core.py 99.2 KB
Newer Older
dboe's avatar
dboe committed
1
#!/usr/bin/env  # pylint: disable=too-many-lines,super-with-arguments
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
2
3
4
5
6
7
8
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
"""
dboe's avatar
dboe committed
15
# builtin
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
16
17
18
19
import warnings
import pathlib
from contextlib import contextmanager
from collections import Counter
dboe's avatar
dboe committed
20
from copy import deepcopy
dboe's avatar
dboe committed
21
import logging
dboe's avatar
dboe committed
22
from six import string_types
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
23

dboe's avatar
dboe committed
24
# 3rd party
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
26
import numpy as np
import sympy
dboe's avatar
dboe committed
27
import scipy
dboe's avatar
dboe committed
28
import sortedcontainers
29
import rna
dboe's avatar
dboe committed
30

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
31
import tfields.bases
dboe's avatar
dboe committed
32
33

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
34
35
36
37
38
39


def rank(tensor):
    """
    Tensor rank
    """
dboe's avatar
dboe committed
40
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
41
42
43
44
45
46
47
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
dboe's avatar
dboe committed
48
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
49
50
51
52
53
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


dboe's avatar
dboe committed
54
55
56
57
58
class AbstractObject(object):  # pylint: disable=useless-object-inheritance
    """
    Abstract base class for all tfields objects implementing polymorphisms
    """

dboe's avatar
dboe committed
59
60
61
62
63
64
    def save(self, path, *args, **kwargs):
        """
        Saving by redirecting to the correct save method depending on path

        Args:
            path (str or buffer)
dboe's avatar
dboe committed
65
            *args: joined with path
dboe's avatar
dboe committed
66
67
68
69
70
71
72
73
74
75
76
77
78
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)

        # get the save method
        try:
dboe's avatar
dboe committed
79
80
            save_method = getattr(self, "_save_" + extension)
        except AttributeError as err:
dboe's avatar
dboe committed
81
82
83
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
dboe's avatar
dboe committed
84
            ) from err
dboe's avatar
dboe committed
85

dboe's avatar
dboe committed
86
        path = rna.path.resolve(path, *args)
87
        rna.path.mkdir(path)
dboe's avatar
dboe committed
88
89
90
91
92
93
94
95
96
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.

        Args:
            path (str or buffer)
dboe's avatar
dboe committed
97
            *args: joined with path
dboe's avatar
dboe committed
98
99
100
101
102
103
104
105
106
107
108
109
110
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
            path = str(path)
            path = rna.path.resolve(path)
        else:
            extension = kwargs.pop("extension", "npz")

        try:
            load_method = getattr(cls, "_load_{e}".format(e=extension))
dboe's avatar
dboe committed
111
        except AttributeError as err:
dboe's avatar
dboe committed
112
113
114
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
dboe's avatar
dboe committed
115
            ) from err
dboe's avatar
dboe committed
116
117
        return load_method(path, *args, **kwargs)

dboe's avatar
dboe committed
118
    def _save_npz(self, path):
dboe's avatar
dboe committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        """
        Args:
            path (open file or str/unicode): destination to save file to.

        Examples:
            Build some dummies:
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
            >>> out_file = NamedTemporaryFile(suffix='.npz')
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)  # this is only necessary in the test
            >>> p1 = tfields.Points3D.load(out_file.name)
            >>> assert p.equal(p1)
            >>> assert p.coord_sys == p1.coord_sys

            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
            >>> assert m.equal(m1)
dboe's avatar
dboe committed
151
            >>> assert m.maps[3].dtype == m1.maps[3].dtype
dboe's avatar
dboe committed
152
153
154
155
156
157
158

            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

        """
dboe's avatar
dboe committed
159
        content_dict = self._as_dict()
160
        content_dict["tfields_version"] = tfields.__version__
dboe's avatar
dboe committed
161
162
163
164
165
166
167
168
        np.savez(path, **content_dict)

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
dboe's avatar
dboe committed
169
        # Note: think about allow_pickle, wheter it really should be True or
dboe's avatar
dboe committed
170
        # wheter we could avoid pickling (potential security issue)
171
        load_kwargs.setdefault("allow_pickle", True)
dboe's avatar
dboe committed
172
        np_file = np.load(path, **load_kwargs)
dboe's avatar
dboe committed
173
174
175
        content = dict(np_file)
        content.pop("tfields_version", None)
        return cls._from_dict(content)
dboe's avatar
dboe committed
176

dboe's avatar
dboe committed
177
178
179
180
    def _args(self) -> tuple:  # pylint: disable=no-self-use
        """
        Used for allowing the polymorphic signature Class(obj) as a copy/casting constructor
        """
dboe's avatar
dboe committed
181
182
        return tuple()

dboe's avatar
dboe committed
183
184
185
186
    def _kwargs(self) -> dict:  # pylint: disable=no-self-use
        """
        Used for allowing the polymorphic signature Class(obj) as a copy/casting constructor
        """
dboe's avatar
dboe committed
187
188
        return dict()

189
    _HIERARCHY_SEPARATOR = "::"
dboe's avatar
dboe committed
190

dboe's avatar
dboe committed
191
192
193
194
195
196
197
198
199
    def _as_dict(self) -> dict:
        """
        Get an object represenation in a dict format. This is necessary e.g. for saving the full
        file uniquely in the npz format

        Returns:
            dict: object packed as nested dictionary
        """
        content = {}
dboe's avatar
dboe committed
200
201

        # type
dboe's avatar
dboe committed
202
        content["type"] = type(self).__name__
dboe's avatar
dboe committed
203
204
205

        # args and kwargs
        for base_attr, iterable in [
206
207
208
            ("args", ((str(i), arg) for i, arg in enumerate(self._args()))),
            ("kwargs", self._kwargs().items()),
        ]:
dboe's avatar
dboe committed
209
210
            for attr, value in iterable:
                attr = base_attr + self._HIERARCHY_SEPARATOR + attr
211
                if hasattr(value, "_as_dict"):
dboe's avatar
dboe committed
212
                    part_dict = value._as_dict()  # pylint: disable=protected-access
dboe's avatar
dboe committed
213
                    for part_attr, part_value in part_dict.items():
dboe's avatar
dboe committed
214
215
216
                        content[
                            attr + self._HIERARCHY_SEPARATOR + part_attr
                        ] = part_value
dboe's avatar
dboe committed
217
                else:
dboe's avatar
dboe committed
218
219
                    content[attr] = value
        return content
dboe's avatar
dboe committed
220
221

    @classmethod
dboe's avatar
dboe committed
222
    def _from_dict(cls, content: dict):
dboe's avatar
dboe committed
223
        try:
dboe's avatar
dboe committed
224
            content.pop("type")
dboe's avatar
dboe committed
225
226
        except KeyError:
            # legacy
dboe's avatar
dboe committed
227
            return cls._from_dict_legacy(**content)
dboe's avatar
dboe committed
228
229

        here = {}
dboe's avatar
dboe committed
230
231
        for string in content:  # TOO no sortelist
            value = content[string]
dboe's avatar
dboe committed
232
233
234
235
236
237
238
239
240

            attr, _, end = string.partition(cls._HIERARCHY_SEPARATOR)
            key, _, end = end.partition(cls._HIERARCHY_SEPARATOR)
            if attr not in here:
                here[attr] = {}
            if key not in here[attr]:
                here[attr][key] = {}
            here[attr][key][end] = value

dboe's avatar
dboe committed
241
        # Do the recursion
dboe's avatar
dboe committed
242
243
        for attr in here:
            for key in here[attr]:
244
                if "type" in here[attr][key]:
dboe's avatar
dboe committed
245
                    obj_type = here[attr][key].get("type")
dboe's avatar
dboe committed
246
247
                    if isinstance(obj_type, np.ndarray):  # happens on np.load
                        obj_type = obj_type.tolist()
dboe's avatar
dboe committed
248
249
250
251
252
                    if isinstance(obj_type, bytes):
                        # asthonishingly, this is not necessary under linux.
                        # Found under nt. ???
                        obj_type = obj_type.decode("UTF-8")
                    obj_type = getattr(tfields, obj_type)
dboe's avatar
dboe committed
253
254
255
                    attr_value = obj_type._from_dict(
                        here[attr][key]
                    )  # noqa: E501 pylint: disable=protected-access
dboe's avatar
dboe committed
256
                else:  # if len(here[attr][key]) == 1:
257
                    attr_value = here[attr][key].pop("")
dboe's avatar
dboe committed
258
259
                here[attr][key] = attr_value

dboe's avatar
dboe committed
260
        # Build the generic way
261
        args = here.pop("args", tuple())
dboe's avatar
dboe committed
262
        args = tuple(args[key] for key in sorted(args))
263
        kwargs = here.pop("kwargs", {})
dboe's avatar
dboe committed
264
265
266
267
268
        assert len(here) == 0
        obj = cls(*args, **kwargs)
        return obj

    @classmethod
dboe's avatar
dboe committed
269
    def _from_dict_legacy(cls, **content):
dboe's avatar
dboe committed
270
        """
dboe's avatar
dboe committed
271
272
        legacy method of _from_dict - Opposite of old _as_dict method
        which is overridden in this version
dboe's avatar
dboe committed
273
274
275
        """
        list_dict = {}
        kwargs = {}
dboe's avatar
dboe committed
276
277
        # De-Flatten the first layer of lists
        for key in sorted(list(content)):
dboe's avatar
dboe committed
278
279
280
281
282
283
284
285
286
287
288
            if "::" in key:
                attr, _, end = key.partition("::")
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition("::")
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
dboe's avatar
dboe committed
289
                list_dict[attr][index][end] = content[key]
dboe's avatar
dboe committed
290
            else:
dboe's avatar
dboe committed
291
                kwargs[key] = content[key]
dboe's avatar
dboe committed
292

dboe's avatar
dboe committed
293
        # Build the lists (recursively)
dboe's avatar
dboe committed
294
295
296
297
298
        for key in list(list_dict):
            sub_dict = list_dict[key]
            list_dict[key] = []
            for index in sorted(list(sub_dict)):
                bulk_type = sub_dict[index].get("bulk_type")
dboe's avatar
dboe committed
299
                bulk_type = bulk_type.tolist()
dboe's avatar
dboe committed
300
301
302
303
304
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
                    bulk_type = bulk_type.decode("UTF-8")
                bulk_type = getattr(tfields, bulk_type)
dboe's avatar
dboe committed
305
306
307
308
309
310
311
312
                list_dict[key].append(
                    bulk_type._from_dict_legacy(**sub_dict[index])
                )  # noqa: E501 pylint: disable=protected-access

        with cls._bypass_setters(
            "fields", demand_existence=False
        ):  # noqa: E501 pylint: disable=protected-access,no-member
            # Build the normal way
313
314
            bulk = kwargs.pop("bulk")
            bulk_type = kwargs.pop("bulk_type")
dboe's avatar
dboe committed
315
316
            obj = cls.__new__(cls, bulk, **kwargs)

dboe's avatar
dboe committed
317
            # Set list attributes
dboe's avatar
dboe committed
318
319
320
321
322
323
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
        return obj


class AbstractNdarray(np.ndarray, AbstractObject):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
324
325
326
327
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
328
329

    Attributes:
330
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
331
332
333
334
335
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
336
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
337
338
            args in __slots__ to numpy arrays. None values mean no
            conversion.
339
340
341
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
342
343
344
345

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
346

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
347
348
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
349

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
350
    """
dboe's avatar
dboe committed
351

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
352
353
    __slots__ = []
    __slot_defaults__ = []
354
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
355
356
357
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
358
359
360
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
361
362
363
364
365
366
367

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

dboe's avatar
dboe committed
368
369
370
371
    def __array_wrap__(self, out_arr, context=None):  # pylint: disable=arguments-differ
        return np.ndarray.__array_wrap__(
            self, out_arr, context
        )  # noqa: E501 pylint: disable=too-many-function-args
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
372
373
374

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
375
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
376
377
378
379
380

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
381
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
382
        """
383
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
384
385
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
386
387
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
388
        )
389
        for attr, default, dtype in zip(cls.__slots__, slot_defaults, slot_dtypes):
dboe's avatar
dboe committed
390
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
391
392
393
394
395
396
397
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
398
399
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
dboe's avatar
dboe committed
400
                    ) from err
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
401
402
403
404
405
406
407
408

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
409
410
            if isinstance(setter, str):
                setter = getattr(self, setter)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
411
412
413
414
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

dboe's avatar
dboe committed
415
416
417
418
419
420
    def _args(self):
        return (np.array(self),)

    def _kwargs(self):
        return dict((attr, getattr(self, attr)) for attr in self._iter_slots())

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
421
422
    def __reduce__(self):
        """
dboe's avatar
dboe committed
423
424
        important for pickling (see `here <https://stackoverflow.com/questions/\
26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
425

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
426
427
428
429
430
431
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
432

dboe's avatar
dboe committed
433
434
435
436
437
438
            >>> scalars = tfields.Tensors([0, 1, 2])
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(
            ...     vectors,
            ...     scalars,
            ...     coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
439
440

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
441

442
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
443

444
            >>> pickle.dump(scalar_field,
445
446
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
447

448
            >>> sf = pickle.load(out_file)
449
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
450
451
452
453
454
455
456
457
458
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
459
460
461
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
462

dboe's avatar
dboe committed
463
464
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
465
466
467
468
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
469
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
470
471
        """
        # Call the parent's __setstate__ with the other tuple elements.
472
        super(AbstractNdarray, self).__setstate__(state[0 : -len(self._iter_slots())])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
473
474

        # set the __slot__ attributes
475
        valid_slot_attrs = list(self._iter_slots())
dboe's avatar
dboe committed
476
477
478
        # attributes that have been added later have not been pickled with the full information
        # and thus need to be excluded from the __setstate__ need to be in the same order as they
        # have been added to __slots__
479
        added_slot_attrs = ["name"]
dboe's avatar
dboe committed
480
481
        n_np = 5  # number of numpy array states
        n_old = len(valid_slot_attrs) - len(state[n_np:])
482
483
484
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
485
486
487
488
489
490
                warnings.warn(
                    "Slots with names '{new_slot}' appears to have "
                    "been added after the creation of the reduced "
                    "state. No corresponding state found in "
                    "__setstate__.".format(**locals())
                )
491
492
493
494
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
dboe's avatar
dboe committed
495
            state_index = n_np + slot_index
496
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
497

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
498
499
500
501
502
503
504
505
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

506
507
    @classmethod
    @contextmanager
508
    def _bypass_setters(cls, *slots, empty_means_all=True, demand_existence=False):
509
510
511
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
512
513
514
515
516

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
517
518
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
519
520
521
522
523
524
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
525
            slot_index = cls.__slots__.index(slot) if slot in cls.__slots__ else None
dboe's avatar
dboe committed
526
527
528
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
529
                    raise ValueError("Slot {slot} not existing".format(**locals()))
dboe's avatar
dboe committed
530
                continue
531
532
533
534
535
536
537
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
538
        yield
539
540
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
541

dboe's avatar
dboe committed
542
    def copy(self, **kwargs):  # pylint: disable=arguments-differ
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
543
544
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
545

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
546
547
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
548
549
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
dboe's avatar
dboe committed
550
            ...     [[1], [3], [0], [5]],
551
552
            ...     maps=[
            ...         ([[0, 1, 2], [1, 2, 3]], [21, 42]),
dboe's avatar
dboe committed
553
554
            ...         [[1]],
            ...         [[0, 1, 2, 3]]
555
            ...     ])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
556
            >>> mc = m.copy()
dboe's avatar
dboe committed
557
558
            >>> mc.equal(m)
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
559
560
            >>> mc is m
            False
dboe's avatar
dboe committed
561
562
563
564
            >>> mc.fields is m.fields
            False
            >>> mc.fields[0] is m.fields[0]
            False
dboe's avatar
dboe committed
565
            >>> mc.maps[3].fields[0] is m.maps[3].fields[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
566
567
568
            False

        """
dboe's avatar
dboe committed
569
570
571
572
        if kwargs:
            raise NotImplementedError(
                "Copying with arguments {kwargs} not yet supported"
            )
dboe's avatar
dboe committed
573
574
        # works with __reduce__ / __setstate__
        return deepcopy(self)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
575
576


dboe's avatar
dboe committed
577
class Tensors(AbstractNdarray):  # pylint: disable=too-many-public-methods
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
578
579
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
581
582
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
583

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
584
585
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
586
587
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
588

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
589
590
    Examples:
        >>> import numpy as np
591
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
592
593

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
594

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
595
596
597
598
599
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
600

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
601
602
603
604
605
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
606
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
607
608

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
609

610
611
612
613
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
614
615
616
617
618
619
620
621
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
622

dboe's avatar
dboe committed
623
624
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]],
        ...                       coord_sys='cylinder')
625
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
626
        >>> cyl.transform('cartesian')
627
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
628
629
630
631
632
633
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
634

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
635
636
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
637
638
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
639
640

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
641

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
642
643
644
645
646
647
648
649
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
650

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
651
652
653
654
655
656
657
658
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
659
660
661

    __slots__ = ["coord_sys", "name"]
    __slot_defaults__ = ["cartesian"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
662
663
    __slot_setters__ = [tfields.bases.get_coord_system_name]

dboe's avatar
dboe committed
664
    def __new__(cls, tensors, **kwargs):  # pylint: disable=too-many-branches
dboe's avatar
dboe committed
665
666
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
dboe's avatar
dboe committed
667
        dim = kwargs.pop("dim", None)  # pylint: disable=redefined-outer-name
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
668

dboe's avatar
dboe committed
669
        # copy constructor extracts the kwargs from tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
670
671
672
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
673
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
674
            tensors = tensors.copy()
675
            tensors.transform(coord_sys)
676
677
            kwargs["coord_sys"] = coord_sys
            kwargs["name"] = kwargs.pop("name", tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
678
679
680
681
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
682
                if hasattr(tensors, "dtype"):
683
684
685
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
686

dboe's avatar
dboe committed
687
        # demand iterable structure
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
688
689
        try:
            len(tensors)
dboe's avatar
dboe committed
690
        except TypeError as err:
dboe's avatar
dboe committed
691
            raise TypeError(
692
                "Iterable structure necessary." " Got {tensors}".format(**locals())
dboe's avatar
dboe committed
693
            ) from err
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
694

dboe's avatar
dboe committed
695
        # process empty inputs
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
696
697
698
699
700
701
702
703
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
704
            elif hasattr(tensors, "shape"):
dboe's avatar
dboe committed
705
                dim = dim(tensors)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
706
            else:
707
                raise ValueError("Empty tensors need dimension parameter 'dim'.")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
708
709
710
711

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
712
713
714
        # check dimension(s)
        for obj_dim in obj.shape[1:]:
            if not obj_dim == obj.dim:
dboe's avatar
dboe committed
715
716
717
718
719
720
721
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
722
723
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
724
725
726
727
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
728

dboe's avatar
dboe committed
729
        # update kwargs with defaults from slots
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
730
731
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
732
        # set kwargs to slots attributes
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
733
734
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
735
736
737
738
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
739
740
741
742
            setattr(obj, attr, kwargs[attr])

        return obj

743
744
745
746
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
747

748
749
750
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
751
752
            >>> scalar_field = tfields.TensorFields(
            ...     vectors, [42, 21, 10.5], [1, 2, 3])
753
754
755
756
757
758
759
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
760
761
762
763
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
dboe's avatar
dboe committed
764
        Merges all input arguments to one object
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
765

766
767
768
        Args:
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects
dboe's avatar
dboe committed
769
770
            dim (int):
            **kwargs: passed to cls
771

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
772
773
774
775
776
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

777
778
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
779

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
780
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
781
782
783
784
785
786
            >>> vec_b = tfields.Tensors([[5, 4, 1]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> merge = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, [[2, 0, 1]])
787
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
788
789
790
791
792
793
794
795
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
796

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
797
798
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
799
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
800
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
801
            >>> assert tm_merge.coord_sys == 'cylinder'
dboe's avatar
dboe committed
802
            >>> assert tm_merge.maps[3].equal([[0, 1, 2],
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
803
804
805
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
806

807
808
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
809
810
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
811
812
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
813
814
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
815

816
817
818
819
820
821
822
823
824
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
825
826
        """

dboe's avatar
dboe committed
827
        # get most frequent coord_sys or predefined coord_sys
dboe's avatar
dboe committed
828
        coord_sys = kwargs.get("coord_sys", None)
829
        return_templates = kwargs.pop("return_templates", False)
830
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
831
            bases = []
dboe's avatar
dboe committed
832
            for tensors in objects:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
833
                try:
dboe's avatar
dboe committed
834
                    bases.append(tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
835
836
837
                except AttributeError:
                    pass
            if bases:
838
                # get most frequent coord_sys
839
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[0]
dboe's avatar
dboe committed
840
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
841
            else:
842
                default = cls.__slot_defaults__[cls.__slots__.index("coord_sys")]
dboe's avatar
dboe committed
843
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
844

dboe's avatar
dboe committed
845
846
847
        # transform all raw inputs to cls type with correct coord_sys. Also
        # automatically make a copy of those instances that are of the correct
        # type already.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
848
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
849

dboe's avatar
dboe committed
850
851
        # check rank and dimension equality
        if not len(set(t.rank for t in objects)) == 1:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
852
            raise TypeError("Tensors must have the same rank for merging.")
dboe's avatar
dboe committed
853
        if not len(set(t.dim for t in objects)) == 1:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
854
855
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
856
857
        # merge all objects
        remaining_objects = objects[1:] or []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
858
859
        tensors = objects[0]

dboe's avatar
dboe committed
860
        for i, obj in enumerate(remaining_objects):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861
862
            tensors = np.append(tensors, obj, axis=0)

863
        if len(tensors) == 0 and not kwargs.get("dim", None):
864
865
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
866
            kwargs["dim"] = dim(objects[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
867

868
        inst = cls.__new__(cls, tensors, **kwargs)
dboe's avatar
dboe committed
869
        if not return_templates:  # pylint: disable=no-else-return
870
            return inst
871
872
        else:
            tensor_lengths = [len(o) for o in objects]
873
            cum_tensor_lengths = [sum(tensor_lengths[:i]) for i in range(len(objects))]
874
875
            templates = [
                tfields.TensorFields(
876
                    np.empty((len(obj), 0)),
877
878
879
880
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i],
                )
                for i, obj in enumerate(objects)
            ]
881
            return inst, templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
882
883
884
885
886

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
887
888
889
890
891
892
893
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
894

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
895
896
897
898
899
900
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
901
902
903

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
904

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905
906
907
908
909
910
911
912
913
914
915
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
916
917
918

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
919

dboe's avatar
dboe committed
920
921
922
            >>> lins = tfields.Tensors.grid(
            ...     np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...     np.linspace(6, 7, 2), iter_order=[1, 0, 2])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
946
947
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
948

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
949
950
951
952
953
954
955
956
957
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
958
        """
dboe's avatar
dboe committed
959
        cls_kwargs = {
960
            attr: kwargs.pop(attr) for attr in list(kwargs) if attr in cls.__slots__
dboe's avatar
dboe committed
961
962
963
964
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

981
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
982
983
        """
        Args:
984
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
985
986
987
988
989
990

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
dboe's avatar
dboe committed
991
992
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1],
            ...                      [0, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
993
994
995
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
996

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
997
998
999
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1000

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1001
1002
1003
1004
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1005

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1006
1007
1008
1009
1010
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1011

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1012
1013
1014
1015
1016
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1017

dboe's avatar
dboe committed
1018
1019
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1],
            ...                          [-1, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1020
1021
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
1022
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1023
1024

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1025

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1026
1027
1028
1029
1030
1031
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
1032

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1033
1034
1035
1036
1037
1038
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
1039

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1040
1041
1042
1043
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
1044
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1045
1046
1047
            >>> assert t_cyl[0, 0] == 3

        """
dboe's avatar
dboe committed
1048
1049
1050
1051
1052
        #         scalars                 empty             already there
        if (
            self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys
        ):  # noqa: E501 pylint: disable=access-member-before-definition
            self.coord_sys = coord_sys  # pylint: disable=attribute-defined-outside-init
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1053
1054
            return

1055
1056
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
dboe's avatar
dboe committed
1057
        self.coord_sys = coord_sys  # pylint: disable=attribute-defined-outside-init
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1058
1059

    @contextmanager
1060
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1061
        """
1062
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1063
1064
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1066
1067
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1068

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1069
1070
        Examples:
            >>> import tfields
1071
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1072
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
1073
1074
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1075
1076

        """
dboe's avatar
dboe committed
1077
1078
        base_before = self.coord_sys
        if base_before == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1079
1080
            yield
        else:
1081
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1082
1083
1084

            yield

dboe's avatar
dboe committed
1085
            self.transform(base_before)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1086
1087
1088
1089

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1090

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1091
1092
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1093

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1094
1095
1096
1097
1098
1099
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1100
1101
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1102

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1103
1104
1105
1106
1107
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.