=0)
747
                            faces_fields = [np.append(field,
748
                                                      [field[i]],
749
750
751
752
753
                                                      axis=0)
                                            for field in faces_fields]
                            faces_fields[-1][-1] = i

                face_map = tfields.TensorFields(faces, *faces_fields,
754
                                                dtype=int,
755
                                                coord_sys=inst.maps[0].coord_sys)
756
757
758
                inst = tfields.Mesh3D(vertices,
                                      *fields,
                                      maps=[face_map] + inst.maps[1:],
759
                                      coord_sys=inst.coord_sys)
760
761
762
763
764
                mask = np.full(len(inst.maps[0]), True, dtype=bool)
                for face_idx in range(len(inst.maps[0])):
                    if face_idx in face_delete_indices:
                        mask[face_idx] = False
                inst.maps[0] = inst.maps[0][mask]
765
            else:
766
                raise ValueError("Sympy expression is not splitable.")
767
            inst = inst.cleaned()
768
        elif at_intersection == 'remove':
769
            inst = inst[mask]
770
        else:
771
772
            raise AttributeError("No at_intersection method called {at_intersection} "
                                 "implemented".format(**locals()))
773
774
775
776
777
778
779
780
781
782
783
784
785

        if _in_recursion:
            template = None
        else:
            template_field = inst.fields.pop(-1)
            template_maps = []
            for mp in inst.maps:
                t_mp = tfields.TensorFields(tfields.Tensors(mp),
                                            mp.fields.pop(-1))
                template_maps.append(t_mp)
            template = tfields.Mesh3D(tfields.Tensors(inst),
                                      template_field,
                                      maps=template_maps)
786
        return inst, template
787
788

    def _cut_template(self, template):
789
790
791
792
793
794
795
796
        """
        Args:
            template (tfields.Mesh3D)

        Examples:
            >>> import tfields
            >>> import numpy as np

797
            Build mesh
798
799
800
            >>> mmap = tfields.TensorFields([[0, 1, 2], [0, 3, 4]],
            ...                             [[42, 21], [-42, -21]])
            >>> m = tfields.Mesh3D([[0]*3, [1]*3, [2]*3, [3]*3, [4]*3],
801
802
            ...                    [0.0, 0.1, 0.2, 0.3, 0.4],
            ...                    [0.0, -0.1, -0.2, -0.3, -0.4],
803
804
            ...                    maps=[mmap])

805
            Build template
806
807
808
            >>> tmap = tfields.TensorFields([[0, 3, 4], [0, 1, 2]],
            ...                             [1, 0])
            >>> t = tfields.Mesh3D([[0]*3, [-1]*3, [-2]*3, [-3]*3, [-4]*3],
809
            ...                    [1, 0, 3, 2, 4],
810
811
            ...                    maps=[tmap])

812
            Use template as instruction to make a fast cut
813
814
815
816
817
818
819
820
821
            >>> res = m._cut_template(t)
            >>> assert np.array_equal(res.fields,
            ...                       [[0.1, 0.0, 0.3, 0.2, 0.4],
            ...                        [-0.1, 0.0, -0.3, -0.2, -0.4]])

            >>> assert np.array_equal(res.maps[0].fields[0],
            ...                       [[-42, -21], [42, 21]])
                                   
        """
822
823
        # Possible Extension (small todo): check: len(field(s)) == len(self/maps)

824
        # Redirect fields
825
        fields = []
826
        if template.fields:
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
            template_field = np.array(template.fields[0])
            if len(self) > 0:
                '''
                if new vertices have been created in the template, it is
                in principle unclear what fields we have to refer to.
                Thus in creating the template, we gave np.nan.
                To make it fast, we replace nan with 0 as a dummy and correct
                the field entries afterwards with np.nan.
                '''
                nan_mask = np.isnan(template_field)
                template_field[nan_mask] = 0  # dummy reference to index 0.
                template_field = template_field.astype(int)
                for field in self.fields:
                    projected_field = field[template_field]
                    projected_field[nan_mask] = np.nan  # correction for nan
                    fields.append(projected_field)
843

844
        # Redirect maps and their fields
845
846
        maps = []
        for mp, template_mp in zip(self.maps, template.maps):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
847
            mp_fields = []
848
849
850
851
            for field in mp.fields:
                if len(template_mp) == 0 and len(template_mp.fields) == 0:
                    mp_fields.append(field[0:0])  # np.empty
                else:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
852
                    mp_fields.append(field[template_mp.fields[0].astype(int)])
853
            new_mp = tfields.TensorFields(tfields.Tensors(template_mp),
854
855
856
                                          *mp_fields)
            maps.append(new_mp)

857
858
        inst = tfields.Mesh3D(tfields.Tensors(template),
                              *fields,
859
                              maps=maps)
860
861
        return inst

862
    def cut(self, expression, coord_sys=None, at_intersection=None,
863
            return_template=False):
864
865
866
        """
        cut method for Mesh3D.
        Args:
867
868
869
870
871
872
873
874
875
876
            expression (sympy logical expression | Mesh3D):
                sympy locical expression: Sympy expression that defines planes
                    in 3D
                Mesh3D: A mesh3D will be interpreted as a template, i.e. a
                    fast instruction of how to cut the triangles.
                    It is the second part of the tuple, returned by a previous
                    cut with a sympy locial expression with 'return_template=True'.
                    We use the vertices and maps of the Mesh as the sceleton of
                    the returned mesh. The fields are mapped according to
                    indices in the template.maps[i].fields.
877
            coord_sys (coordinate system to cut in):
878
            at_intersection (str): instruction on what to do, when a cut will intersect a triangle.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
879
880
881
                Options:    'remove' (Default) - remove the faces that are on the edge
                            'keep' - keep the faces that are on the edge
                            'split' - Create new triangles that make up the old one.
882
883
            return_template (bool): If True: return the template
                            to redo the same cut fast
884
885
        Examples:
            define the cut
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
886
            >>> import numpy as np
887
            >>> import tfields
888
            >>> from sympy.abc import x,y,z
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
889
            >>> cut_expr = x > 1.5
890

891
892
            >>> m = tfields.Mesh3D.grid((0, 3, 4),
            ...                         (0, 3, 4),
893
            ...                         (0, 0, 1))
894
895
896
897
898
899
            >>> m.fields.append(tfields.Tensors(np.linspace(0, len(m) - 1,
            ...                                             len(m))))
            >>> m.maps[0].fields.append(
            ...     tfields.Tensors(np.linspace(0,
            ...                                 len(m.maps[0]) - 1,
            ...                                 len(m.maps[0]))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
900
            >>> mNew = m.cut(cut_expr)
901
            >>> len(mNew)
902
            8
903
            >>> mNew.nfaces()
904
905
906
907
            6
            >>> float(mNew[:, 0].min())
            2.0

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
908
909
910
911
912
913
914
915
916
917
            Cutting with the 'keep' option will leave triangles on the edge
            untouched:
            >>> m_keep = m.cut(cut_expr, at_intersection='keep')
            >>> float(m_keep[:, 0].min())
            1.0
            >>> m_keep.nfaces()
            12

            Cutting with the 'split' option will create new triangles on the edge:
            >>> m_split = m.cut(cut_expr, at_intersection='split')
918
            >>> float(m_split[:, 0].min())
919
            1.5
920
            >>> len(m_split)
921
            15
922
            >>> m_split.nfaces()
923
924
            15

925
926
            Cut with 'return_template=True' will return the exact same mesh but
            additionally an instruction to conduct the exact same cut fast (template)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
927
            >>> m_split_2, template = m.cut(cut_expr, at_intersection='split',
928
            ...                                    return_template=True)
929
930
931
932
933
934
935
936
937
938
            >>> m_split_template = m.cut(template)
            >>> assert m_split.equal(m_split_2, equal_nan=True)
            >>> assert m_split.equal(m_split_template, equal_nan=True)
            >>> assert len(template.fields) == 1
            >>> assert len(m_split.fields) == 1
            >>> assert len(m_split_template.fields) == 1
            >>> assert m_split.fields[0].equal(
            ...     list(range(8, 16)) + [np.nan] * 7, equal_nan=True)
            >>> assert m_split_template.fields[0].equal(
            ...     list(range(8, 16)) + [np.nan] * 7, equal_nan=True)
939

940
            This seems irrelevant at first but consider, the map field or the
941
942
943
944
945
946
947
948
            tensor field changes:
            >>> m_altered_fields = m.copy()
            >>> m_altered_fields[0] += 42
            >>> assert not m_split.equal(m_altered_fields.cut(template))
            >>> assert tfields.Tensors(m_split).equal(m_altered_fields.cut(template))
            >>> assert tfields.Tensors(m_split.maps[0]).equal(m_altered_fields.cut(template).maps[0])

            The cut expression may be a sympy.BooleanFunction:
949
950
            >>> cut_expr_bool_fun = (x > 1.5) & (y < 1.5) & (y >0.2) & (z > -0.5)
            >>> m_split_bool = m.cut(cut_expr_bool_fun, at_intersection='split')
951
952
953

        Returns:
            copy of cut mesh
954
            * optional: template
955
956

        """
957
        with self.tmp_transform(coord_sys or self.coord_sys):
958
            if isinstance(expression, Mesh3D):
959
960
                template = expression
                obj = self._cut_template(template)
961
962
963
964
965
966
            else:
                at_intersection = at_intersection or "remove"
                obj, template = self._cut_sympy(expression, at_intersection=at_intersection)
        if return_template:
            return obj, template
        return obj
967

968
969
970
971
972
973
974
975
976
977
978
979
980
    def disjoint_parts(self, return_template=False):
        mp_description = self.disjoint_map(0)
        parts = self.parts(mp_description)
        if not return_template:
            return parts
        else:
            templates = []
            for i, part in enumerate(parts):
                template = part.copy()
                template.maps[0].fields[0] = tfields.Tensors(mp_description[1][i])
                templates.append(template)
            return parts, templates

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
981
    def plot(self, **kwargs):  # pragma: no cover
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
982
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
983
        Forwarding to plotTools.plot_mesh
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
        """
        scalars_demanded = any([v in kwargs for v in ['vmin', 'vmax', 'cmap']])
        map_index = kwargs.pop('map_index', None if not scalars_demanded else 0)
        if map_index is not None:
            if not len(self.maps[0]) == 0:
                kwargs['color'] = self.maps[0].fields[map_index]

        dim_defined = False
        if 'axis' in kwargs:
            dim_defined = True
        if 'zAxis' in kwargs:
            if kwargs['zAxis'] is not None:
                kwargs['dim'] = 3
            else:
                kwargs['dim'] = 2
            dim_defined = True
        if 'dim' in kwargs:
            dim_defined = True

        if not dim_defined:
            kwargs['dim'] = 2

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1006
        return tfields.plotting.plot_mesh(self, self.faces, **kwargs)
1007

1008

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1009
if __name__ == '__main__':  # pragma: no cover
1010
1011
    import doctest

1012
1013
    doctest.run_docstring_examples(Mesh3D.cut, globals())
    # doctest.testmod()