core.py 93.1 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
15
16
17
18
19
20
21
22
23
"""
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
24
import rna
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
import tfields.bases
dboe's avatar
dboe committed
26
27

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
51
52

    Attributes:
53
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
54
55
56
57
58
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
59
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
60
61
            args in __slots__ to numpy arrays. None values mean no
            conversion.
62
63
64
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
65
66
67
68

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
69

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
70
71
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
72

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
73
    """
dboe's avatar
dboe committed
74

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
75
76
    __slots__ = []
    __slot_defaults__ = []
77
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
78
79
80
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
81
82
83
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
84
85
86
87
88
89
90
91
92
93
94
95

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
96
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
97
98
99
100
101

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
102
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
103
        """
104
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
105
106
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
107
108
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
109
110
        )
        for attr, default, dtype in zip(
111
            cls.__slots__, slot_defaults, slot_dtypes
dboe's avatar
dboe committed
112
113
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
114
115
116
117
118
119
120
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
121
122
123
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
138
139
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
140
141
142
143
144
145
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
146

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
147
148
149
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
150
151
152
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
153
154

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
155

156
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
157

158
            >>> pickle.dump(scalar_field,
159
160
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
161

162
            >>> sf = pickle.load(out_file)
163
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
164
165
166
167
168
169
170
171
172
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
173
174
175
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
176

dboe's avatar
dboe committed
177
178
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
179
180
181
182
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
183
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
184
185
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
186
187
188
        super(AbstractNdarray, self).__setstate__(
            state[0 : -len(self._iter_slots())]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
189
190

        # set the __slot__ attributes
191
192
193
194
195
196
197
198
199
200
201
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
                                     # need to be in the same order as they have
                                     # been added to __slots__
        n_old = len(valid_slot_attrs) - len(state[5:])
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
202
                warnings.warn("Slots with names '{new_slot}' appears to have been "
203
204
205
206
207
208
209
210
211
                              "added after the creation of the reduced state. "
                              "No corresponding state found in __setstate__."
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
            state_index = 5 + slot_index
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
212

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
213
214
215
216
217
218
219
220
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

221
222
    @classmethod
    @contextmanager
dboe's avatar
dboe committed
223
224
225
    def _bypass_setters(cls, *slots,
                        empty_means_all=True,
                        demand_existence=False):
226
227
228
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
229
230
231
232
233

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
234
235
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
236
237
238
239
240
241
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
dboe's avatar
dboe committed
242
243
244
245
246
247
248
249
            slot_index = cls.__slots__.index(slot)\
                if slot in cls.__slots__ else None
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
                    raise ValueError(
                        "Slot {slot} not existing".format(**locals()))
                continue
250
251
252
253
254
255
256
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
257
        yield
258
259
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
260

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
261
262
263
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
264

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
265
266
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
267
268
269
270
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...     maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                 [1, 2])])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
271
272
273
274
275
276
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
277
        TODO:
dboe's avatar
dboe committed
278
279
            This function implementation could be more general or maybe
            redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
280
281
282
283
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
dboe's avatar
dboe committed
284
            if hasattr(value, "copy") and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
285
286
287
288
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
dboe's avatar
dboe committed
289
                    if hasattr(item, "copy"):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
290
291
292
293
294
295
296
297
298
299
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
300

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
301
302
303
304
305
306
307
308
309
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
310
        if isinstance(path, (string_types, pathlib.Path)):
dboe's avatar
dboe committed
311
            extension = pathlib.Path(path).suffix.lstrip(".")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
312
313
314
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
315
316
317

        # get the save method
        try:
dboe's avatar
dboe committed
318
            save_method = getattr(self, "_save_{extension}".format(**locals()))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
319
        except:
dboe's avatar
dboe committed
320
321
322
323
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
324

325
        path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
326
327
328
329
330
331
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
332

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
333
334
335
336
337
338
339
340
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
341
        if isinstance(path, (string_types, pathlib.Path)):
dboe's avatar
dboe committed
342
            extension = pathlib.Path(path).suffix.lstrip(".")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
343
            path = str(path)
344
            path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
345
        else:
dboe's avatar
dboe committed
346
            extension = kwargs.pop("extension", "npz")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
347
348

        try:
dboe's avatar
dboe committed
349
            load_method = getattr(cls, "_load_{e}".format(e=extension))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
350
        except:
dboe's avatar
dboe committed
351
352
353
354
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
355
356
357
358
359
360
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
361

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
362
        Examples:
363
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
364
365
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
366
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
367
368
369
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
370
371
372
373
374
375
376
377
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
378
            >>> _ = out_file.seek(0)  # this is only necessary in the test
379
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
380
            >>> assert p.equal(p1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
381
            >>> assert p.coord_sys == p1.coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
382

383
384
385
386
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
dboe's avatar
dboe committed
387
388
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
389
            >>> assert m.equal(m1)
390
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
391

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
392
393
394
395
396
            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

397
        """
398
399
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
400
401
402
403
404
405
406

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
dboe's avatar
dboe committed
407
408
409
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
410
        np_file = np.load(path, **load_kwargs)
411
412
413
414
415
416
417
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
dboe's avatar
dboe committed
418
419
        d["bulk"] = self.bulk
        d["bulk_type"] = self.__class__.__name__
420
421
422
423
424
425
426
427
428
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
dboe's avatar
dboe committed
429
430
431
                            d[
                                "{attr}::{i}::{part_attr}".format(**locals())
                            ] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
432
                    continue
433
434
435
436
437
438
439
440
441
442
443
444
            if isinstance(value, AbstractNdarray):
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
dboe's avatar
dboe committed
445
        """
446
        De-Flatten the first layer of lists
dboe's avatar
dboe committed
447
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
448
        for key in sorted(list(d)):
dboe's avatar
dboe committed
449
450
451
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
452
453
454
                if attr not in list_dict:
                    list_dict[attr] = {}

dboe's avatar
dboe committed
455
                index, _, end = end.partition("::")
456
457
458
459
460
461
462
463
464
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

dboe's avatar
dboe committed
465
        """
466
        Build the lists (recursively)
dboe's avatar
dboe committed
467
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
468
        for key in list(list_dict):
469
470
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
471
            for index in sorted(list(sub_dict)):
dboe's avatar
dboe committed
472
                bulk_type = sub_dict[index].get("bulk_type").tolist()
Priyanjana Sinha's avatar
Priyanjana Sinha committed
473
                if isinstance(bulk_type, bytes):
474
475
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
dboe's avatar
dboe committed
476
                    bulk_type = bulk_type.decode("UTF-8")
Priyanjana Sinha's avatar
Priyanjana Sinha committed
477
                bulk_type = getattr(tfields, bulk_type)
478
479
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

dboe's avatar
dboe committed
480
        with cls._bypass_setters('fields', demand_existence=False):
481
482
483
484
485
486
487
488
489
490
491
492
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
493
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
494
495
496
497
498


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
499

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
500
501
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
502

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
503
504
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
505
506
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
507

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
508
509
    Examples:
        >>> import numpy as np
510
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
511
512

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
513

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
514
515
516
517
518
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
519

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
520
521
522
523
524
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
525
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
526
527

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
528

529
530
531
532
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
533
534
535
536
537
538
539
540
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
541

542
543
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
544
        >>> cyl.transform('cartesian')
545
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
546
547
548
549
550
551
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
552

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
553
554
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
555
556
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
557
558

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
559

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
560
561
562
563
564
565
566
567
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
568

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
569
570
571
572
573
574
575
576
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
577
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
578
579
580
581
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
582
583
584
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
585

dboe's avatar
dboe committed
586
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
587
588
589
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
590
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
591
            tensors = tensors.copy()
592
593
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
594
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
595
596
597
598
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
599
                if hasattr(tensors, "dtype"):
600
601
602
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
603

dboe's avatar
dboe committed
604
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
605
606
607
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
608
609
610
611
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
612

dboe's avatar
dboe committed
613
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
614
615
616
617
618
619
620
621
622
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
dboe's avatar
dboe committed
623
624
625
                raise ValueError(
                    "Empty tensors need dimension " "parameter 'dim'."
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
626
627
628
629

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
630
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
631
632
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
633
634
635
636
637
638
639
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
640
641
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
642
643
644
645
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
646

dboe's avatar
dboe committed
647
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
648
649
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
650
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
651
652
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
653
654
655
656
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
657
658
659
660
            setattr(obj, attr, kwargs[attr])

        return obj

661
662
663
664
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
665

666
667
668
669
670
671
672
673
674
675
676
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
677
678
679
680
681
682
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

683
684
685
686
687
688
        Args:
            **kwargs: passed to cls
            dim (int):
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
689
690
691
692
693
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

694
695
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
696

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
697
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
698
699
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
700
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
701
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
702
703
704
705
706
707
708
709
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
710

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
711
712
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
713
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
714
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
715
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
716
717
718
719
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
720

721
722
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
723
724
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
725
726
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
727
728
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
729

730
731
732
733
734
735
736
737
738
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
739
740
        """

dboe's avatar
dboe committed
741
742
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
743
        return_templates = kwargs.pop("return_templates", False)
744
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
745
746
747
            bases = []
            for t in objects:
                try:
748
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
749
750
751
                except AttributeError:
                    pass
            if bases:
752
                # get most frequent coord_sys
dboe's avatar
dboe committed
753
754
755
756
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[
                    0
                ]
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
757
            else:
dboe's avatar
dboe committed
758
759
760
761
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
762

dboe's avatar
dboe committed
763
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
764
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
765
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
766
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
767

dboe's avatar
dboe committed
768
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
769
770
771
772
773
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
774
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
775
776
777
778
779
780
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

dboe's avatar
dboe committed
781
        if len(tensors) == 0 and 'dim' not in kwargs:
782
783
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
784
            for obj in objects:
785
786
787
                if len(obj) != 0:
                    kwargs['dim'] = dim(obj)
                    break
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
788

789
790
791
792
793
794
795
796
797
798
799
800
        if not return_templates:
            return cls.__new__(cls, tensors, **kwargs)
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
                    obj,
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
            return cls.__new__(cls, tensors, **kwargs), templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
801
802
803
804
805

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
806
807
808
809
810
811
812
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
813

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
814
815
816
817
818
819
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
820
821
822

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
823

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
824
825
826
827
828
829
830
831
832
833
834
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
835
836
837

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
838

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
864
865
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
866

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
867
868
869
870
871
872
873
874
875
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
876
        """
dboe's avatar
dboe committed
877
878
879
880
881
882
883
884
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

901
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
902
903
        """
        Args:
904
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905
906
907
908
909
910
911
912
913
914

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
915

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
916
917
918
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
919

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
920
921
922
923
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
924

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
925
926
927
928
929
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
930

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
931
932
933
934
935
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
936

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
937
938
939
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
940
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
941
942

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
943

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
944
945
946
947
948
949
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
950

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
951
952
953
954
955
956
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
957

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
958
959
960
961
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
962
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
963
964
965
966
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
967
968
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
969
970
            return

971
972
973
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
974
975

    @contextmanager
976
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
977
        """
978
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
979
980
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
981

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
982
983
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
984

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
985
986
        Examples:
            >>> import tfields
987
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
988
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
989
990
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
991
992

        """
993
994
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
995
996
            yield
        else:
997
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
998
999
1000
1001
1002
1003
1004
1005

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1006

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1007
1008
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1009

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1010
1011
1012
1013
1014
1015
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1016
1017
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1018

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1019
1020
1021
1022
1023
1024
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1025

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1026
1027
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1028
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1039
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1040
1041
1042
1043
1044
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1054
1055
1056
1057
1058
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1059

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1060
1061
1062
1063
1064
1065
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1066
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1067
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1068

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1069
1070
1071
1072
1073
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1074
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1087
1088
1089
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1090
            # map all values to first segment
dboe's avatar
dboe committed
1091
1092
1093
1094
1095
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1096

dboe's avatar
dboe committed
1097
1098
1099
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1100
1101
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1102

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1103
1104
1105
1106
1107
1108
1109
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1110
1111
1112
1113
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1114
            other = other.copy()
1115
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1116
1117
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1118
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1119
1120
1121
1122
1123
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1124
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1125
            if atol is None:
dboe's avatar
dboe committed
1126
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1136

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1146
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1147
1148
1149
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1150

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1151
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1152
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1153

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1154
1155
1156
1157
1158
1159
1160
1161
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1162
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1163

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1164
1165
1166
1167
1168
1169
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1170
        """
1171
1172
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1173
            equal_method = np.equal
1174
1175
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1176
1177

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1178
        if self.rank == 0:
dboe's avatar
dboe committed
1179
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1180
        elif self.rank == 1:
dboe's avatar
dboe committed
1181
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1182
1183
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1184
1185
        return indices

1186
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1187
1188
1189
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1190

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1191
1192
1193
        Returns:
            int: index of tensor occuring
        """
1194
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1195
1196
1197
1198
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
dboe's avatar
dboe committed
1199
        raise ValueError("Multiple occurences of value {}".format(tensor))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1200

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1201
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1202
1203
1204
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1205

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1206
1207
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1208

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1209
1210
        Examples:
            >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1211
            >>> import numpy as np
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1212
1213

            Skalars
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1214

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1215
            >>> t = tfields.Tensors(range(1, 6))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1216
            >>> assert t.moment(1) == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1217
1218
1219
1220
            >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5
            >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2

            Vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1221

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1222
            >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1223
1224
1225
1226
            >>> assert Tensors([0.5, 0.5]).equal(t.moment(1, weights=[-2, -1, 20, 1, 2]))
            >>> assert Tensors([1. , 0.5]).equal(
            ...     t.moment(1, weights=list(zip([-2, -1, 10, 1, 2],
            ...                                  [-2, -1, 20, 1, 2]))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1227

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1228
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1229
1230
1231
1232
        array = tfields.lib.stats.moment(self, moment, weights=weights)
        if self.rank == 0:  # scalar
            array = [array]
        return Tensors(array, coord_sys=self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1233
1234
1235
1236
1237
1238

    def closest(self, other, **kwargs):
        """
        Args:
            other (Tensors): closest points to what? -> other
            **kwargs: forwarded to scipy.spatial.cKDTree.query
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1239

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1240
1241
        Returns:
            array shape(len(self)): Indices of other points that are closest to own points
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1242

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1243
1244
1245
1246
1247
1248
1249